OLD | NEW |
(Empty) | |
| 1 /* |
| 2 regcomp.c - TRE POSIX compatible regex compilation functions. |
| 3 |
| 4 Copyright (c) 2001-2009 Ville Laurikari <vl@iki.fi> |
| 5 All rights reserved. |
| 6 |
| 7 Redistribution and use in source and binary forms, with or without |
| 8 modification, are permitted provided that the following conditions |
| 9 are met: |
| 10 |
| 11 1. Redistributions of source code must retain the above copyright |
| 12 notice, this list of conditions and the following disclaimer. |
| 13 |
| 14 2. Redistributions in binary form must reproduce the above copyright |
| 15 notice, this list of conditions and the following disclaimer in the |
| 16 documentation and/or other materials provided with the distribution. |
| 17 |
| 18 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS |
| 19 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 20 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 21 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 22 HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 23 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 24 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 25 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 26 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 27 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 28 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 29 |
| 30 */ |
| 31 |
| 32 #include <string.h> |
| 33 #include <stdlib.h> |
| 34 #include <regex.h> |
| 35 #include <limits.h> |
| 36 #include <stdint.h> |
| 37 #include <ctype.h> |
| 38 |
| 39 #include "tre.h" |
| 40 |
| 41 #include <assert.h> |
| 42 |
| 43 /*********************************************************************** |
| 44 from tre-compile.h |
| 45 ***********************************************************************/ |
| 46 |
| 47 typedef struct { |
| 48 int position; |
| 49 int code_min; |
| 50 int code_max; |
| 51 int *tags; |
| 52 int assertions; |
| 53 tre_ctype_t class; |
| 54 tre_ctype_t *neg_classes; |
| 55 int backref; |
| 56 } tre_pos_and_tags_t; |
| 57 |
| 58 |
| 59 /*********************************************************************** |
| 60 from tre-ast.c and tre-ast.h |
| 61 ***********************************************************************/ |
| 62 |
| 63 /* The different AST node types. */ |
| 64 typedef enum { |
| 65 LITERAL, |
| 66 CATENATION, |
| 67 ITERATION, |
| 68 UNION |
| 69 } tre_ast_type_t; |
| 70 |
| 71 /* Special subtypes of TRE_LITERAL. */ |
| 72 #define EMPTY -1 /* Empty leaf (denotes empty string). */ |
| 73 #define ASSERTION -2 /* Assertion leaf. */ |
| 74 #define TAG -3 /* Tag leaf. */ |
| 75 #define BACKREF -4 /* Back reference leaf. */ |
| 76 |
| 77 #define IS_SPECIAL(x) ((x)->code_min < 0) |
| 78 #define IS_EMPTY(x) ((x)->code_min == EMPTY) |
| 79 #define IS_ASSERTION(x) ((x)->code_min == ASSERTION) |
| 80 #define IS_TAG(x) ((x)->code_min == TAG) |
| 81 #define IS_BACKREF(x) ((x)->code_min == BACKREF) |
| 82 |
| 83 |
| 84 /* A generic AST node. All AST nodes consist of this node on the top |
| 85 level with `obj' pointing to the actual content. */ |
| 86 typedef struct { |
| 87 tre_ast_type_t type; /* Type of the node. */ |
| 88 void *obj; /* Pointer to actual node. */ |
| 89 int nullable; |
| 90 int submatch_id; |
| 91 int num_submatches; |
| 92 int num_tags; |
| 93 tre_pos_and_tags_t *firstpos; |
| 94 tre_pos_and_tags_t *lastpos; |
| 95 } tre_ast_node_t; |
| 96 |
| 97 |
| 98 /* A "literal" node. These are created for assertions, back references, |
| 99 tags, matching parameter settings, and all expressions that match one |
| 100 character. */ |
| 101 typedef struct { |
| 102 long code_min; |
| 103 long code_max; |
| 104 int position; |
| 105 tre_ctype_t class; |
| 106 tre_ctype_t *neg_classes; |
| 107 } tre_literal_t; |
| 108 |
| 109 /* A "catenation" node. These are created when two regexps are concatenated. |
| 110 If there are more than one subexpressions in sequence, the `left' part |
| 111 holds all but the last, and `right' part holds the last subexpression |
| 112 (catenation is left associative). */ |
| 113 typedef struct { |
| 114 tre_ast_node_t *left; |
| 115 tre_ast_node_t *right; |
| 116 } tre_catenation_t; |
| 117 |
| 118 /* An "iteration" node. These are created for the "*", "+", "?", and "{m,n}" |
| 119 operators. */ |
| 120 typedef struct { |
| 121 /* Subexpression to match. */ |
| 122 tre_ast_node_t *arg; |
| 123 /* Minimum number of consecutive matches. */ |
| 124 int min; |
| 125 /* Maximum number of consecutive matches. */ |
| 126 int max; |
| 127 /* If 0, match as many characters as possible, if 1 match as few as |
| 128 possible. Note that this does not always mean the same thing as |
| 129 matching as many/few repetitions as possible. */ |
| 130 unsigned int minimal:1; |
| 131 } tre_iteration_t; |
| 132 |
| 133 /* An "union" node. These are created for the "|" operator. */ |
| 134 typedef struct { |
| 135 tre_ast_node_t *left; |
| 136 tre_ast_node_t *right; |
| 137 } tre_union_t; |
| 138 |
| 139 |
| 140 static tre_ast_node_t * |
| 141 tre_ast_new_node(tre_mem_t mem, int type, void *obj) |
| 142 { |
| 143 tre_ast_node_t *node = tre_mem_calloc(mem, sizeof *node); |
| 144 if (!node || !obj) |
| 145 return 0; |
| 146 node->obj = obj; |
| 147 node->type = type; |
| 148 node->nullable = -1; |
| 149 node->submatch_id = -1; |
| 150 return node; |
| 151 } |
| 152 |
| 153 static tre_ast_node_t * |
| 154 tre_ast_new_literal(tre_mem_t mem, int code_min, int code_max, int position) |
| 155 { |
| 156 tre_ast_node_t *node; |
| 157 tre_literal_t *lit; |
| 158 |
| 159 lit = tre_mem_calloc(mem, sizeof *lit); |
| 160 node = tre_ast_new_node(mem, LITERAL, lit); |
| 161 if (!node) |
| 162 return 0; |
| 163 lit->code_min = code_min; |
| 164 lit->code_max = code_max; |
| 165 lit->position = position; |
| 166 return node; |
| 167 } |
| 168 |
| 169 static tre_ast_node_t * |
| 170 tre_ast_new_iter(tre_mem_t mem, tre_ast_node_t *arg, int min, int max, int minim
al) |
| 171 { |
| 172 tre_ast_node_t *node; |
| 173 tre_iteration_t *iter; |
| 174 |
| 175 iter = tre_mem_calloc(mem, sizeof *iter); |
| 176 node = tre_ast_new_node(mem, ITERATION, iter); |
| 177 if (!node) |
| 178 return 0; |
| 179 iter->arg = arg; |
| 180 iter->min = min; |
| 181 iter->max = max; |
| 182 iter->minimal = minimal; |
| 183 node->num_submatches = arg->num_submatches; |
| 184 return node; |
| 185 } |
| 186 |
| 187 static tre_ast_node_t * |
| 188 tre_ast_new_union(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *right) |
| 189 { |
| 190 tre_ast_node_t *node; |
| 191 tre_union_t *un; |
| 192 |
| 193 if (!left) |
| 194 return right; |
| 195 un = tre_mem_calloc(mem, sizeof *un); |
| 196 node = tre_ast_new_node(mem, UNION, un); |
| 197 if (!node || !right) |
| 198 return 0; |
| 199 un->left = left; |
| 200 un->right = right; |
| 201 node->num_submatches = left->num_submatches + right->num_submatches; |
| 202 return node; |
| 203 } |
| 204 |
| 205 static tre_ast_node_t * |
| 206 tre_ast_new_catenation(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *righ
t) |
| 207 { |
| 208 tre_ast_node_t *node; |
| 209 tre_catenation_t *cat; |
| 210 |
| 211 if (!left) |
| 212 return right; |
| 213 cat = tre_mem_calloc(mem, sizeof *cat); |
| 214 node = tre_ast_new_node(mem, CATENATION, cat); |
| 215 if (!node) |
| 216 return 0; |
| 217 cat->left = left; |
| 218 cat->right = right; |
| 219 node->num_submatches = left->num_submatches + right->num_submatches; |
| 220 return node; |
| 221 } |
| 222 |
| 223 |
| 224 /*********************************************************************** |
| 225 from tre-stack.c and tre-stack.h |
| 226 ***********************************************************************/ |
| 227 |
| 228 typedef struct tre_stack_rec tre_stack_t; |
| 229 |
| 230 /* Creates a new stack object. `size' is initial size in bytes, `max_size' |
| 231 is maximum size, and `increment' specifies how much more space will be |
| 232 allocated with realloc() if all space gets used up. Returns the stack |
| 233 object or NULL if out of memory. */ |
| 234 static tre_stack_t * |
| 235 tre_stack_new(int size, int max_size, int increment); |
| 236 |
| 237 /* Frees the stack object. */ |
| 238 static void |
| 239 tre_stack_destroy(tre_stack_t *s); |
| 240 |
| 241 /* Returns the current number of objects in the stack. */ |
| 242 static int |
| 243 tre_stack_num_objects(tre_stack_t *s); |
| 244 |
| 245 /* Each tre_stack_push_*(tre_stack_t *s, <type> value) function pushes |
