| Index: fusl/src/math/tgamma.c
|
| diff --git a/fusl/src/math/tgamma.c b/fusl/src/math/tgamma.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..28f6e0f8327a9368c0c39bc2db4b25033cb24895
|
| --- /dev/null
|
| +++ b/fusl/src/math/tgamma.c
|
| @@ -0,0 +1,222 @@
|
| +/*
|
| +"A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964)
|
| +"Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001)
|
| +"An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004)
|
| +
|
| +approximation method:
|
| +
|
| + (x - 0.5) S(x)
|
| +Gamma(x) = (x + g - 0.5) * ----------------
|
| + exp(x + g - 0.5)
|
| +
|
| +with
|
| + a1 a2 a3 aN
|
| +S(x) ~= [ a0 + ----- + ----- + ----- + ... + ----- ]
|
| + x + 1 x + 2 x + 3 x + N
|
| +
|
| +with a0, a1, a2, a3,.. aN constants which depend on g.
|
| +
|
| +for x < 0 the following reflection formula is used:
|
| +
|
| +Gamma(x)*Gamma(-x) = -pi/(x sin(pi x))
|
| +
|
| +most ideas and constants are from boost and python
|
| +*/
|
| +#include "libm.h"
|
| +
|
| +static const double pi = 3.141592653589793238462643383279502884;
|
| +
|
| +/* sin(pi x) with x > 0x1p-100, if sin(pi*x)==0 the sign is arbitrary */
|
| +static double sinpi(double x)
|
| +{
|
| + int n;
|
| +
|
| + /* argument reduction: x = |x| mod 2 */
|
| + /* spurious inexact when x is odd int */
|
| + x = x * 0.5;
|
| + x = 2 * (x - floor(x));
|
| +
|
| + /* reduce x into [-.25,.25] */
|
| + n = 4 * x;
|
| + n = (n+1)/2;
|
| + x -= n * 0.5;
|
| +
|
| + x *= pi;
|
| + switch (n) {
|
| + default: /* case 4 */
|
| + case 0:
|
| + return __sin(x, 0, 0);
|
| + case 1:
|
| + return __cos(x, 0);
|
| + case 2:
|
| + return __sin(-x, 0, 0);
|
| + case 3:
|
| + return -__cos(x, 0);
|
| + }
|
| +}
|
| +
|
| +#define N 12
|
| +//static const double g = 6.024680040776729583740234375;
|
| +static const double gmhalf = 5.524680040776729583740234375;
|
| +static const double Snum[N+1] = {
|
| + 23531376880.410759688572007674451636754734846804940,
|
| + 42919803642.649098768957899047001988850926355848959,
|
| + 35711959237.355668049440185451547166705960488635843,
|
| + 17921034426.037209699919755754458931112671403265390,
|
| + 6039542586.3520280050642916443072979210699388420708,
|
| + 1439720407.3117216736632230727949123939715485786772,
|
| + 248874557.86205415651146038641322942321632125127801,
|
| + 31426415.585400194380614231628318205362874684987640,
|
| + 2876370.6289353724412254090516208496135991145378768,
|
| + 186056.26539522349504029498971604569928220784236328,
|
| + 8071.6720023658162106380029022722506138218516325024,
|
| + 210.82427775157934587250973392071336271166969580291,
|
| + 2.5066282746310002701649081771338373386264310793408,
|
| +};
|
| +static const double Sden[N+1] = {
|
| + 0, 39916800, 120543840, 150917976, 105258076, 45995730, 13339535,
|
| + 2637558, 357423, 32670, 1925, 66, 1,
|
| +};
|
| +/* n! for small integer n */
|
| +static const double fact[] = {
|
| + 1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0,
|
| + 479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0, 20922789888000.0,
|
| + 355687428096000.0, 6402373705728000.0, 121645100408832000.0,
|
| + 2432902008176640000.0, 51090942171709440000.0, 1124000727777607680000.0,
|
| +};
|
| +
|
| +/* S(x) rational function for positive x */
|
| +static double S(double x)
