Index: fusl/src/math/fmal.c |
diff --git a/fusl/src/math/fmal.c b/fusl/src/math/fmal.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..4506aac6f6abbe9545f0674dd645c121f5198617 |
--- /dev/null |
+++ b/fusl/src/math/fmal.c |
@@ -0,0 +1,293 @@ |
+/* origin: FreeBSD /usr/src/lib/msun/src/s_fmal.c */ |
+/*- |
+ * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG> |
+ * All rights reserved. |
+ * |
+ * Redistribution and use in source and binary forms, with or without |
+ * modification, are permitted provided that the following conditions |
+ * are met: |
+ * 1. Redistributions of source code must retain the above copyright |
+ * notice, this list of conditions and the following disclaimer. |
+ * 2. Redistributions in binary form must reproduce the above copyright |
+ * notice, this list of conditions and the following disclaimer in the |
+ * documentation and/or other materials provided with the distribution. |
+ * |
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
+ * SUCH DAMAGE. |
+ */ |
+ |
+ |
+#include "libm.h" |
+#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
+long double fmal(long double x, long double y, long double z) |
+{ |
+ return fma(x, y, z); |
+} |
+#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384 |
+#include <fenv.h> |
+#if LDBL_MANT_DIG == 64 |
+#define LASTBIT(u) (u.i.m & 1) |
+#define SPLIT (0x1p32L + 1) |
+#elif LDBL_MANT_DIG == 113 |
+#define LASTBIT(u) (u.i.lo & 1) |
+#define SPLIT (0x1p57L + 1) |
+#endif |
+ |
+/* |
+ * A struct dd represents a floating-point number with twice the precision |
+ * of a long double. We maintain the invariant that "hi" stores the high-order |
+ * bits of the result. |
+ */ |
+struct dd { |
+ long double hi; |
+ long double lo; |
+}; |
+ |
+/* |
+ * Compute a+b exactly, returning the exact result in a struct dd. We assume |
+ * that both a and b are finite, but make no assumptions about their relative |
+ * magnitudes. |
+ */ |
+static inline struct dd dd_add(long double a, long double b) |
+{ |
+ struct dd ret; |
+ long double s; |
+ |
+ ret.hi = a + b; |
+ s = ret.hi - a; |
+ ret.lo = (a - (ret.hi - s)) + (b - s); |
+ return (ret); |
+} |
+ |
+/* |
+ * Compute a+b, with a small tweak: The least significant bit of the |
+ * result is adjusted into a sticky bit summarizing all the bits that |
+ * were lost to rounding. This adjustment negates the effects of double |
+ * rounding when the result is added to another number with a higher |
+ * exponent. For an explanation of round and sticky bits, see any reference |
+ * on FPU design, e.g., |
+ * |
+ * J. Coonen. An Implementation Guide to a Proposed Standard for |
+ * Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980. |
+ */ |
+static inline long double add_adjusted(long double a, long double b) |
+{ |
+ struct dd sum; |
+ union ldshape u; |
+ |
+ sum = dd_add(a, b); |
+ if (sum.lo != 0) { |
+ u.f = sum.hi; |
+ if (!LASTBIT(u)) |
+ sum.hi = nextafterl(sum.hi, INFINITY * sum.lo); |
+ } |
+ return (sum.hi); |
+} |
+ |
+/* |
+ * Compute ldexp(a+b, scale) with a single rounding error. It is assumed |
+ * that the result will be subnormal, and care is taken to ensure that |
+ * double rounding does not occur. |
+ */ |
+static inline long double add_and_denormalize(long double a, long double b, int scale) |
+{ |
+ struct dd sum; |
+ int bits_lost; |
+ union ldshape u; |
+ |
+ sum = dd_add(a, b); |
+ |
+ /* |
+ * If we are losing at least two bits of accuracy to denormalization, |
+ * then the first lost bit becomes a round bit, and we adjust the |
+ * lowest bit of sum.hi to make it a sticky bit summarizing all the |
+ * bits in sum.lo. With the sticky bit adjusted, the hardware will |
+ * break any ties in the correct direction. |
+ * |
+ * If we are losing only one bit to denormalization, however, we must |
+ * break the ties manually. |
+ */ |
+ if (sum.lo != 0) { |
+ u.f = sum.hi; |
+ bits_lost = -u.i.se - scale + 1; |
+ if ((bits_lost != 1) ^ LASTBIT(u)) |
+ sum.hi = nextafterl(sum.hi, INFINITY * sum.lo); |
+ } |
+ return scalbnl(sum.hi, scale); |
+} |
+ |
+/* |
+ * Compute a*b exactly, returning the exact result in a struct dd. We assume |
+ * that both a and b are normalized, so no underflow or overflow will occur. |
