Index: fusl/src/math/atan.c |
diff --git a/fusl/src/math/atan.c b/fusl/src/math/atan.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..63b0ab25e3cf02ea81bab5a9ee4d99d6c40bb582 |
--- /dev/null |
+++ b/fusl/src/math/atan.c |
@@ -0,0 +1,116 @@ |
+/* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */ |
+/* |
+ * ==================================================== |
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
+ * |
+ * Developed at SunPro, a Sun Microsystems, Inc. business. |
+ * Permission to use, copy, modify, and distribute this |
+ * software is freely granted, provided that this notice |
+ * is preserved. |
+ * ==================================================== |
+ */ |
+/* atan(x) |
+ * Method |
+ * 1. Reduce x to positive by atan(x) = -atan(-x). |
+ * 2. According to the integer k=4t+0.25 chopped, t=x, the argument |
+ * is further reduced to one of the following intervals and the |
+ * arctangent of t is evaluated by the corresponding formula: |
+ * |
+ * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) |
+ * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) |
+ * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) |
+ * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) |
+ * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) |
+ * |
+ * Constants: |
+ * The hexadecimal values are the intended ones for the following |
+ * constants. The decimal values may be used, provided that the |
+ * compiler will convert from decimal to binary accurately enough |
+ * to produce the hexadecimal values shown. |
+ */ |
+ |
+ |
+#include "libm.h" |
+ |
+static const double atanhi[] = { |
+ 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ |
+ 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ |
+ 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ |
+ 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ |
+}; |
+ |
+static const double atanlo[] = { |
+ 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ |
+ 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ |
+ 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ |
+ 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ |
+}; |
+ |
+static const double aT[] = { |
+ 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ |
+ -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ |
+ 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ |
+ -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ |
+ 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ |
+ -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ |
+ 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ |
+ -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ |
+ 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ |
+ -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ |
+ 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ |
+}; |
+ |
+double atan(double x) |
+{ |
+ double_t w,s1,s2,z; |
+ uint32_t ix,sign; |
+ int id; |
+ |
+ GET_HIGH_WORD(ix, x); |
+ sign = ix >> 31; |
+ ix &= 0x7fffffff; |
+ if (ix >= 0x44100000) { /* if |x| >= 2^66 */ |
+ if (isnan(x)) |
+ return x; |
+ z = atanhi[3] + 0x1p-120f; |
+ return sign ? -z : z; |
+ } |
+ if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ |
+ if (ix < 0x3e400000) { /* |x| < 2^-27 */ |
+ if (ix < 0x00100000) |
+ /* raise underflow for subnormal x */ |
+ FORCE_EVAL((float)x); |
+ return x; |
+ } |
+ id = -1; |
+ } else { |
+ x = fabs(x); |
+ if (ix < 0x3ff30000) { /* |x| < 1.1875 */ |
+ if (ix < 0x3fe60000) { /* 7/16 <= |x| < 11/16 */ |
+ id = 0; |
+ x = (2.0*x-1.0)/(2.0+x); |
+ } else { /* 11/16 <= |x| < 19/16 */ |
+ id = 1; |
+ x = (x-1.0)/(x+1.0); |
+ } |
+ } else { |
+ if (ix < 0x40038000) { /* |x| < 2.4375 */ |
+ id = 2; |
+ x = (x-1.5)/(1.0+1.5*x); |
+ } else { /* 2.4375 <= |x| < 2^66 */ |
+ id = 3; |
+ x = -1.0/x; |
+ } |
+ } |
+ } |
+ /* end of argument reduction */ |
+ z = x*x; |
+ w = z*z; |
+ /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ |
+ s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); |
+ s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); |
+ if (id < 0) |
+ return x - x*(s1+s2); |
+ z = atanhi[id] - (x*(s1+s2) - atanlo[id] - x); |
+ return sign ? -z : z; |
+} |