|
| +{
|
| + double_t num = 0, den = 0;
|
| + int i;
|
| +
|
| + /* to avoid overflow handle large x differently */
|
| + if (x < 8)
|
| + for (i = N; i >= 0; i--) {
|
| + num = num * x + Snum[i];
|
| + den = den * x + Sden[i];
|
| + }
|
| + else
|
| + for (i = 0; i <= N; i++) {
|
| + num = num / x + Snum[i];
|
| + den = den / x + Sden[i];
|
| + }
|
| + return num/den;
|
| +}
|
| +
|
| +double tgamma(double x)
|
| +{
|
| + union {double f; uint64_t i;} u = {x};
|
| + double absx, y;
|
| + double_t dy, z, r;
|
| + uint32_t ix = u.i>>32 & 0x7fffffff;
|
| + int sign = u.i>>63;
|
| +
|
| + /* special cases */
|
| + if (ix >= 0x7ff00000)
|
| + /* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */
|
| + return x + INFINITY;
|
| + if (ix < (0x3ff-54)<<20)
|
| + /* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */
|
| + return 1/x;
|
| +
|
| + /* integer arguments */
|
| + /* raise inexact when non-integer */
|
| + if (x == floor(x)) {
|
| + if (sign)
|
| + return 0/0.0;
|
| + if (x <= sizeof fact/sizeof *fact)
|
| + return fact[(int)x - 1];
|
| + }
|
| +
|
| + /* x >= 172: tgamma(x)=inf with overflow */
|
| + /* x =< -184: tgamma(x)=+-0 with underflow */
|
| + if (ix >= 0x40670000) { /* |x| >= 184 */
|
| + if (sign) {
|
| + FORCE_EVAL((float)(0x1p-126/x));
|
| + if (floor(x) * 0.5 == floor(x * 0.5))
|
| + return 0;
|
| + return -0.0;
|
| + }
|
| + x *= 0x1p1023;
|
| + return x;
|
| + }
|
| +
|
| + absx = sign ? -x : x;
|
| +
|
| + /* handle the error of x + g - 0.5 */
|
| + y = absx + gmhalf;
|
| + if (absx > gmhalf) {
|
| + dy = y - absx;
|
| + dy -= gmhalf;
|
| + } else {
|
| + dy = y - gmhalf;
|
| + dy -= absx;
|
| + }
|
| +
|
| + z = absx - 0.5;
|
| + r = S(absx) * exp(-y);
|
| + if (x < 0) {
|
| + /* reflection formula for negative x */
|
| + /* sinpi(absx) is not 0, integers are already handled */
|
| + r = -pi / (sinpi(absx) * absx * r);
|
| + dy = -dy;
|
| + z = -z;
|
| + }
|
| + r += dy * (gmhalf+0.5) * r / y;
|
| + z = pow(y, 0.5*z);
|
| + y = r * z * z;
|
| + return y;
|
| +}
|
| +
|
| +#if 0
|
| +double __lgamma_r(double x, int *sign)
|
| +{
|
| + double r, absx;
|
| +
|
| + *sign = 1;
|
| +
|
| + /* special cases */
|
| + if (!isfinite(x))
|
| + /* lgamma(nan)=nan, lgamma(+-inf)=inf */
|
| + return x*x;
|
| +
|
| + /* integer arguments */
|
| + if (x == floor(x) && x <= 2) {
|
| + /* n <= 0: lgamma(n)=inf with divbyzero */
|
| + /* n == 1,2: lgamma(n)=0 */
|
| + if (x <= 0)
|
| + return 1/0.0;
|
| + return 0;
|
| + }
|
| +
|
| + absx = fabs(x);
|
| +
|
| + /* lgamma(x) ~ -log(|x|) for tiny |x| */
|
| + if (absx < 0x1p-54) {
|
| + *sign = 1 - 2*!!signbit(x);
|
| + return -log(absx);
|
| + }
|
| +
|
| + /* use tgamma for smaller |x| */
|
| + if (absx < 128) {
|
| + x = tgamma(x);
|
| + *sign = 1 - 2*!!signbit(x);
|
| + return log(fabs(x));
|
| + }
|
| +
|
| + /* second term (log(S)-g) could be more precise here.. */
|
| + /* or with stirling: (|x|-0.5)*(log(|x|)-1) + poly(1/|x|) */
|
| + r = (absx-0.5)*(log(absx+gmhalf)-1) + (log(S(absx)) - (gmhalf+0.5));
|
| + if (x < 0) {
|
| + /* reflection formula for negative x */
|
| + x = sinpi(absx);
|
| + *sign = 2*!!signbit(x) - 1;
|
| + r = log(pi/(fabs(x)*absx)) - r;
|
| + }
|
| + return r;
|
| +}
|
| +
|
| +weak_alias(__lgamma_r, lgamma_r);
|
| +#endif
|
|
|