| 246 `value' on top of stack `s'. Returns REG_ESPACE if out of memory. |
| 247 This tries to realloc() more space before failing if maximum size |
| 248 has not yet been reached. Returns REG_OK if successful. */ |
| 249 #define declare_pushf(typetag, type) \ |
| 250 static reg_errcode_t tre_stack_push_ ## typetag(tre_stack_t *s, type value) |
| 251 |
| 252 declare_pushf(voidptr, void *); |
| 253 declare_pushf(int, int); |
| 254 |
| 255 /* Each tre_stack_pop_*(tre_stack_t *s) function pops the topmost |
| 256 element off of stack `s' and returns it. The stack must not be |
| 257 empty. */ |
| 258 #define declare_popf(typetag, type) \ |
| 259 static type tre_stack_pop_ ## typetag(tre_stack_t *s) |
| 260 |
| 261 declare_popf(voidptr, void *); |
| 262 declare_popf(int, int); |
| 263 |
| 264 /* Just to save some typing. */ |
| 265 #define STACK_PUSH(s, typetag, value) \ |
| 266 do \ |
| 267 { \ |
| 268 status = tre_stack_push_ ## typetag(s, value); \ |
| 269 } \ |
| 270 while (/*CONSTCOND*/0) |
| 271 |
| 272 #define STACK_PUSHX(s, typetag, value) \ |
| 273 { \ |
| 274 status = tre_stack_push_ ## typetag(s, value); \ |
| 275 if (status != REG_OK) \ |
| 276 break; \ |
| 277 } |
| 278 |
| 279 #define STACK_PUSHR(s, typetag, value) \ |
| 280 { \ |
| 281 reg_errcode_t _status; \ |
| 282 _status = tre_stack_push_ ## typetag(s, value); \ |
| 283 if (_status != REG_OK) \ |
| 284 return _status; \ |
| 285 } |
| 286 |
| 287 union tre_stack_item { |
| 288 void *voidptr_value; |
| 289 int int_value; |
| 290 }; |
| 291 |
| 292 struct tre_stack_rec { |
| 293 int size; |
| 294 int max_size; |
| 295 int increment; |
| 296 int ptr; |
| 297 union tre_stack_item *stack; |
| 298 }; |
| 299 |
| 300 |
| 301 static tre_stack_t * |
| 302 tre_stack_new(int size, int max_size, int increment) |
| 303 { |
| 304 tre_stack_t *s; |
| 305 |
| 306 s = xmalloc(sizeof(*s)); |
| 307 if (s != NULL) |
| 308 { |
| 309 s->stack = xmalloc(sizeof(*s->stack) * size); |
| 310 if (s->stack == NULL) |
| 311 { |
| 312 xfree(s); |
| 313 return NULL; |
| 314 } |
| 315 s->size = size; |
| 316 s->max_size = max_size; |
| 317 s->increment = increment; |
| 318 s->ptr = 0; |
| 319 } |
| 320 return s; |
| 321 } |
| 322 |
| 323 static void |
| 324 tre_stack_destroy(tre_stack_t *s) |
| 325 { |
| 326 xfree(s->stack); |
| 327 xfree(s); |
| 328 } |
| 329 |
| 330 static int |
| 331 tre_stack_num_objects(tre_stack_t *s) |
| 332 { |
| 333 return s->ptr; |
| 334 } |
| 335 |
| 336 static reg_errcode_t |
| 337 tre_stack_push(tre_stack_t *s, union tre_stack_item value) |
| 338 { |
| 339 if (s->ptr < s->size) |
| 340 { |
| 341 s->stack[s->ptr] = value; |
| 342 s->ptr++; |
| 343 } |
| 344 else |
| 345 { |
| 346 if (s->size >= s->max_size) |
| 347 { |
| 348 return REG_ESPACE; |
| 349 } |
| 350 else |
| 351 { |
| 352 union tre_stack_item *new_buffer; |
| 353 int new_size; |
| 354 new_size = s->size + s->increment; |
| 355 if (new_size > s->max_size) |
| 356 new_size = s->max_size; |
| 357 new_buffer = xrealloc(s->stack, sizeof(*new_buffer) * new_size); |
| 358 if (new_buffer == NULL) |
| 359 { |
| 360 return REG_ESPACE; |
| 361 } |
| 362 assert(new_size > s->size); |
| 363 s->size = new_size; |
| 364 s->stack = new_buffer; |
| 365 tre_stack_push(s, value); |
| 366 } |
| 367 } |
| 368 return REG_OK; |
| 369 } |
| 370 |
| 371 #define define_pushf(typetag, type) \ |
| 372 declare_pushf(typetag, type) { \ |
| 373 union tre_stack_item item; \ |
| 374 item.typetag ## _value = value; \ |
| 375 return tre_stack_push(s, item); \ |
| 376 } |
| 377 |
| 378 define_pushf(int, int) |
| 379 define_pushf(voidptr, void *) |
| 380 |
| 381 #define define_popf(typetag, type) \ |
| 382 declare_popf(typetag, type) { \ |
| 383 return s->stack[--s->ptr].typetag ## _value; \ |
| 384 } |
| 385 |
| 386 define_popf(int, int) |
| 387 define_popf(voidptr, void *) |
| 388 |
| 389 |
| 390 /*********************************************************************** |
| 391 from tre-parse.c and tre-parse.h |
| 392 ***********************************************************************/ |
| 393 |
| 394 /* Parse context. */ |
| 395 typedef struct { |
| 396 /* Memory allocator. The AST is allocated using this. */ |
| 397 tre_mem_t mem; |
| 398 /* Stack used for keeping track of regexp syntax. */ |
| 399 tre_stack_t *stack; |
| 400 /* The parsed node after a parse function returns. */ |
| 401 tre_ast_node_t *n; |
| 402 /* Position in the regexp pattern after a parse function returns. */ |
| 403 const char *s; |
| 404 /* The first character of the regexp. */ |
| 405 const char *re; |
| 406 /* Current submatch ID. */ |
| 407 int submatch_id; |
| 408 /* Current position (number of literal). */ |
| 409 int position; |
| 410 /* The highest back reference or -1 if none seen so far. */ |
| 411 int max_backref; |
| 412 /* Compilation flags. */ |
| 413 int cflags; |
| 414 } tre_parse_ctx_t; |
| 415 |
| 416 /* Some macros for expanding \w, \s, etc. */ |
| 417 static const struct { |
| 418 char c; |
| 419 const char *expansion; |
| 420 } tre_macros[] = { |
| 421 {'t', "\t"}, {'n', "\n"}, {'r', "\r"}, |
| 422 {'f', "\f"}, {'a', "\a"}, {'e', "\033"}, |
| 423 {'w', "[[:alnum:]_]"}, {'W', "[^[:alnum:]_]"}, {'s', "[[:space:]]"}, |
| 424 {'S', "[^[:space:]]"}, {'d', "[[:digit:]]"}, {'D', "[^[:digit:]]"}, |
| 425 { 0, 0 } |
| 426 }; |
| 427 |
| 428 /* Expands a macro delimited by `regex' and `regex_end' to `buf', which |
| 429 must have at least `len' items. Sets buf[0] to zero if the there |
| 430 is no match in `tre_macros'. */ |
| 431 static const char *tre_expand_macro(const char *s) |
| 432 { |
| 433 int i; |
| 434 for (i = 0; tre_macros[i].c && tre_macros[i].c != *s; i++); |
| 435 return tre_macros[i].expansion; |
| 436 } |
| 437 |
| 438 static int |
| 439 tre_compare_lit(const void *a, const void *b) |
| 440 { |
| 441 const tre_literal_t *const *la = a; |
| 442 const tre_literal_t *const *lb = b; |
| 443 /* assumes the range of valid code_min is < INT_MAX */ |
| 444 return la[0]->code_min - lb[0]->code_min; |
| 445 } |
| 446 |
| 447 struct literals { |
| 448 tre_mem_t mem; |
| 449 tre_literal_t **a; |
| 450 int len; |
| 451 int cap; |
| 452 }; |
| 453 |
| 454 static tre_literal_t *tre_new_lit(struct literals *p) |
| 455 { |
| 456 tre_literal_t **a; |
| 457 if (p->len >= p->cap) { |
| 458 if (p->cap >= 1<<15) |
| 459 return 0; |
| 460 p->cap *= 2; |
| 461 a = xrealloc(p->a, p->cap * sizeof *p->a); |
| 462 if (!a) |
| 463 return 0; |
| 464 p->a = a; |
| 465 } |
| 466 a = p->a + p->len++; |
| 467 *a = tre_mem_calloc(p->mem, sizeof **a); |
| 468 return *a; |
| 469 } |
| 470 |
| 471 static int add_icase_literals(struct literals *ls, int min, int max) |
| 472 { |
| 473 tre_literal_t *lit; |
| 474 int b, e, c; |
| 475 for (c=min; c<=max; ) { |
| 476 /* assumes islower(c) and isupper(c) are exclusive |
| 477 and toupper(c)!=c if islower(c). |
| 478 multiple opposite case characters are not supported */ |
| 479 if (tre_islower(c)) { |
| 480 b = e = tre_toupper(c); |
| 481 for (c++, e++; c<=max; c++, e++) |
| 482 if (tre_toupper(c) != e) break; |
| 483 } else if (tre_isupper(c)) { |
| 484 b = e = tre_tolower(c); |
| 485 for (c++, e++; c<=max; c++, e++) |
| 486 if (tre_tolower(c) != e) break; |
| 487 } else { |
| 488 c++; |
| 489 continue; |
| 490 } |
| 491 lit = tre_new_lit(ls); |
| 492 if (!lit) |
| 493 return -1; |
| 494 lit->code_min = b; |
| 495 lit->code_max = e-1; |
| 496 lit->position = -1; |
| 497 } |
| 498 return 0; |
| 499 } |
| 500 |
| 501 |
| 502 /* Maximum number of character classes in a negated bracket expression. */ |
| 503 #define MAX_NEG_CLASSES 64 |
| 504 |
| 505 struct neg { |
| 506 int negate; |
| 507 int len; |
| 508 tre_ctype_t a[MAX_NEG_CLASSES]; |
| 509 }; |
| 510 |
| 511 // TODO: parse bracket into a set of non-overlapping [lo,hi] ranges |
| 512 |
| 513 /* |
| 514 bracket grammar: |
| 515 Bracket = '[' List ']' | '[^' List ']' |
| 516 List = Term | List Term |
| 517 Term = Char | Range | Chclass | Eqclass |
| 518 Range = Char '-' Char | Char '-' '-' |
| 519 Char = Coll | coll_single |
| 520 Meta = ']' | '-' |
| 521 Coll = '[.' coll_single '.]' | '[.' coll_multi '.]' | '[.' Meta '.]' |
| 522 Eqclass = '[=' coll_single '=]' | '[=' coll_multi '=]' |
| 523 Chclass = '[:' class ':]' |
| 524 |
| 525 coll_single is a single char collating element but it can be |
| 526 '-' only at the beginning or end of a List and |
| 527 ']' only at the beginning of a List and |
| 528 '^' anywhere except after the openning '[' |
| 529 */ |
| 530 |
| 531 static reg_errcode_t parse_bracket_terms(tre_parse_ctx_t *ctx, const char *s, st
