| Index: fusl/src/math/cbrtf.c
|
| diff --git a/fusl/src/math/cbrtf.c b/fusl/src/math/cbrtf.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..89c2c8655da46a37a737dfed63ae8c619f9c7350
|
| --- /dev/null
|
| +++ b/fusl/src/math/cbrtf.c
|
| @@ -0,0 +1,66 @@
|
| +/* origin: FreeBSD /usr/src/lib/msun/src/s_cbrtf.c */
|
| +/*
|
| + * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
| + * Debugged and optimized by Bruce D. Evans.
|
| + */
|
| +/*
|
| + * ====================================================
|
| + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
| + *
|
| + * Developed at SunPro, a Sun Microsystems, Inc. business.
|
| + * Permission to use, copy, modify, and distribute this
|
| + * software is freely granted, provided that this notice
|
| + * is preserved.
|
| + * ====================================================
|
| + */
|
| +/* cbrtf(x)
|
| + * Return cube root of x
|
| + */
|
| +
|
| +#include <math.h>
|
| +#include <stdint.h>
|
| +
|
| +static const unsigned
|
| +B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */
|
| +B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
|
| +
|
| +float cbrtf(float x)
|
| +{
|
| + double_t r,T;
|
| + union {float f; uint32_t i;} u = {x};
|
| + uint32_t hx = u.i & 0x7fffffff;
|
| +
|
| + if (hx >= 0x7f800000) /* cbrt(NaN,INF) is itself */
|
| + return x + x;
|
| +
|
| + /* rough cbrt to 5 bits */
|
| + if (hx < 0x00800000) { /* zero or subnormal? */
|
| + if (hx == 0)
|
| + return x; /* cbrt(+-0) is itself */
|
| + u.f = x*0x1p24f;
|
| + hx = u.i & 0x7fffffff;
|
| + hx = hx/3 + B2;
|
| + } else
|
| + hx = hx/3 + B1;
|
| + u.i &= 0x80000000;
|
| + u.i |= hx;
|
| +
|
| + /*
|
| + * First step Newton iteration (solving t*t-x/t == 0) to 16 bits. In
|
| + * double precision so that its terms can be arranged for efficiency
|
| + * without causing overflow or underflow.
|
| + */
|
| + T = u.f;
|
| + r = T*T*T;
|
| + T = T*((double_t)x+x+r)/(x+r+r);
|
| +
|
| + /*
|
| + * Second step Newton iteration to 47 bits. In double precision for
|
| + * efficiency and accuracy.
|
| + */
|
| + r = T*T*T;
|
| + T = T*((double_t)x+x+r)/(x+r+r);
|
| +
|
| + /* rounding to 24 bits is perfect in round-to-nearest mode */
|
| + return T;
|
| +}
|
|
|