+ * The current rounding mode must be round-to-nearest. |
+ */ |
+static inline struct dd dd_mul(long double a, long double b) |
+{ |
+ struct dd ret; |
+ long double ha, hb, la, lb, p, q; |
+ |
+ p = a * SPLIT; |
+ ha = a - p; |
+ ha += p; |
+ la = a - ha; |
+ |
+ p = b * SPLIT; |
+ hb = b - p; |
+ hb += p; |
+ lb = b - hb; |
+ |
+ p = ha * hb; |
+ q = ha * lb + la * hb; |
+ |
+ ret.hi = p + q; |
+ ret.lo = p - ret.hi + q + la * lb; |
+ return (ret); |
+} |
+ |
+/* |
+ * Fused multiply-add: Compute x * y + z with a single rounding error. |
+ * |
+ * We use scaling to avoid overflow/underflow, along with the |
+ * canonical precision-doubling technique adapted from: |
+ * |
+ * Dekker, T. A Floating-Point Technique for Extending the |
+ * Available Precision. Numer. Math. 18, 224-242 (1971). |
+ */ |
+long double fmal(long double x, long double y, long double z) |
+{ |
+ #pragma STDC FENV_ACCESS ON |
+ long double xs, ys, zs, adj; |
+ struct dd xy, r; |
+ int oround; |
+ int ex, ey, ez; |
+ int spread; |
+ |
+ /* |
+ * Handle special cases. The order of operations and the particular |
+ * return values here are crucial in handling special cases involving |
+ * infinities, NaNs, overflows, and signed zeroes correctly. |
+ */ |
+ if (!isfinite(x) || !isfinite(y)) |
+ return (x * y + z); |
+ if (!isfinite(z)) |
+ return (z); |
+ if (x == 0.0 || y == 0.0) |
+ return (x * y + z); |
+ if (z == 0.0) |
+ return (x * y); |
+ |
+ xs = frexpl(x, &ex); |
+ ys = frexpl(y, &ey); |
+ zs = frexpl(z, &ez); |
+ oround = fegetround(); |
+ spread = ex + ey - ez; |
+ |
+ /* |
+ * If x * y and z are many orders of magnitude apart, the scaling |
+ * will overflow, so we handle these cases specially. Rounding |
+ * modes other than FE_TONEAREST are painful. |
+ */ |
+ if (spread < -LDBL_MANT_DIG) { |
+#ifdef FE_INEXACT |
+ feraiseexcept(FE_INEXACT); |
+#endif |
+#ifdef FE_UNDERFLOW |
+ if (!isnormal(z)) |
+ feraiseexcept(FE_UNDERFLOW); |
+#endif |
+ switch (oround) { |
+ default: /* FE_TONEAREST */ |
+ return (z); |
+#ifdef FE_TOWARDZERO |
+ case FE_TOWARDZERO: |
+ if (x > 0.0 ^ y < 0.0 ^ z < 0.0) |
+ return (z); |
+ else |
+ return (nextafterl(z, 0)); |
+#endif |
+#ifdef FE_DOWNWARD |
+ case FE_DOWNWARD: |
+ if (x > 0.0 ^ y < 0.0) |
+ return (z); |
+ else |
+ return (nextafterl(z, -INFINITY)); |
+#endif |
+#ifdef FE_UPWARD |
+ case FE_UPWARD: |
+ if (x > 0.0 ^ y < 0.0) |
+ return (nextafterl(z, INFINITY)); |
+ else |
+ return (z); |
+#endif |
+ } |
+ } |
+ if (spread <= LDBL_MANT_DIG * 2) |
+ zs = scalbnl(zs, -spread); |
+ else |
+ zs = copysignl(LDBL_MIN, zs); |
+ |
+ fesetround(FE_TONEAREST); |
+ |
+ /* |
+ * Basic approach for round-to-nearest: |
+ * |
+ * (xy.hi, xy.lo) = x * y (exact) |
+ * (r.hi, r.lo) = xy.hi + z (exact) |
+ * adj = xy.lo + r.lo (inexact; low bit is sticky) |
+ * result = r.hi + adj (correctly rounded) |
+ */ |
+ xy = dd_mul(xs, ys); |
+ r = dd_add(xy.hi, zs); |
+ |
+ spread = ex + ey; |
+ |
+ if (r.hi == 0.0) { |
+ /* |
+ * When the addends cancel to 0, ensure that the result has |
+ * the correct sign. |
+ */ |
+ fesetround(oround); |
+ volatile long double vzs = zs; /* XXX gcc CSE bug workaround */ |
+ return xy.hi + vzs + scalbnl(xy.lo, spread); |
+ } |
+ |
+ if (oround != FE_TONEAREST) { |
+ /* |
+ * There is no need to worry about double rounding in directed |
+ * rounding modes. |
+ * But underflow may not be raised correctly, example in downward rounding: |
+ * fmal(0x1.0000000001p-16000L, 0x1.0000000001p-400L, -0x1p-16440L) |
+ */ |
+ long double ret; |
+#if defined(FE_INEXACT) && defined(FE_UNDERFLOW) |
+ int e = fetestexcept(FE_INEXACT); |
+ feclearexcept(FE_INEXACT); |
+#endif |
+ fesetround(oround); |
+ adj = r.lo + xy.lo; |
+ ret = scalbnl(r.hi + adj, spread); |
+#if defined(FE_INEXACT) && defined(FE_UNDERFLOW) |
+ if (ilogbl(ret) < -16382 && fetestexcept(FE_INEXACT)) |
+ feraiseexcept(FE_UNDERFLOW); |
+ else if (e) |
+ feraiseexcept(FE_INEXACT); |
+#endif |
+ return ret; |
+ } |
+ |
+ adj = add_adjusted(r.lo, xy.lo); |
+ if (spread + ilogbl(r.hi) > -16383) |
+ return scalbnl(r.hi + adj, spread); |
+ else |
+ return add_and_denormalize(r.hi, adj, spread); |
+} |
+#endif |