ruct literals *ls, struct neg *neg) |
| 532 { |
| 533 const char *start = s; |
| 534 tre_ctype_t class; |
| 535 int min, max; |
| 536 wchar_t wc; |
| 537 int len; |
| 538 |
| 539 for (;;) { |
| 540 class = 0; |
| 541 len = mbtowc(&wc, s, -1); |
| 542 if (len <= 0) |
| 543 return *s ? REG_BADPAT : REG_EBRACK; |
| 544 if (*s == ']' && s != start) { |
| 545 ctx->s = s+1; |
| 546 return REG_OK; |
| 547 } |
| 548 if (*s == '-' && s != start && s[1] != ']' && |
| 549 /* extension: [a-z--@] is accepted as [a-z]|[--@] */ |
| 550 (s[1] != '-' || s[2] == ']')) |
| 551 return REG_ERANGE; |
| 552 if (*s == '[' && (s[1] == '.' || s[1] == '=')) |
| 553 /* collating symbols and equivalence classes are not sup
ported */ |
| 554 return REG_ECOLLATE; |
| 555 if (*s == '[' && s[1] == ':') { |
| 556 char tmp[CHARCLASS_NAME_MAX+1]; |
| 557 s += 2; |
| 558 for (len=0; len < CHARCLASS_NAME_MAX && s[len]; len++) { |
| 559 if (s[len] == ':') { |
| 560 memcpy(tmp, s, len); |
| 561 tmp[len] = 0; |
| 562 class = tre_ctype(tmp); |
| 563 break; |
| 564 } |
| 565 } |
| 566 if (!class || s[len+1] != ']') |
| 567 return REG_ECTYPE; |
| 568 min = 0; |
| 569 max = TRE_CHAR_MAX; |
| 570 s += len+2; |
| 571 } else { |
| 572 min = max = wc; |
| 573 s += len; |
| 574 if (*s == '-' && s[1] != ']') { |
| 575 s++; |
| 576 len = mbtowc(&wc, s, -1); |
| 577 max = wc; |
| 578 /* XXX - Should use collation order instead of |
| 579 encoding values in character ranges. */ |
| 580 if (len <= 0 || min > max) |
| 581 return REG_ERANGE; |
| 582 s += len; |
| 583 } |
| 584 } |
| 585 |
| 586 if (class && neg->negate) { |
| 587 if (neg->len >= MAX_NEG_CLASSES) |
| 588 return REG_ESPACE; |
| 589 neg->a[neg->len++] = class; |
| 590 } else { |
| 591 tre_literal_t *lit = tre_new_lit(ls); |
| 592 if (!lit) |
| 593 return REG_ESPACE; |
| 594 lit->code_min = min; |
| 595 lit->code_max = max; |
| 596 lit->class = class; |
| 597 lit->position = -1; |
| 598 |
| 599 /* Add opposite-case codepoints if REG_ICASE is present. |
| 600 It seems that POSIX requires that bracket negation |
| 601 should happen before case-folding, but most practical |
| 602 implementations do it the other way around. Changing |
| 603 the order would need efficient representation of |
| 604 case-fold ranges and bracket range sets even with |
| 605 simple patterns so this is ok for now. */ |
| 606 if (ctx->cflags & REG_ICASE && !class) |
| 607 if (add_icase_literals(ls, min, max)) |
| 608 return REG_ESPACE; |
| 609 } |
| 610 } |
| 611 } |
| 612 |
| 613 static reg_errcode_t parse_bracket(tre_parse_ctx_t *ctx, const char *s) |
| 614 { |
| 615 int i, max, min, negmax, negmin; |
| 616 tre_ast_node_t *node = 0, *n; |
| 617 tre_ctype_t *nc = 0; |
| 618 tre_literal_t *lit; |
| 619 struct literals ls; |
| 620 struct neg neg; |
| 621 reg_errcode_t err; |
| 622 |
| 623 ls.mem = ctx->mem; |
| 624 ls.len = 0; |
| 625 ls.cap = 32; |
| 626 ls.a = xmalloc(ls.cap * sizeof *ls.a); |
| 627 if (!ls.a) |
| 628 return REG_ESPACE; |
| 629 neg.len = 0; |
| 630 neg.negate = *s == '^'; |
| 631 if (neg.negate) |
| 632 s++; |
| 633 |
| 634 err = parse_bracket_terms(ctx, s, &ls, &neg); |
| 635 if (err != REG_OK) |
| 636 goto parse_bracket_done; |
| 637 |
| 638 if (neg.negate) { |
| 639 /* Sort the array if we need to negate it. */ |
| 640 qsort(ls.a, ls.len, sizeof *ls.a, tre_compare_lit); |
| 641 /* extra lit for the last negated range */ |
| 642 lit = tre_new_lit(&ls); |
| 643 if (!lit) { |
| 644 err = REG_ESPACE; |
| 645 goto parse_bracket_done; |
| 646 } |
| 647 lit->code_min = TRE_CHAR_MAX+1; |
| 648 lit->code_max = TRE_CHAR_MAX+1; |
| 649 lit->position = -1; |
| 650 /* negated classes */ |
| 651 if (neg.len) { |
| 652 nc = tre_mem_alloc(ctx->mem, (neg.len+1)*sizeof *neg.a); |
| 653 if (!nc) { |
| 654 err = REG_ESPACE; |
| 655 goto parse_bracket_done; |
| 656 } |
| 657 memcpy(nc, neg.a, neg.len*sizeof *neg.a); |
| 658 nc[neg.len] = 0; |
| 659 } |
| 660 } |
| 661 |
| 662 /* Build a union of the items in the array, negated if necessary. */ |
| 663 negmax = negmin = 0; |
| 664 for (i = 0; i < ls.len; i++) { |
| 665 lit = ls.a[i]; |
| 666 min = lit->code_min; |
| 667 max = lit->code_max; |
| 668 if (neg.negate) { |
| 669 if (min <= negmin) { |
| 670 /* Overlap. */ |
| 671 negmin = MAX(max + 1, negmin); |
| 672 continue; |
| 673 } |
| 674 negmax = min - 1; |
| 675 lit->code_min = negmin; |
| 676 lit->code_max = negmax; |
| 677 negmin = max + 1; |
| 678 } |
| 679 lit->position = ctx->position; |
| 680 lit->neg_classes = nc; |
| 681 n = tre_ast_new_node(ctx->mem, LITERAL, lit); |
| 682 node = tre_ast_new_union(ctx->mem, node, n); |
| 683 if (!node) { |
| 684 err = REG_ESPACE; |
| 685 break; |
| 686 } |
| 687 } |
| 688 |
| 689 parse_bracket_done: |
| 690 xfree(ls.a); |
| 691 ctx->position++; |
| 692 ctx->n = node; |
| 693 return err; |
| 694 } |
| 695 |
| 696 static const char *parse_dup_count(const char *s, int *n) |
| 697 { |
| 698 *n = -1; |
| 699 if (!isdigit(*s)) |
| 700 return s; |
| 701 *n = 0; |
| 702 for (;;) { |
| 703 *n = 10 * *n + (*s - '0'); |
| 704 s++; |
| 705 if (!isdigit(*s) || *n > RE_DUP_MAX) |
| 706 break; |
| 707 } |
| 708 return s; |
| 709 } |
| 710 |
| 711 static reg_errcode_t parse_dup(tre_parse_ctx_t *ctx, const char *s) |
| 712 { |
| 713 int min, max; |
| 714 |
| 715 s = parse_dup_count(s, &min); |
| 716 if (*s == ',') |
| 717 s = parse_dup_count(s+1, &max); |
| 718 else |
| 719 max = min; |
| 720 |
| 721 if ( |
| 722 (max < min && max >= 0) || |
| 723 max > RE_DUP_MAX || |
| 724 min > RE_DUP_MAX || |
| 725 min < 0 || |
| 726 (!(ctx->cflags & REG_EXTENDED) && *s++ != '\\') || |
| 727 *s++ != '}' |
| 728 ) |
| 729 return REG_BADBR; |
| 730 |
| 731 if (min == 0 && max == 0) |
| 732 ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); |
| 733 else |
| 734 ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0); |
| 735 if (!ctx->n) |
| 736 return REG_ESPACE; |
| 737 ctx->s = s; |
| 738 return REG_OK; |
| 739 } |
| 740 |
| 741 static int hexval(unsigned c) |
| 742 { |
| 743 if (c-'0'<10) return c-'0'; |
| 744 c |= 32; |
| 745 if (c-'a'<6) return c-'a'+10; |
| 746 return -1; |
| 747 } |
| 748 |
| 749 static reg_errcode_t marksub(tre_parse_ctx_t *ctx, tre_ast_node_t *node, int sub
id) |
| 750 { |
| 751 if (node->submatch_id >= 0) { |
| 752 tre_ast_node_t *n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1)
; |
| 753 if (!n) |
| 754 return REG_ESPACE; |
| 755 n = tre_ast_new_catenation(ctx->mem, n, node); |
| 756 if (!n) |
| 757 return REG_ESPACE; |
| 758 n->num_submatches = node->num_submatches; |
| 759 node = n; |
| 760 } |
| 761 node->submatch_id = subid; |
| 762 node->num_submatches++; |
| 763 ctx->n = node; |
| 764 return REG_OK; |
| 765 } |
| 766 |
| 767 /* |
| 768 BRE grammar: |
| 769 Regex = Branch | '^' | '$' | '^$' | '^' Branch | Branch '$' | '^'
Branch '$' |
| 770 Branch = Atom | Branch Atom |
| 771 Atom = char | quoted_char | '.' | Bracket | Atom Dup | '\(' Branch
'\)' | back_ref |
| 772 Dup = '*' | '\{' Count '\}' | '\{' Count ',\}' | '\{' Count ',' Count
'\}' |
| 773 |
| 774 (leading ^ and trailing $ in a sub expr may be an anchor or literal as well) |
| 775 |
| 776 ERE grammar: |
| 777 Regex = Branch | Regex '|' Branch |
| 778 Branch = Atom | Branch Atom |
| 779 Atom = char | quoted_char | '.' | Bracket | Atom Dup | '(' Regex ')
' | '^' | '$' |
| 780 Dup = '*' | '+' | '?' | '{' Count '}' | '{' Count ',}' | '{' Count
',' Count '}' |
| 781 |
| 782 (a*+?, ^*, $+, \X, {, (|a) are unspecified) |
| 783 */ |
| 784 |
| 785 static reg_errcode_t parse_atom(tre_parse_ctx_t *ctx, const char *s) |
| 786 { |
| 787 int len, ere = ctx->cflags & REG_EXTENDED; |
| 788 const char *p; |
| 789 tre_ast_node_t *node; |
| 790 wchar_t wc; |
| 791 switch (*s) { |
| 792 case '[': |
| 793 return parse_bracket(ctx, s+1); |
| 794 case '\\': |
| 795 p = tre_expand_macro(s+1); |
| 796 if (p) { |
| 797 /* assume \X expansion is a single atom */ |
| 798 reg_errcode_t err = parse_atom(ctx, p); |
| 799 ctx->s = s+2; |
| 800 return err; |
| 801 } |
| 802 /* extensions: \b, \B, \<, \>, \xHH \x{HHHH} */ |
| 803 switch (*++s) { |
| 804 case 0: |
| 805 return REG_EESCAPE; |
| 806 case 'b': |
| 807 node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_A
T_WB, -1); |
| 808 break; |
| 809 case 'B': |
| 810 node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_A
T_WB_NEG, -1); |
| 811 break; |
| 812 case '<': |
| 813 node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_A
T_BOW, -1); |
| 814 break; |
| 815 case '>': |
