Index: fusl/src/math/jnf.c |
diff --git a/fusl/src/math/jnf.c b/fusl/src/math/jnf.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..f63c062f32caf74b724f11e0ac97ece8da4d75b9 |
--- /dev/null |
+++ b/fusl/src/math/jnf.c |
@@ -0,0 +1,202 @@ |
+/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */ |
+/* |
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
+ */ |
+/* |
+ * ==================================================== |
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
+ * |
+ * Developed at SunPro, a Sun Microsystems, Inc. business. |
+ * Permission to use, copy, modify, and distribute this |
+ * software is freely granted, provided that this notice |
+ * is preserved. |
+ * ==================================================== |
+ */ |
+ |
+#define _GNU_SOURCE |
+#include "libm.h" |
+ |
+float jnf(int n, float x) |
+{ |
+ uint32_t ix; |
+ int nm1, sign, i; |
+ float a, b, temp; |
+ |
+ GET_FLOAT_WORD(ix, x); |
+ sign = ix>>31; |
+ ix &= 0x7fffffff; |
+ if (ix > 0x7f800000) /* nan */ |
+ return x; |
+ |
+ /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */ |
+ if (n == 0) |
+ return j0f(x); |
+ if (n < 0) { |
+ nm1 = -(n+1); |
+ x = -x; |
+ sign ^= 1; |
+ } else |
+ nm1 = n-1; |
+ if (nm1 == 0) |
+ return j1f(x); |
+ |
+ sign &= n; /* even n: 0, odd n: signbit(x) */ |
+ x = fabsf(x); |
+ if (ix == 0 || ix == 0x7f800000) /* if x is 0 or inf */ |
+ b = 0.0f; |
+ else if (nm1 < x) { |
+ /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
+ a = j0f(x); |
+ b = j1f(x); |
+ for (i=0; i<nm1; ){ |
+ i++; |
+ temp = b; |
+ b = b*(2.0f*i/x) - a; |
+ a = temp; |
+ } |
+ } else { |
+ if (ix < 0x35800000) { /* x < 2**-20 */ |
+ /* x is tiny, return the first Taylor expansion of J(n,x) |
+ * J(n,x) = 1/n!*(x/2)^n - ... |
+ */ |
+ if (nm1 > 8) /* underflow */ |
+ nm1 = 8; |
+ temp = 0.5f * x; |
+ b = temp; |
+ a = 1.0f; |
+ for (i=2; i<=nm1+1; i++) { |
+ a *= (float)i; /* a = n! */ |
+ b *= temp; /* b = (x/2)^n */ |
+ } |
+ b = b/a; |
+ } else { |
+ /* use backward recurrence */ |
+ /* x x^2 x^2 |
+ * J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
+ * 2n - 2(n+1) - 2(n+2) |
+ * |
+ * 1 1 1 |
+ * (for large x) = ---- ------ ------ ..... |
+ * 2n 2(n+1) 2(n+2) |
+ * -- - ------ - ------ - |
+ * x x x |
+ * |
+ * Let w = 2n/x and h=2/x, then the above quotient |
+ * is equal to the continued fraction: |
+ * 1 |
+ * = ----------------------- |
+ * 1 |
+ * w - ----------------- |
+ * 1 |
+ * w+h - --------- |
+ * w+2h - ... |
+ * |
+ * To determine how many terms needed, let |
+ * Q(0) = w, Q(1) = w(w+h) - 1, |
+ * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
+ * When Q(k) > 1e4 good for single |
+ * When Q(k) > 1e9 good for double |
+ * When Q(k) > 1e17 good for quadruple |
+ */ |
+ /* determine k */ |
+ float t,q0,q1,w,h,z,tmp,nf; |
+ int k; |
+ |
+ nf = nm1+1.0f; |
+ w = 2*nf/x; |
+ h = 2/x; |
+ z = w+h; |
+ q0 = w; |
+ q1 = w*z - 1.0f; |
+ k = 1; |
+ while (q1 < 1.0e4f) { |
+ k += 1; |
+ z += h; |
+ tmp = z*q1 - q0; |
+ q0 = q1; |
+ q1 = tmp; |
+ } |
+ for (t=0.0f, i=k; i>=0; i--) |
+ t = 1.0f/(2*(i+nf)/x-t); |
+ a = t; |
+ b = 1.0f; |
+ /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
+ * Hence, if n*(log(2n/x)) > ... |
+ * single 8.8722839355e+01 |
+ * double 7.09782712893383973096e+02 |
+ * long double 1.1356523406294143949491931077970765006170e+04 |
+ * then recurrent value may overflow and the result is |
+ * likely underflow to zero |
+ */ |
+ tmp = nf*logf(fabsf(w)); |
+ if (tmp < 88.721679688f) { |
+ for (i=nm1; i>0; i--) { |
+ temp = b; |
+ b = 2.0f*i*b/x - a; |
+ a = temp; |
+ } |
+ } else { |
+ for (i=nm1; i>0; i--){ |
+ temp = b; |
+ b = 2.0f*i*b/x - a; |
+ a = temp; |
+ /* scale b to avoid spurious overflow */ |
+ if (b > 0x1p60f) { |
+ a /= b; |
+ t /= b; |
+ b = 1.0f; |
+ } |
+ } |
+ } |
+ z = j0f(x); |
+ w = j1f(x); |
+ if (fabsf(z) >= fabsf(w)) |
+ b = t*z/b; |
+ else |
+ b = t*w/a; |
+ } |
+ } |
+ return sign ? -b : b; |
+} |
+ |
+float ynf(int n, float x) |
+{ |
+ uint32_t ix, ib; |
+ int nm1, sign, i; |
+ float a, b, temp; |
+ |
+ GET_FLOAT_WORD(ix, x); |
+ sign = ix>>31; |
+ ix &= 0x7fffffff; |
+ if (ix > 0x7f800000) /* nan */ |
+ return x; |
+ if (sign && ix != 0) /* x < 0 */ |
+ return 0/0.0f; |
+ if (ix == 0x7f800000) |
+ return 0.0f; |
+ |
+ if (n == 0) |
+ return y0f(x); |
+ if (n < 0) { |
+ nm1 = -(n+1); |
+ sign = n&1; |
+ } else { |
+ nm1 = n-1; |
+ sign = 0; |
+ } |
+ if (nm1 == 0) |
+ return sign ? -y1f(x) : y1f(x); |
+ |
+ a = y0f(x); |
+ b = y1f(x); |
+ /* quit if b is -inf */ |
+ GET_FLOAT_WORD(ib,b); |
+ for (i = 0; i < nm1 && ib != 0xff800000; ) { |
+ i++; |
+ temp = b; |
+ b = (2.0f*i/x)*b - a; |
+ GET_FLOAT_WORD(ib, b); |
+ a = temp; |
+ } |
+ return sign ? -b : b; |
+} |