Index: fusl/src/math/asin.c |
diff --git a/fusl/src/math/asin.c b/fusl/src/math/asin.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..c926b188552b20b1842a26e4c5500b2f0686a95f |
--- /dev/null |
+++ b/fusl/src/math/asin.c |
@@ -0,0 +1,107 @@ |
+/* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */ |
+/* |
+ * ==================================================== |
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
+ * |
+ * Developed at SunSoft, a Sun Microsystems, Inc. business. |
+ * Permission to use, copy, modify, and distribute this |
+ * software is freely granted, provided that this notice |
+ * is preserved. |
+ * ==================================================== |
+ */ |
+/* asin(x) |
+ * Method : |
+ * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ... |
+ * we approximate asin(x) on [0,0.5] by |
+ * asin(x) = x + x*x^2*R(x^2) |
+ * where |
+ * R(x^2) is a rational approximation of (asin(x)-x)/x^3 |
+ * and its remez error is bounded by |
+ * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75) |
+ * |
+ * For x in [0.5,1] |
+ * asin(x) = pi/2-2*asin(sqrt((1-x)/2)) |
+ * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2; |
+ * then for x>0.98 |
+ * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
+ * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo) |
+ * For x<=0.98, let pio4_hi = pio2_hi/2, then |
+ * f = hi part of s; |
+ * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z) |
+ * and |
+ * asin(x) = pi/2 - 2*(s+s*z*R(z)) |
+ * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo) |
+ * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c)) |
+ * |
+ * Special cases: |
+ * if x is NaN, return x itself; |
+ * if |x|>1, return NaN with invalid signal. |
+ * |
+ */ |
+ |
+#include "libm.h" |
+ |
+static const double |
+pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ |
+pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ |
+/* coefficients for R(x^2) */ |
+pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ |
+pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ |
+pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ |
+pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ |
+pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ |
+pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ |
+qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ |
+qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ |
+qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ |
+qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ |
+ |
+static double R(double z) |
+{ |
+ double_t p, q; |
+ p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); |
+ q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4))); |
+ return p/q; |
+} |
+ |
+double asin(double x) |
+{ |
+ double z,r,s; |
+ uint32_t hx,ix; |
+ |
+ GET_HIGH_WORD(hx, x); |
+ ix = hx & 0x7fffffff; |
+ /* |x| >= 1 or nan */ |
+ if (ix >= 0x3ff00000) { |
+ uint32_t lx; |
+ GET_LOW_WORD(lx, x); |
+ if ((ix-0x3ff00000 | lx) == 0) |
+ /* asin(1) = +-pi/2 with inexact */ |
+ return x*pio2_hi + 0x1p-120f; |
+ return 0/(x-x); |
+ } |
+ /* |x| < 0.5 */ |
+ if (ix < 0x3fe00000) { |
+ /* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */ |
+ if (ix < 0x3e500000 && ix >= 0x00100000) |
+ return x; |
+ return x + x*R(x*x); |
+ } |
+ /* 1 > |x| >= 0.5 */ |
+ z = (1 - fabs(x))*0.5; |
+ s = sqrt(z); |
+ r = R(z); |
+ if (ix >= 0x3fef3333) { /* if |x| > 0.975 */ |
+ x = pio2_hi-(2*(s+s*r)-pio2_lo); |
+ } else { |
+ double f,c; |
+ /* f+c = sqrt(z) */ |
+ f = s; |
+ SET_LOW_WORD(f,0); |
+ c = (z-f*f)/(s+f); |
+ x = 0.5*pio2_hi - (2*s*r - (pio2_lo-2*c) - (0.5*pio2_hi-2*f)); |
+ } |
+ if (hx >> 31) |
+ return -x; |
+ return x; |
+} |