| 816 node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_A
T_EOW, -1); |
| 817 break; |
| 818 case 'x': |
| 819 s++; |
| 820 int i, v = 0, c; |
| 821 len = 2; |
| 822 if (*s == '{') { |
| 823 len = 8; |
| 824 s++; |
| 825 } |
| 826 for (i=0; i<len && v<0x110000; i++) { |
| 827 c = hexval(s[i]); |
| 828 if (c < 0) break; |
| 829 v = 16*v + c; |
| 830 } |
| 831 s += i; |
| 832 if (len == 8) { |
| 833 if (*s != '}') |
| 834 return REG_EBRACE; |
| 835 s++; |
| 836 } |
| 837 node = tre_ast_new_literal(ctx->mem, v, v, ctx->position
); |
| 838 ctx->position++; |
| 839 s--; |
| 840 break; |
| 841 default: |
| 842 if (!ere && (unsigned)*s-'1' < 9) { |
| 843 /* back reference */ |
| 844 int val = *s - '0'; |
| 845 node = tre_ast_new_literal(ctx->mem, BACKREF, va
l, ctx->position); |
| 846 ctx->max_backref = MAX(val, ctx->max_backref); |
| 847 } else { |
| 848 /* extension: accept unknown escaped char |
| 849 as a literal */ |
| 850 goto parse_literal; |
| 851 } |
| 852 ctx->position++; |
| 853 } |
| 854 s++; |
| 855 break; |
| 856 case '.': |
| 857 if (ctx->cflags & REG_NEWLINE) { |
| 858 tre_ast_node_t *tmp1, *tmp2; |
| 859 tmp1 = tre_ast_new_literal(ctx->mem, 0, '\n'-1, ctx->pos
ition++); |
| 860 tmp2 = tre_ast_new_literal(ctx->mem, '\n'+1, TRE_CHAR_MA
X, ctx->position++); |
| 861 if (tmp1 && tmp2) |
| 862 node = tre_ast_new_union(ctx->mem, tmp1, tmp2); |
| 863 else |
| 864 node = 0; |
| 865 } else { |
| 866 node = tre_ast_new_literal(ctx->mem, 0, TRE_CHAR_MAX, ct
x->position++); |
| 867 } |
| 868 s++; |
| 869 break; |
| 870 case '^': |
| 871 /* '^' has a special meaning everywhere in EREs, and at beginnin
g of BRE. */ |
| 872 if (!ere && s != ctx->re) |
| 873 goto parse_literal; |
| 874 node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOL, -
1); |
| 875 s++; |
| 876 break; |
| 877 case '$': |
| 878 /* '$' is special everywhere in EREs, and in the end of the stri
ng in BREs. */ |
| 879 if (!ere && s[1]) |
| 880 goto parse_literal; |
| 881 node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOL, -
1); |
| 882 s++; |
| 883 break; |
| 884 case '*': |
| 885 case '|': |
| 886 case '{': |
| 887 case '+': |
| 888 case '?': |
| 889 if (!ere) |
| 890 goto parse_literal; |
| 891 case 0: |
| 892 node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); |
| 893 break; |
| 894 default: |
| 895 parse_literal: |
| 896 len = mbtowc(&wc, s, -1); |
| 897 if (len < 0) |
| 898 return REG_BADPAT; |
| 899 if (ctx->cflags & REG_ICASE && (tre_isupper(wc) || tre_islower(w
c))) { |
| 900 tre_ast_node_t *tmp1, *tmp2; |
| 901 /* multiple opposite case characters are not supported *
/ |
| 902 tmp1 = tre_ast_new_literal(ctx->mem, tre_toupper(wc), tr
e_toupper(wc), ctx->position); |
| 903 tmp2 = tre_ast_new_literal(ctx->mem, tre_tolower(wc), tr
e_tolower(wc), ctx->position); |
| 904 if (tmp1 && tmp2) |
| 905 node = tre_ast_new_union(ctx->mem, tmp1, tmp2); |
| 906 else |
| 907 node = 0; |
| 908 } else { |
| 909 node = tre_ast_new_literal(ctx->mem, wc, wc, ctx->positi
on); |
| 910 } |
| 911 ctx->position++; |
| 912 s += len; |
| 913 break; |
| 914 } |
| 915 if (!node) |
| 916 return REG_ESPACE; |
| 917 ctx->n = node; |
| 918 ctx->s = s; |
| 919 return REG_OK; |
| 920 } |
| 921 |
| 922 #define PUSHPTR(err, s, v) do { \ |
| 923 if ((err = tre_stack_push_voidptr(s, v)) != REG_OK) \ |
| 924 return err; \ |
| 925 } while(0) |
| 926 |
| 927 #define PUSHINT(err, s, v) do { \ |
| 928 if ((err = tre_stack_push_int(s, v)) != REG_OK) \ |
| 929 return err; \ |
| 930 } while(0) |
| 931 |
| 932 static reg_errcode_t tre_parse(tre_parse_ctx_t *ctx) |
| 933 { |
| 934 tre_ast_node_t *nbranch=0, *nunion=0; |
| 935 int ere = ctx->cflags & REG_EXTENDED; |
| 936 const char *s = ctx->re; |
| 937 int subid = 0; |
| 938 int depth = 0; |
| 939 reg_errcode_t err; |
| 940 tre_stack_t *stack = ctx->stack; |
| 941 |
| 942 PUSHINT(err, stack, subid++); |
| 943 for (;;) { |
| 944 if ((!ere && *s == '\\' && s[1] == '(') || |
| 945 (ere && *s == '(')) { |
| 946 PUSHPTR(err, stack, nunion); |
| 947 PUSHPTR(err, stack, nbranch); |
| 948 PUSHINT(err, stack, subid++); |
| 949 s++; |
| 950 if (!ere) |
| 951 s++; |
| 952 depth++; |
| 953 nbranch = nunion = 0; |
| 954 continue; |
| 955 } |
| 956 if ((!ere && *s == '\\' && s[1] == ')') || |
| 957 (ere && *s == ')' && depth)) { |
| 958 ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); |
| 959 if (!ctx->n) |
| 960 return REG_ESPACE; |
| 961 } else { |
| 962 err = parse_atom(ctx, s); |
| 963 if (err != REG_OK) |
| 964 return err; |
| 965 s = ctx->s; |
| 966 } |
| 967 |
| 968 parse_iter: |
| 969 /* extension: repetitions are accepted after an empty node |
| 970 eg. (+), ^*, a$?, a|{2} */ |
| 971 switch (*s) { |
| 972 case '+': |
| 973 case '?': |
| 974 if (!ere) |
| 975 break; |
| 976 /* fallthrough */ |
| 977 case '*':; |
| 978 int min=0, max=-1; |
| 979 if (*s == '+') |
| 980 min = 1; |
| 981 if (*s == '?') |
| 982 max = 1; |
| 983 s++; |
| 984 ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0)
; |
| 985 if (!ctx->n) |
| 986 return REG_ESPACE; |
| 987 /* extension: multiple consecutive *+?{,} is unspecified
, |
| 988 but (a+)+ has to be supported so accepting a++ makes |
| 989 sense, note however that the RE_DUP_MAX limit can be |
| 990 circumvented: (a{255}){255} uses a lot of memory.. */ |
| 991 goto parse_iter; |
| 992 case '\\': |
| 993 if (ere || s[1] != '{') |
| 994 break; |
| 995 s++; |
| 996 goto parse_brace; |
| 997 case '{': |
| 998 if (!ere) |
| 999 break; |
| 1000 parse_brace: |
| 1001 err = parse_dup(ctx, s+1); |
| 1002 if (err != REG_OK) |
| 1003 return err; |
| 1004 s = ctx->s; |
| 1005 goto parse_iter; |
| 1006 } |
| 1007 |
| 1008 nbranch = tre_ast_new_catenation(ctx->mem, nbranch, ctx->n); |
| 1009 if ((ere && *s == '|') || |
| 1010 (ere && *s == ')' && depth) || |
| 1011 (!ere && *s == '\\' && s[1] == ')') || |
| 1012 !*s) { |
| 1013 /* extension: empty branch is unspecified (), (|a), (a|) |
| 1014 here they are not rejected but match on empty string
*/ |
| 1015 int c = *s; |
| 1016 nunion = tre_ast_new_union(ctx->mem, nunion, nbranch); |
| 1017 nbranch = 0; |
| 1018 if (c != '|') { |
| 1019 if (c == '\\') { |
| 1020 if (!depth) return REG_EPAREN; |
| 1021 s+=2; |
| 1022 } else if (c == ')') |
| 1023 s++; |
| 1024 depth--; |
| 1025 err = marksub(ctx, nunion, tre_stack_pop_int(sta
ck)); |
| 1026 if (err != REG_OK) |
| 1027 return err; |
| 1028 if (!c && depth<0) { |
| 1029 ctx->submatch_id = subid; |
| 1030 return REG_OK; |
| 1031 } |
| 1032 if (!c || depth<0) |
| 1033 return REG_EPAREN; |
| 1034 nbranch = tre_stack_pop_voidptr(stack); |
| 1035 nunion = tre_stack_pop_voidptr(stack); |
| 1036 goto parse_iter; |
| 1037 } |
| 1038 s++; |
| 1039 } |
| 1040 } |
| 1041 } |
| 1042 |
| 1043 |
| 1044 /*********************************************************************** |
| 1045 from tre-compile.c |
| 1046 ***********************************************************************/ |
| 1047 |
| 1048 |
| 1049 /* |
| 1050 TODO: |
| 1051 - Fix tre_ast_to_tnfa() to recurse using a stack instead of recursive |
| 1052 function calls. |
| 1053 */ |
| 1054 |
| 1055 /* |
| 1056 Algorithms to setup tags so that submatch addressing can be done. |
| 1057 */ |
| 1058 |
| 1059 |
| 1060 /* Inserts a catenation node to the root of the tree given in `node'. |
| 1061 As the left child a new tag with number `tag_id' to `node' is added, |
| 1062 and the right child is the old root. */ |
| 1063 static reg_errcode_t |
| 1064 tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node, int tag_id) |
| 1065 { |
| 1066 tre_catenation_t *c; |
| 1067 |
| 1068 c = tre_mem_alloc(mem, sizeof(*c)); |
| 1069 if (c == NULL) |
| 1070 return REG_ESPACE; |
| 1071 c->left = tre_ast_new_literal(mem, TAG, tag_id, -1); |
| 1072 if (c->left == NULL) |
| 1073 return REG_ESPACE; |
| 1074 c->right = tre_mem_alloc(mem, sizeof(tre_ast_node_t)); |
| 1075 if (c->right == NULL) |
| 1076 return REG_ESPACE; |
| 1077 |
| 1078 c->right->obj = node->obj; |
| 1079 c->right->type = node->type; |
| 1080 c->right->nullable = -1; |
| 1081 c->right->submatch_id = -1; |
| 1082 c->right->firstpos = NULL; |
| 1083 c->right->lastpos = NULL; |
| 1084 c->right->num_tags = 0; |
| 1085 node->obj = c; |
| 1086 node->type = CATENATION; |
| 1087 return REG_OK; |
| 1088 } |
| 1089 |
| 1090 /* Inserts a catenation node to the root of the tree given in `node'. |
| 1091 As the right child a new tag with number `tag_id' to `node' is added, |
| 1092 and the left child is the old root. */ |
| 1093 static reg_errcode_t |
