| Index: fusl/src/math/expl.c
|
| diff --git a/fusl/src/math/expl.c b/fusl/src/math/expl.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..0a7f44f685ee3b708962dc9683698ffcd8074775
|
| --- /dev/null
|
| +++ b/fusl/src/math/expl.c
|
| @@ -0,0 +1,128 @@
|
| +/* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expl.c */
|
| +/*
|
| + * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
|
| + *
|
| + * Permission to use, copy, modify, and distribute this software for any
|
| + * purpose with or without fee is hereby granted, provided that the above
|
| + * copyright notice and this permission notice appear in all copies.
|
| + *
|
| + * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
| + * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
| + * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
| + * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
| + * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
| + * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
| + * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
| + */
|
| +/*
|
| + * Exponential function, long double precision
|
| + *
|
| + *
|
| + * SYNOPSIS:
|
| + *
|
| + * long double x, y, expl();
|
| + *
|
| + * y = expl( x );
|
| + *
|
| + *
|
| + * DESCRIPTION:
|
| + *
|
| + * Returns e (2.71828...) raised to the x power.
|
| + *
|
| + * Range reduction is accomplished by separating the argument
|
| + * into an integer k and fraction f such that
|
| + *
|
| + * x k f
|
| + * e = 2 e.
|
| + *
|
| + * A Pade' form of degree 5/6 is used to approximate exp(f) - 1
|
| + * in the basic range [-0.5 ln 2, 0.5 ln 2].
|
| + *
|
| + *
|
| + * ACCURACY:
|
| + *
|
| + * Relative error:
|
| + * arithmetic domain # trials peak rms
|
| + * IEEE +-10000 50000 1.12e-19 2.81e-20
|
| + *
|
| + *
|
| + * Error amplification in the exponential function can be
|
| + * a serious matter. The error propagation involves
|
| + * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
|
| + * which shows that a 1 lsb error in representing X produces
|
| + * a relative error of X times 1 lsb in the function.
|
| + * While the routine gives an accurate result for arguments
|
| + * that are exactly represented by a long double precision
|
| + * computer number, the result contains amplified roundoff
|
| + * error for large arguments not exactly represented.
|
| + *
|
| + *
|
| + * ERROR MESSAGES:
|
| + *
|
| + * message condition value returned
|
| + * exp underflow x < MINLOG 0.0
|
| + * exp overflow x > MAXLOG MAXNUM
|
| + *
|
| + */
|
| +
|
| +#include "libm.h"
|
| +
|
| +#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
| +long double expl(long double x)
|
| +{
|
| + return exp(x);
|
| +}
|
| +#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
| +
|
| +static const long double P[3] = {
|
| + 1.2617719307481059087798E-4L,
|
| + 3.0299440770744196129956E-2L,
|
| + 9.9999999999999999991025E-1L,
|
| +};
|
| +static const long double Q[4] = {
|
| + 3.0019850513866445504159E-6L,
|
| + 2.5244834034968410419224E-3L,
|
| + 2.2726554820815502876593E-1L,
|
| + 2.0000000000000000000897E0L,
|
| +};
|
| +static const long double
|
| +LN2HI = 6.9314575195312500000000E-1L,
|
| +LN2LO = 1.4286068203094172321215E-6L,
|
| +LOG2E = 1.4426950408889634073599E0L;
|
| +
|
| +long double expl(long double x)
|
| +{
|
| + long double px, xx;
|
| + int k;
|
| +
|
| + if (isnan(x))
|
| + return x;
|
| + if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */
|
| + return x * 0x1p16383L;
|
| + if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */
|
| + return -0x1p-16445L/x;
|
| +
|
| + /* Express e**x = e**f 2**k
|
| + * = e**(f + k ln(2))
|
| + */
|
| + px = floorl(LOG2E * x + 0.5);
|
| + k = px;
|
| + x -= px * LN2HI;
|
| + x -= px * LN2LO;
|
| +
|
| + /* rational approximation of the fractional part:
|
| + * e**x = 1 + 2x P(x**2)/(Q(x**2) - x P(x**2))
|
| + */
|
| + xx = x * x;
|
| + px = x * __polevll(xx, P, 2);
|
| + x = px/(__polevll(xx, Q, 3) - px);
|
| + x = 1.0 + 2.0 * x;
|
| + return scalbnl(x, k);
|
| +}
|
| +#elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
|
| +// TODO: broken implementation to make things compile
|
| +long double expl(long double x)
|
| +{
|
| + return exp(x);
|
| +}
|
| +#endif
|
|
|