| 1094 tre_add_tag_right(tre_mem_t mem, tre_ast_node_t *node, int tag_id) |
| 1095 { |
| 1096 tre_catenation_t *c; |
| 1097 |
| 1098 c = tre_mem_alloc(mem, sizeof(*c)); |
| 1099 if (c == NULL) |
| 1100 return REG_ESPACE; |
| 1101 c->right = tre_ast_new_literal(mem, TAG, tag_id, -1); |
| 1102 if (c->right == NULL) |
| 1103 return REG_ESPACE; |
| 1104 c->left = tre_mem_alloc(mem, sizeof(tre_ast_node_t)); |
| 1105 if (c->left == NULL) |
| 1106 return REG_ESPACE; |
| 1107 |
| 1108 c->left->obj = node->obj; |
| 1109 c->left->type = node->type; |
| 1110 c->left->nullable = -1; |
| 1111 c->left->submatch_id = -1; |
| 1112 c->left->firstpos = NULL; |
| 1113 c->left->lastpos = NULL; |
| 1114 c->left->num_tags = 0; |
| 1115 node->obj = c; |
| 1116 node->type = CATENATION; |
| 1117 return REG_OK; |
| 1118 } |
| 1119 |
| 1120 typedef enum { |
| 1121 ADDTAGS_RECURSE, |
| 1122 ADDTAGS_AFTER_ITERATION, |
| 1123 ADDTAGS_AFTER_UNION_LEFT, |
| 1124 ADDTAGS_AFTER_UNION_RIGHT, |
| 1125 ADDTAGS_AFTER_CAT_LEFT, |
| 1126 ADDTAGS_AFTER_CAT_RIGHT, |
| 1127 ADDTAGS_SET_SUBMATCH_END |
| 1128 } tre_addtags_symbol_t; |
| 1129 |
| 1130 |
| 1131 typedef struct { |
| 1132 int tag; |
| 1133 int next_tag; |
| 1134 } tre_tag_states_t; |
| 1135 |
| 1136 |
| 1137 /* Go through `regset' and set submatch data for submatches that are |
| 1138 using this tag. */ |
| 1139 static void |
| 1140 tre_purge_regset(int *regset, tre_tnfa_t *tnfa, int tag) |
| 1141 { |
| 1142 int i; |
| 1143 |
| 1144 for (i = 0; regset[i] >= 0; i++) |
| 1145 { |
| 1146 int id = regset[i] / 2; |
| 1147 int start = !(regset[i] % 2); |
| 1148 if (start) |
| 1149 tnfa->submatch_data[id].so_tag = tag; |
| 1150 else |
| 1151 tnfa->submatch_data[id].eo_tag = tag; |
| 1152 } |
| 1153 regset[0] = -1; |
| 1154 } |
| 1155 |
| 1156 |
| 1157 /* Adds tags to appropriate locations in the parse tree in `tree', so that |
| 1158 subexpressions marked for submatch addressing can be traced. */ |
| 1159 static reg_errcode_t |
| 1160 tre_add_tags(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree, |
| 1161 tre_tnfa_t *tnfa) |
| 1162 { |
| 1163 reg_errcode_t status = REG_OK; |
| 1164 tre_addtags_symbol_t symbol; |
| 1165 tre_ast_node_t *node = tree; /* Tree node we are currently looking at. */ |
| 1166 int bottom = tre_stack_num_objects(stack); |
| 1167 /* True for first pass (counting number of needed tags) */ |
| 1168 int first_pass = (mem == NULL || tnfa == NULL); |
| 1169 int *regset, *orig_regset; |
| 1170 int num_tags = 0; /* Total number of tags. */ |
| 1171 int num_minimals = 0; /* Number of special minimal tags. */ |
| 1172 int tag = 0; /* The tag that is to be added next. */ |
| 1173 int next_tag = 1; /* Next tag to use after this one. */ |
| 1174 int *parents; /* Stack of submatches the current submatch is |
| 1175 contained in. */ |
| 1176 int minimal_tag = -1; /* Tag that marks the beginning of a minimal match. */ |
| 1177 tre_tag_states_t *saved_states; |
| 1178 |
| 1179 tre_tag_direction_t direction = TRE_TAG_MINIMIZE; |
| 1180 if (!first_pass) |
| 1181 { |
| 1182 tnfa->end_tag = 0; |
| 1183 tnfa->minimal_tags[0] = -1; |
| 1184 } |
| 1185 |
| 1186 regset = xmalloc(sizeof(*regset) * ((tnfa->num_submatches + 1) * 2)); |
| 1187 if (regset == NULL) |
| 1188 return REG_ESPACE; |
| 1189 regset[0] = -1; |
| 1190 orig_regset = regset; |
| 1191 |
| 1192 parents = xmalloc(sizeof(*parents) * (tnfa->num_submatches + 1)); |
| 1193 if (parents == NULL) |
| 1194 { |
| 1195 xfree(regset); |
| 1196 return REG_ESPACE; |
| 1197 } |
| 1198 parents[0] = -1; |
| 1199 |
| 1200 saved_states = xmalloc(sizeof(*saved_states) * (tnfa->num_submatches + 1)); |
| 1201 if (saved_states == NULL) |
| 1202 { |
| 1203 xfree(regset); |
| 1204 xfree(parents); |
| 1205 return REG_ESPACE; |
| 1206 } |
| 1207 else |
| 1208 { |
| 1209 unsigned int i; |
| 1210 for (i = 0; i <= tnfa->num_submatches; i++) |
| 1211 saved_states[i].tag = -1; |
| 1212 } |
| 1213 |
| 1214 STACK_PUSH(stack, voidptr, node); |
| 1215 STACK_PUSH(stack, int, ADDTAGS_RECURSE); |
| 1216 |
| 1217 while (tre_stack_num_objects(stack) > bottom) |
| 1218 { |
| 1219 if (status != REG_OK) |
| 1220 break; |
| 1221 |
| 1222 symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack); |
| 1223 switch (symbol) |
| 1224 { |
| 1225 |
| 1226 case ADDTAGS_SET_SUBMATCH_END: |
| 1227 { |
| 1228 int id = tre_stack_pop_int(stack); |
| 1229 int i; |
| 1230 |
| 1231 /* Add end of this submatch to regset. */ |
| 1232 for (i = 0; regset[i] >= 0; i++); |
| 1233 regset[i] = id * 2 + 1; |
| 1234 regset[i + 1] = -1; |
| 1235 |
| 1236 /* Pop this submatch from the parents stack. */ |
| 1237 for (i = 0; parents[i] >= 0; i++); |
| 1238 parents[i - 1] = -1; |
| 1239 break; |
| 1240 } |
| 1241 |
| 1242 case ADDTAGS_RECURSE: |
| 1243 node = tre_stack_pop_voidptr(stack); |
| 1244 |
| 1245 if (node->submatch_id >= 0) |
| 1246 { |
| 1247 int id = node->submatch_id; |
| 1248 int i; |
| 1249 |
| 1250 |
| 1251 /* Add start of this submatch to regset. */ |
| 1252 for (i = 0; regset[i] >= 0; i++); |
| 1253 regset[i] = id * 2; |
| 1254 regset[i + 1] = -1; |
| 1255 |
| 1256 if (!first_pass) |
| 1257 { |
| 1258 for (i = 0; parents[i] >= 0; i++); |
| 1259 tnfa->submatch_data[id].parents = NULL; |
| 1260 if (i > 0) |
| 1261 { |
| 1262 int *p = xmalloc(sizeof(*p) * (i + 1)); |
| 1263 if (p == NULL) |
| 1264 { |
| 1265 status = REG_ESPACE; |
| 1266 break; |
| 1267 } |
| 1268 assert(tnfa->submatch_data[id].parents == NULL); |
| 1269 tnfa->submatch_data[id].parents = p; |
| 1270 for (i = 0; parents[i] >= 0; i++) |
| 1271 p[i] = parents[i]; |
| 1272 p[i] = -1; |
| 1273 } |
| 1274 } |
| 1275 |
| 1276 /* Add end of this submatch to regset after processing this |
| 1277 node. */ |
| 1278 STACK_PUSHX(stack, int, node->submatch_id); |
| 1279 STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END); |
| 1280 } |
| 1281 |
| 1282 switch (node->type) |
| 1283 { |
| 1284 case LITERAL: |
| 1285 { |
| 1286 tre_literal_t *lit = node->obj; |
| 1287 |
| 1288 if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) |
| 1289 { |
| 1290 int i; |
| 1291 if (regset[0] >= 0) |
| 1292 { |
| 1293 /* Regset is not empty, so add a tag before the |
| 1294 literal or backref. */ |
| 1295 if (!first_pass) |
| 1296 { |
| 1297 status = tre_add_tag_left(mem, node, tag); |
| 1298 tnfa->tag_directions[tag] = direction; |
| 1299 if (minimal_tag >= 0) |
| 1300 { |
| 1301 for (i = 0; tnfa->minimal_tags[i] >= 0; i++); |
| 1302 tnfa->minimal_tags[i] = tag; |
| 1303 tnfa->minimal_tags[i + 1] = minimal_tag; |
| 1304 tnfa->minimal_tags[i + 2] = -1; |
| 1305 minimal_tag = -1; |
| 1306 num_minimals++; |
| 1307 } |
| 1308 tre_purge_regset(regset, tnfa, tag); |
| 1309 } |
| 1310 else |
| 1311 { |
| 1312 node->num_tags = 1; |
| 1313 } |
| 1314 |
| 1315 regset[0] = -1; |
| 1316 tag = next_tag; |
| 1317 num_tags++; |
| 1318 next_tag++; |
| 1319 } |
| 1320 } |
| 1321 else |
| 1322 { |
| 1323 assert(!IS_TAG(lit)); |
| 1324 } |
| 1325 break; |
| 1326 } |
| 1327 case CATENATION: |
| 1328 { |
| 1329 tre_catenation_t *cat = node->obj; |
| 1330 tre_ast_node_t *left = cat->left; |
| 1331 tre_ast_node_t *right = cat->right; |
| 1332 int reserved_tag = -1; |
| 1333 |
| 1334 |
| 1335 /* After processing right child. */ |
| 1336 STACK_PUSHX(stack, voidptr, node); |
| 1337 STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT); |
| 1338 |
| 1339 /* Process right child. */ |
| 1340 STACK_PUSHX(stack, voidptr, right); |
| 1341 STACK_PUSHX(stack, int, ADDTAGS_RECURSE); |
| 1342 |
| 1343 /* After processing left child. */ |
| 1344 STACK_PUSHX(stack, int, next_tag + left->num_tags); |
| 1345 if (left->num_tags > 0 && right->num_tags > 0) |
| 1346 { |
| 1347 /* Reserve the next tag to the right child. */ |
| 1348 reserved_tag = next_tag; |
| 1349 next_tag++; |
| 1350 } |
| 1351 STACK_PUSHX(stack, int, reserved_tag); |
| 1352 STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT); |
| 1353 |
| 1354 /* Process left child. */ |
| 1355 STACK_PUSHX(stack, voidptr, left); |
| 1356 STACK_PUSHX(stack, int, ADDTAGS_RECURSE); |
| 1357 |
| 1358 } |
| 1359 break; |
| 1360 case ITERATION: |
| 1361 { |
| 1362 tre_iteration_t *iter = node->obj; |
| 1363 |
| 1364 if (first_pass) |
| 1365 { |
| 1366 STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal); |
| 1367 } |
| 1368 else |
| 1369 { |
| 1370 STACK_PUSHX(stack, int, tag); |
| 1371 STACK_PUSHX(stack, int, iter->minimal); |
| 1372 } |
| 1373 STACK_PUSHX(stack, voidptr, node); |
| 1374 STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION); |
| 1375 |
| 1376 STACK_PUSHX(stack, voidptr, iter->arg); |
| 1377 STACK_PUSHX(stack, int, ADDTAGS_RECURSE); |
| 1378 |
| 1379 /* Regset is not empty, so add a tag here. */ |
| 1380 if (regset[0] >= 0 || iter->minimal) |
| 1381 { |
| 1382 if (!first_pass) |
| 1383 { |
| 1384 int i; |
| 1385 status = tre_add_tag_left(mem, node, tag); |
| 1386 if (iter->minimal) |
| 1387 tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE; |
| 1388 else |
| 1389 tnfa->tag_directions[tag] = direction; |
| 1390 if (minimal_tag >= 0) |
| 1391 { |
| 1392 for (i = 0; tnfa->minimal_tags[i] >= 0; i++); |
| 1393 tnfa->minimal_tags[i] = tag; |
| 1394 tnfa->minimal_tags[i + 1] = minimal_tag; |
| 1395 tnfa->minimal_tags[i + 2] = -1; |
| 1396 minimal_tag = -1; |
| 1397 num_minimals++; |
| 1398 } |
| 1399 tre_purge_regset(regset, tnfa, tag); |
| 1400 } |
| 1401 |
| 1402 regset[0] = -1; |
| 1403 tag = next_tag; |
| 1404 num_tags++; |
| 1405 next_tag++; |
| 1406 } |
| 1407 direction = TRE_TAG_MINIMIZE; |
| 1408 } |
| 1409 break; |
| 1410 case UNION: |
| 1411 { |
| 1412 tre_union_t *uni = node->obj; |
| 1413 tre_ast_node_t *left = uni->left; |
| 1414 tre_ast_node_t *right = uni->right; |
| 1415 int left_tag; |
| 1416 int right_tag; |
| 1417 |
| 1418 if (regset[0] >= 0) |
| 1419 { |
| 1420 left_tag = next_tag; |
| 1421 right_tag = next_tag + 1; |
| 1422 } |
| 1423 else |
| 1424 { |
| 1425 left_tag = tag; |
| 1426 right_tag = next_tag; |
| 1427 } |
| 1428 |
| 1429 /* After processing right child. */ |
| 1430 STACK_PUSHX(stack, int, right_tag); |
| 1431 STACK_PUSHX(stack, int, left_tag); |
| 1432 STACK_PUSHX(stack, voidptr, regset); |
| 1433 STACK_PUSHX(stack, int, regset[0] >= 0); |
| 1434 STACK_PUSHX(stack, voidptr, node); |
| 1435 STACK_PUSHX(stack, voidptr, right); |
| 1436 STACK_PUSHX(stack, voidptr, left); |
| 1437 STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT); |
| 1438 |
| 1439 /* Process right child. */ |
| 1440 STACK_PUSHX(stack, voidptr, right); |
| 1441 STACK_PUSHX(stack, int, ADDTAGS_RECURSE); |
| 1442 |
| 1443 /* After processing left child. */ |
| 1444 STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT); |
| 1445 |
| 1446 /* Process left child. */ |
| 1447 STACK_PUSHX(stack, voidptr, left); |
| 1448 STACK_PUSHX(stack, int, ADDTAGS_RECURSE); |
| 1449 |
| 1450 /* Regset is not empty, so add a tag here. */ |
| 1451 if (regset[0] >= 0) |
| 1452 { |
| 1453 if (!first_pass) |
| 1454 { |
| 1455 int i; |
| 1456 status = tre_add_tag_left(mem, node, tag); |
| 1457 tnfa->tag_directions[tag] = direction; |
| 1458 if (minimal_tag >= 0) |
| 1459 { |
| 1460 for (i = 0; tnfa->minimal_tags[i] >= 0; i++); |
| 1461 tnfa->minimal_tags[i] = tag; |
| 1462 tnfa->minimal_tags[i + 1] = minimal_tag; |
| 1463 tnfa->minimal_tags[i + 2] = -1; |
| 1464 minimal_tag = -1; |
| 1465 num_minimals++; |
| 1466 } |
| 1467 tre_purge_regset(regset, tnfa, tag); |
| 1468 } |
| 1469 |
| 1470 regset[0] = -1; |
| 1471 tag = next_tag; |
| 1472 num_tags++; |
| 1473 next_tag++; |
| 1474 } |
| 1475 |
| 1476 if (node->num_submatches > 0) |
| 1477 { |
| 1478 /* The next two tags are reserved for markers. */ |
| 1479 next_tag++; |
| 1480 tag = next_tag; |
| 1481 next_tag++; |
| 1482 } |
| 1483 |
| 1484 break; |
| 1485 } |
| 1486 } |
| 1487 |
| 1488 if (node->submatch_id >= 0) |
| 1489 { |
| 1490 int i; |
| 1491 /* Push this submatch on the parents stack. */ |
| 1492 for (i = 0; parents[i] >= 0; i++); |
| 1493 parents[i] = node->submatch_id; |
| 1494 parents[i + 1] = -1; |
| 1495 } |
| 1496 |
| 1497 break; /* end case: ADDTAGS_RECURSE */ |
| 1498 |
| 1499 case ADDTAGS_AFTER_ITERATION: |
| 1500 { |
| 1501 int minimal = 0; |
| 1502 int enter_tag; |
| 1503 node = tre_stack_pop_voidptr(stack); |
| 1504 if (first_pass) |
| 1505 { |
| 1506 node->num_tags = ((tre_iteration_t *)node->obj)->arg->num_tags |
| 1507 + tre_stack_pop_int(stack); |
| 1508 minimal_tag = -1; |
| 1509 } |
| 1510 else |
| 1511 { |
| 1512 minimal = tre_stack_pop_int(stack); |
| 1513 enter_tag = tre_stack_pop_int(stack); |
| 1514 if (minimal) |
| 1515 minimal_tag = enter_tag; |
| 1516 } |
| 1517 |
| 1518 if (!first_pass) |
| 1519 { |
| 1520 if (minimal) |
| 1521 direction = TRE_TAG_MINIMIZE; |
| 1522 else |
| 1523 direction = TRE_TAG_MAXIMIZE; |
| 1524 } |
| 1525 break; |
| 1526 } |
| 1527 |
| 1528 case ADDTAGS_AFTER_CAT_LEFT: |
| 1529 { |
| 1530 int new_tag = tre_stack_pop_int(stack); |
| 1531 next_tag = tre_stack_pop_int(stack); |
| 1532 if (new_tag >= 0) |
| 1533 { |
| 1534 tag = new_tag; |
| 1535 } |
| 1536 break; |
| 1537 } |
| 1538 |
| 1539 case ADDTAGS_AFTER_CAT_RIGHT: |
| 1540 node = tre_stack_pop_voidptr(stack); |
| 1541 if (first_pass) |
| 1542 node->num_tags = ((tre_catenation_t *)node->obj)->left->num_tags |
| 1543 + ((tre_catenation_t *)node->obj)->right->num_tags; |
| 1544 break; |
| 1545 |
| 1546 case ADDTAGS_AFTER_UNION_LEFT: |
| 1547 /* Lift the bottom of the `regset' array so that when processing |
| 1548 the right operand the items currently in the array are |
| 1549 invisible. The original bottom was saved at ADDTAGS_UNION and |
| 1550 will be restored at ADDTAGS_AFTER_UNION_RIGHT below. */ |
| 1551 while (*regset >= 0) |
| 1552 regset++; |
| 1553 break; |
| 1554 |
| 1555 case ADDTAGS_AFTER_UNION_RIGHT: |
| 1556 { |
| 1557 int added_tags, tag_left, tag_right; |
| 1558 tre_ast_node_t *left = tre_stack_pop_voidptr(stack); |
| 1559 tre_ast_node_t *right = tre_stack_pop_voidptr(stack); |
| 1560 node = tre_stack_pop_voidptr(stack); |
| 1561 added_tags = tre_stack_pop_int(stack); |
| 1562 if (first_pass) |
| 1563 { |
| 1564 node->num_tags = ((tre_union_t *)node->obj)->left->num_tags |
| 1565 + ((tre_union_t *)node->obj)->right->num_tags + added_tags |
| 1566 + ((node->num_submatches > 0) ? 2 : 0); |
| 1567 } |
| 1568 regset = tre_stack_pop_voidptr(stack); |
| 1569 tag_left = tre_stack_pop_int(stack); |
| 1570 tag_right = tre_stack_pop_int(stack); |
| 1571 |
| 1572 /* Add tags after both children, the left child gets a smaller |
| 1573 tag than the right child. This guarantees that we prefer |
| 1574 the left child over the right child. */ |
| 1575 /* XXX - This is not always necessary (if the children have |
| 1576 tags which must be seen for every match of that child). */ |
| 1577 /* XXX - Check if this is the only place where tre_add_tag_right |
| 1578 is used. If so, use tre_add_tag_left (putting the tag before |
| 1579 the child as opposed after the child) and throw away |
| 1580 tre_add_tag_right. */ |
| 1581 if (node->num_submatches > 0) |
| 1582 { |
| 1583 if (!first_pass) |
| 1584 { |
| 1585 status = tre_add_tag_right(mem, left, tag_left); |
| 1586 tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE; |
| 1587 if (status == REG_OK) |
| 1588 status = tre_add_tag_right(mem, right, tag_right); |
| 1589 tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE; |
| 1590 } |
| 1591 num_tags += 2; |
| 1592 } |
| 1593 direction = TRE_TAG_MAXIMIZE; |
| 1594 break; |
| 1595 } |
| 1596 |
| 1597 default: |
| 1598 assert(0); |
| 1599 break; |
| 1600 |
| 1601 } /* end switch(symbol) */ |
| 1602 } /* end while(tre_stack_num_objects(stack) > bottom) */ |
| 1603 |
| 1604 if (!first_pass) |
| 1605 tre_purge_regset(regset, tnfa, tag); |
| 1606 |
| 1607 if (!first_pass && minimal_tag >= 0) |
| 1608 { |
| 1609 int i; |
| 1610 for (i = 0; tnfa->minimal_tags[i] >= 0; i++); |
| 1611 tnfa->minimal_tags[i] = tag; |
| 1612 tnfa->minimal_tags[i + 1] = minimal_tag; |
| 1613 tnfa->minimal_tags[i + 2] = -1; |
| 1614 minimal_tag = -1; |
| 1615 num_minimals++; |
| 1616 } |
| 1617 |
| 1618 assert(tree->num_tags == num_tags); |
| 1619 tnfa->end_tag = num_tags; |
| 1620 tnfa->num_tags = num_tags; |
| 1621 tnfa->num_minimals = num_minimals; |
| 1622 xfree(orig_regset); |
| 1623 xfree(parents); |
| 1624 xfree(saved_states); |
| 1625 return status; |
| 1626 } |
| 1627 |
| 1628 |
| 1629 |
| 1630 /* |
| 1631 AST to TNFA compilation routines. |
| 1632 */ |
| 1633 |
| 1634 typedef enum { |
| 1635 COPY_RECURSE, |
| 1636 COPY_SET_RESULT_PTR |
| 1637 } tre_copyast_symbol_t; |
| 1638 |
| 1639 /* Flags for tre_copy_ast(). */ |
| 1640 #define COPY_REMOVE_TAGS 1 |
| 1641 #define COPY_MAXIMIZE_FIRST_TAG 2 |
| 1642 |
| 1643 static reg_errcode_t |
| 1644 tre_copy_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast, |
| 1645 int flags, int *pos_add, tre_tag_direction_t *tag_directions, |
| 1646 tre_ast_node_t **copy, int *max_pos) |
| 1647 { |
| 1648 reg_errcode_t status = REG_OK; |
| 1649 int bottom = tre_stack_num_objects(stack); |
| 1650 int num_copied = 0; |
| 1651 int first_tag = 1; |
| 1652 tre_ast_node_t **result = copy; |
| 1653 tre_copyast_symbol_t symbol; |
| 1654 |
| 1655 STACK_PUSH(stack, voidptr, ast); |
| 1656 STACK_PUSH(stack, int, COPY_RECURSE); |
| 1657 |
| 1658 while (status == REG_OK && tre_stack_num_objects(stack) > bottom) |
| 1659 { |
| 1660 tre_ast_node_t *node; |
| 1661 if (status != REG_OK) |
| 1662 break; |
| 1663 |
| 1664 symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack); |
| 1665 switch (symbol) |
| 1666 { |
| 1667 case COPY_SET_RESULT_PTR: |
| 1668 result = tre_stack_pop_voidptr(stack); |
| 1669 break; |
| 1670 case COPY_RECURSE: |
| 1671 node = tre_stack_pop_voidptr(stack); |
| 1672 switch (node->type) |
| 1673 { |
| 1674 case LITERAL: |
| 1675 { |
| 1676 tre_literal_t *lit = node->obj; |
| 1677 int pos = lit->position; |
| 1678 int min = lit->code_min; |
| 1679 int max = lit->code_max; |
| 1680 if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) |
| 1681 { |
| 1682 /* XXX - e.g. [ab] has only one position but two |
| 1683 nodes, so we are creating holes in the state space |
| 1684 here. Not fatal, just wastes memory. */ |
| 1685 pos += *pos_add; |
| 1686 num_copied++; |
| 1687 } |
| 1688 else if (IS_TAG(lit) && (flags & COPY_REMOVE_TAGS)) |
| 1689 { |
| 1690 /* Change this tag to empty. */ |
| 1691 min = EMPTY; |
| 1692 max = pos = -1; |
| 1693 } |
| 1694 else if (IS_TAG(lit) && (flags & COPY_MAXIMIZE_FIRST_TAG) |
| 1695 && first_tag) |
| 1696 { |
| 1697 /* Maximize the first tag. */ |
| 1698 tag_directions[max] = TRE_TAG_MAXIMIZE; |
| 1699 first_tag = 0; |
| 1700 } |
| 1701 *result = tre_ast_new_literal(mem, min, max, pos); |
| 1702 if (*result == NULL) |
| 1703 status = REG_ESPACE; |
| 1704 else { |
| 1705 tre_literal_t *p = (*result)->obj; |
| 1706 p->class = lit->class; |
| 1707 p->neg_classes = lit->neg_classes; |
| 1708 } |
| 1709 |
| 1710 if (pos > *max_pos) |
| 1711 *max_pos = pos; |
| 1712 break; |
| 1713 } |
| 1714 case UNION: |
| 1715 { |
| 1716 tre_union_t *uni = node->obj; |
| 1717 tre_union_t *tmp; |
| 1718 *result = tre_ast_new_union(mem, uni->left, uni->right); |
| 1719 if (*result == NULL) |
| 1720 { |
| 1721 status = REG_ESPACE; |
| 1722 break; |
| 1723 } |
| 1724 tmp = (*result)->obj; |
| 1725 result = &tmp->left; |
| 1726 STACK_PUSHX(stack, voidptr, uni->right); |
| 1727 STACK_PUSHX(stack, int, COPY_RECURSE); |
| 1728 STACK_PUSHX(stack, voidptr, &tmp->right); |
| 1729 STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR); |
| 1730 STACK_PUSHX(stack, voidptr, uni->left); |
| 1731 STACK_PUSHX(stack, int, COPY_RECURSE); |
| 1732 break; |
| 1733 } |
| 1734 case CATENATION: |
| 1735 { |
| 1736 tre_catenation_t *cat = node->obj; |
| 1737 tre_catenation_t *tmp; |
| 1738 *result = tre_ast_new_catenation(mem, cat->left, cat->right); |
| 1739 if (*result == NULL) |
| 1740 { |
| 1741 status = REG_ESPACE; |
| 1742 break; |
| 1743 } |
| 1744 tmp = (*result)->obj; |
| 1745 tmp->left = NULL; |
| 1746 tmp->right = NULL; |
| 1747 result = &tmp->left; |
| 1748 |
| 1749 STACK_PUSHX(stack, voidptr, cat->right); |
| 1750 STACK_PUSHX(stack, int, COPY_RECURSE); |
| 1751 STACK_PUSHX(stack, voidptr, &tmp->right); |
| 1752 STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR); |
| 1753 STACK_PUSHX(stack, voidptr, cat->left); |
| 1754 STACK_PUSHX(stack, int, COPY_RECURSE); |
| 1755 break; |
| 1756 } |
| 1757 case ITERATION: |
| 1758 { |
| 1759 tre_iteration_t *iter = node->obj; |
| 1760 STACK_PUSHX(stack, voidptr, iter->arg); |
| 1761 STACK_PUSHX(stack, int, COPY_RECURSE); |
| 1762 *result = tre_ast_new_iter(mem, iter->arg, iter->min, |
| 1763 iter->max, iter->minimal); |
| 1764 if (*result == NULL) |
| 1765 { |
| 1766 status = REG_ESPACE; |
| 1767 break; |
| 1768 } |
| 1769 iter = (*result)->obj; |
| 1770 result = &iter->arg; |
| 1771 break; |
| 1772 } |
| 1773 default: |
| 1774 assert(0); |
| 1775 break; |
| 1776 } |
| 1777 break; |
| 1778 } |
| 1779 } |
| 1780 *pos_add += num_copied; |
| 1781 return status; |
| 1782 } |
| 1783 |
| 1784 typedef enum { |
| 1785 EXPAND_RECURSE, |
| 1786 EXPAND_AFTER_ITER |
| 1787 } tre_expand_ast_symbol_t; |
| 1788 |
| 1789 /* Expands each iteration node that has a finite nonzero minimum or maximum |
| 1790 iteration count to a catenated sequence of copies of the node. */ |
| 1791 static reg_errcode_t |
| 1792 tre_expand_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast, |
| 1793 int *position, tre_tag_direction_t *tag_directions) |
| 1794 { |
| 1795 reg_errcode_t status = REG_OK; |
| 1796 int bottom = tre_stack_num_objects(stack); |
| 1797 int pos_add = 0; |
| 1798 int pos_add_total = 0; |
| 1799 int max_pos = 0; |
| 1800 int iter_depth = 0; |
| 1801 |
| 1802 STACK_PUSHR(stack, voidptr, ast); |
| 1803 STACK_PUSHR(stack, int, EXPAND_RECURSE); |
| 1804 while (status == REG_OK && tre_stack_num_objects(stack) > bottom) |
| 1805 { |
| 1806 tre_ast_node_t *node; |
| 1807 tre_expand_ast_symbol_t symbol; |
| 1808 |
| 1809 if (status != REG_OK) |
| 1810 break; |
| 1811 |
| 1812 symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack); |
| 1813 node = tre_stack_pop_voidptr(stack); |
| 1814 switch (symbol) |
| 1815 { |
| 1816 case EXPAND_RECURSE: |
| 1817 switch (node->type) |
| 1818 { |
| 1819 case LITERAL: |
| 1820 { |
| 1821 tre_literal_t *lit= node->obj; |
| 1822 if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) |
| 1823 { |
| 1824 lit->position += pos_add; |
| 1825 if (lit->position > max_pos) |
| 1826 max_pos = lit->position; |
| 1827 } |
| 1828 break; |
| 1829 } |
| 1830 case UNION: |
| 1831 { |
| 1832 tre_union_t *uni = node->obj; |
| 1833 STACK_PUSHX(stack, voidptr, uni->right); |
| 1834 STACK_PUSHX(stack, int, EXPAND_RECURSE); |
| 1835 STACK_PUSHX(stack, voidptr, uni->left); |
| 1836 STACK_PUSHX(stack, int, EXPAND_RECURSE); |
| 1837 break; |
| 1838 } |
| 1839 case CATENATION: |
| 1840 { |
| 1841 tre_catenation_t *cat = node->obj; |
| 1842 STACK_PUSHX(stack, voidptr, cat->right); |
| 1843 STACK_PUSHX(stack, int, EXPAND_RECURSE); |
| 1844 STACK_PUSHX(stack, voidptr, cat->left); |
| 1845 STACK_PUSHX(stack, int, EXPAND_RECURSE); |
| 1846 break; |
| 1847 } |
| 1848 case ITERATION: |
| 1849 { |
| 1850 tre_iteration_t *iter = node->obj; |
| 1851 STACK_PUSHX(stack, int, pos_add); |
| 1852 STACK_PUSHX(stack, voidptr, node); |
| 1853 STACK_PUSHX(stack, int, EXPAND_AFTER_ITER); |
| 1854 STACK_PUSHX(stack, voidptr, iter->arg); |
| 1855 STACK_PUSHX(stack, int, EXPAND_RECURSE); |
| 1856 /* If we are going to expand this node at EXPAND_AFTER_ITER |
| 1857 then don't increase the `pos' fields of the nodes now, it |
| 1858 will get done when expanding. */ |
| 1859 if (iter->min > 1 || iter->max > 1) |
| 1860 pos_add = 0; |
| 1861 iter_depth++; |
| 1862 break; |
| 1863 } |
| 1864 default: |
| 1865 assert(0); |
| 1866 break; |
| 1867 } |
| 1868 break; |
| 1869 case EXPAND_AFTER_ITER: |
| 1870 { |
| 1871 tre_iteration_t *iter = node->obj; |
| 1872 int pos_add_last; |
| 1873 pos_add = tre_stack_pop_int(stack); |
| 1874 pos_add_last = pos_add; |
| 1875 if (iter->min > 1 || iter->max > 1) |
| 1876 { |
| 1877 tre_ast_node_t *seq1 = NULL, *seq2 = NULL; |
| 1878 int j; |
| 1879 int pos_add_save = pos_add; |
| 1880 |
| 1881 /* Create a catenated sequence of copies of the node. */ |
| 1882 for (j = 0; j < iter->min; j++) |
| 1883 { |
| 1884 tre_ast_node_t *copy; |
| 1885 /* Remove tags from all but the last copy. */ |
| 1886 int flags = ((j + 1 < iter->min) |
| 1887 ? COPY_REMOVE_TAGS |
| 1888 : COPY_MAXIMIZE_FIRST_TAG); |
| 1889 pos_add_save = pos_add; |
| 1890 status = tre_copy_ast(mem, stack, iter->arg, flags, |
| 1891 &pos_add, tag_directions, ©, |
| 1892 &max_pos); |
| 1893 if (status != REG_OK) |
| 1894 return status; |
| 1895 if (seq1 != NULL) |
| 1896 seq1 = tre_ast_new_catenation(mem, seq1, copy); |
| 1897 else |
| 1898 seq1 = copy; |
| 1899 if (seq1 == NULL) |
| 1900 return REG_ESPACE; |
| 1901 } |
| 1902 |
| 1903 if (iter->max == -1) |
| 1904 { |
| 1905 /* No upper limit. */ |
| 1906 pos_add_save = pos_add; |
| 1907 status = tre_copy_ast(mem, stack, iter->arg, 0, |
| 1908 &pos_add, NULL, &seq2, &max_pos); |
| 1909 if (status != REG_OK) |
| 1910 return status; |
| 1911 seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0); |
| 1912 if (seq2 == NULL) |
| 1913 return REG_ESPACE; |
| 1914 } |
| 1915 else |
| 1916 { |
| 1917 for (j = iter->min; j < iter->max; j++) |
| 1918 { |
| 1919 tre_ast_node_t *tmp, *copy; |
| 1920 pos_add_save = pos_add; |
| 1921 status = tre_copy_ast(mem, stack, iter->arg, 0, |
| 1922 &pos_add, NULL, ©, &max_pos); |
| 1923 if (status != REG_OK) |
| 1924 return status; |
| 1925 if (seq2 != NULL) |
| 1926 seq2 = tre_ast_new_catenation(mem, copy, seq2); |
| 1927 else |
| 1928 seq2 = copy; |
| 1929 if (seq2 == NULL) |
| 1930 return REG_ESPACE; |
| 1931 tmp = tre_ast_new_literal(mem, EMPTY, -1, -1); |
| 1932 if (tmp == NULL) |
| 1933 return REG_ESPACE; |
| 1934 seq2 = tre_ast_new_union(mem, tmp, seq2); |
| 1935 if (seq2 == NULL) |
| 1936 return REG_ESPACE; |
| 1937 } |
| 1938 } |
| 1939 |
| 1940 pos_add = pos_add_save; |
| 1941 if (seq1 == NULL) |
| 1942 seq1 = seq2; |
| 1943 else if (seq2 != NULL) |
| 1944 seq1 = tre_ast_new_catenation(mem, seq1, seq2); |
| 1945 if (seq1 == NULL) |
| 1946 return REG_ESPACE; |
| 1947 node->obj = seq1->obj; |
| 1948 node->type = seq1->type; |
| 1949 } |
| 1950 |
| 1951 iter_depth--; |
| 1952 pos_add_total += pos_add - pos_add_last; |
| 1953 if (iter_depth == 0) |
| 1954 pos_add = pos_add_total; |
| 1955 |
| 1956 break; |
| 1957 } |
| 1958 default: |
| 1959 assert(0); |
| 1960 break; |
| 1961 } |
| 1962 } |
| 1963 |
| 1964 *position += pos_add_total; |
| 1965 |
| 1966 /* `max_pos' should never be larger than `*position' if the above |
| 1967 code works, but just an extra safeguard let's make sure |
| 1968 `*position' is set large enough so enough memory will be |
| 1969 allocated for the transition table. */ |
| 1970 if (max_pos > *position) |
| 1971 *position = max_pos; |
| 1972 |
| 1973 return status; |
| 1974 } |
| 1975 |
| 1976 static tre_pos_and_tags_t * |
| 1977 tre_set_empty(tre_mem_t mem) |
| 1978 { |
| 1979 tre_pos_and_tags_t *new_set; |
| 1980 |
| 1981 new_set = tre_mem_calloc(mem, sizeof(*new_set)); |
| 1982 if (new_set == NULL) |
| 1983 return NULL; |
| 1984 |
| 1985 new_set[0].position = -1; |
| 1986 new_set[0].code_min = -1; |
| 1987 new_set[0].code_max = -1; |
| 1988 |
| 1989 return new_set; |
| 1990 } |
| 1991 |
| 1992 static tre_pos_and_tags_t * |
| 1993 tre_set_one(tre_mem_t mem, int position, int code_min, int code_max, |
| 1994 tre_ctype_t class, tre_ctype_t *neg_classes, int backref) |
| 1995 { |
| 1996 tre_pos_and_tags_t *new_set; |
| 1997 |
| 1998 new_set = tre_mem_calloc(mem, sizeof(*new_set) * 2); |
| 1999 if (new_set == NULL) |
| 2000 return NULL; |
| 2001 |
| 2002 new_set[0].position = position; |
| 2003 new_set[0].code_min = code_min; |
| 2004 new_set[0].code_max = code_max; |
| 2005 new_set[0].class = class; |
| 2006 new_set[0].neg_classes = neg_classes; |
| 2007 new_set[0].backref = backref; |
| 2008 new_set[1].position = -1; |
| 2009 new_set[1].code_min = -1; |
| 2010 new_set[1].code_max = -1; |
| 2011 |
| 2012 return new_set; |
| 2013 } |
| 2014 |
| 2015 static tre_pos_and_tags_t * |
| 2016 tre_set_union(tre_mem_t mem, tre_pos_and_tags_t *set1, tre_pos_and_tags_t *set2, |
| 2017 int *tags, int assertions) |
| 2018 { |
| 2019 int s1, s2, i, j; |
| 2020 tre_pos_and_tags_t *new_set; |
| 2021 int *new_tags; |
| 2022 int num_tags; |
| 2023 |
| 2024 for (num_tags = 0; tags != NULL && tags[num_tags] >= 0; num_tags++); |
| 2025 for (s1 = 0; set1[s1].position >= 0; s1++); |
| 2026 for (s2 = 0; set2[s2].position >= 0; s2++); |
| 2027 new_set = tre_mem_calloc(mem, sizeof(*new_set) * (s1 + s2 + 1)); |
| 2028 if (!new_set ) |
| 2029 return NULL; |
| 2030 |
| 2031 for (s1 = 0; set1[s1].position >= 0; s1++) |
| 2032 { |
| 2033 new_set[s1].position = set1[s1].position; |
| 2034 new_set[s1].code_min = set1[s1].code_min; |
| 2035 new_set[s1].code_max = set1[s1].code_max; |
| 2036 new_set[s1].assertions = set1[s1].assertions | assertions; |
| 2037 new_set[s1].class = set1[s1].class; |
| 2038 new_set[s1].neg_classes = set1[s1].neg_classes; |
| 2039 new_set[s1].backref = set1[s1].backref; |
| 2040 if (set1[s1].tags == NULL && tags == NULL) |
| 2041 new_set[s1].tags = NULL; |
| 2042 else |
| 2043 { |
| 2044 for (i = 0; set1[s1].tags != NULL && set1[s1].tags[i] >= 0; i++); |
| 2045 new_tags = tre_mem_alloc(mem, (sizeof(*new_tags) |
| 2046 * (i + num_tags + 1))); |
| 2047 if (new_tags == NULL) |
| 2048 return NULL; |
| 2049 for (j = 0; j < i; j++) |
| 2050 new_tags[j] = set1[s1].tags[j]; |
| 2051 for (i = 0; i < num_tags; i++) |
| 2052 new_tags[j + i] = tags[i]; |
| 2053 new_tags[j + i] = -1; |
| 2054 new_set[s1].tags = new_tags; |
| 2055 } |
| 2056 } |
| 2057 |
| 2058 for (s2 = 0; set2[s2].position >= 0; s2++) |
| 2059 { |
| 2060 new_set[s1 + s2].position = set2[s2].position; |
| 2061 new_set[s1 + s2].code_min = set2[s2].code_min; |
| 2062 new_set[s1 + s2].code_max = set2[s2].code_max; |
| 2063 /* XXX - why not | assertions here as well? */ |
| 2064 new_set[s1 + s2].assertions = set2[s2].assertions; |
| 2065 new_set[s1 + s2].class = set2[s2].class; |
| 2066 new_set[s1 + s2].neg_classes = set2[s2].neg_classes; |
| 2067 new_set[s1 + s2].backref = set2[s2].backref; |
| 2068 if (set2[s2].tags == NULL) |
| 2069 new_set[s1 + s2].tags = NULL; |
| 2070 else |
| 2071 { |
| 2072 for (i = 0; set2[s2].tags[i] >= 0; i++); |
| 2073 new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1)); |
| 2074 if (new_tags == NULL) |
| 2075 return NULL; |
| 2076 for (j = 0; j < i; j++) |
| 2077 new_tags[j] = set2[s2].tags[j]; |
| 2078 new_tags[j] = -1; |
| 2079 new_set[s1 + s2].tags = new_tags; |
| 2080 } |
| 2081 } |
| 2082 new_set[s1 + s2].position = -1; |
| 2083 return new_set; |
| 2084 } |
| 2085 |
| 2086 /* Finds the empty path through `node' which is the one that should be |
| 2087 taken according to POSIX.2 rules, and adds the tags on that path to |
| 2088 `tags'. `tags' may be NULL. If `num_tags_seen' is not NULL, it is |
| 2089 set to the number of tags seen on the path. */ |
| 2090 static reg_errcode_t |
| 2091 tre_match_empty(tre_stack_t *stack, tre_ast_node_t *node, int *tags, |
| 2092 int *assertions, int *num_tags_seen) |
| 2093 { |
| 2094 tre_literal_t *lit; |
| 2095 tre_union_t *uni; |
| 2096 tre_catenation_t *cat; |
| 2097 tre_iteration_t *iter; |
| 2098 int i; |
| 2099 int bottom = tre_stack_num_objects(stack); |
| 2100 reg_errcode_t status = REG_OK; |
| 2101 if (num_tags_seen) |
| 2102 *num_tags_seen = 0; |
| 2103 |
| 2104 status = tre_stack_push_voidptr(stack, node); |
| 2105 |
| 2106 /* Walk through the tree recursively. */ |
| 2107 while (status == REG_OK && tre_stack_num_objects(stack) > bottom) |
| 2108 { |
| 2109 node = tre_stack_pop_voidptr(stack); |
| 2110 |
| 2111 switch (node->type) |
| 2112 { |
| 2113 case LITERAL: |
| 2114 lit = (tre_literal_t *)node->obj; |
| 2115 switch (lit->code_min) |
| 2116 { |
| 2117 case TAG: |
| 2118 if (lit->code_max >= 0) |
| 2119 { |
| 2120 if (tags != NULL) |
| 2121 { |
| 2122 /* Add the tag to `tags'. */ |
| 2123 for (i = 0; tags[i] >= 0; i++) |
| 2124 if (tags[i] == lit->code_max) |
| 2125 break; |
| 2126 if (tags[i] < 0) |
| 2127 { |
| 2128 tags[i] = lit->code_max; |
| 2129 tags[i + 1] = -1; |
| 2130 } |
| 2131 } |
| 2132 if (num_tags_seen) |
| 2133 (*num_tags_seen)++; |
| 2134 } |
| 2135 break; |
| 2136 case ASSERTION: |
| 2137 assert(lit->code_max >= 1 |
| 2138 || lit->code_max <= ASSERT_LAST); |
| 2139 if (assertions != NULL) |
| 2140 *assertions |= lit->code_max; |
| 2141 break; |
| 2142 case EMPTY: |
| 2143 break; |
| 2144 default: |
| 2145 assert(0); |
| 2146 break; |
| 2147 } |
| 2148 break; |
| 2149 |
| 2150 case UNION: |
| 2151 /* Subexpressions starting earlier take priority over ones |
| 2152 starting later, so we prefer the left subexpression over the |
| 2153 right subexpression. */ |
| 2154 uni = (tre_union_t *)node->obj; |
| 2155 if (uni->left->nullable) |
| 2156 STACK_PUSHX(stack, voidptr, uni->left) |
| 2157 else if (uni->right->nullable) |
| 2158 STACK_PUSHX(stack, voidptr, uni->right) |
| 2159 else |
| 2160 assert(0); |
| 2161 break; |
| 2162 |
| 2163 case CATENATION: |
| 2164 /* The path must go through both children. */ |
| 2165 cat = (tre_catenation_t *)node->obj; |
| 2166 assert(cat->left->nullable); |
| 2167 assert(cat->right->nullable); |
| 2168 STACK_PUSHX(stack, voidptr, cat->left); |
| 2169 STACK_PUSHX(stack, voidptr, cat->right); |
| 2170 break; |
| 2171 |
| 2172 case ITERATION: |
| 2173 /* A match with an empty string is preferred over no match at |
| 2174 all, so we go through the argument if possible. */ |
| 2175 iter = (tre_iteration_t *)node->obj; |
| 2176 if (iter->arg->nullable) |
| 2177 STACK_PUSHX(stack, voidptr, iter->arg); |
| 2178 break; |
| 2179 |
| 2180 default: |
| 2181 assert(0); |
| 2182 break; |
| 2183 } |
| 2184 } |
| 2185 |
| 2186 return status; |
| 2187 } |
| 2188 |
| 2189 |
| 2190 typedef enum { |
| 2191 NFL_RECURSE, |
| 2192 NFL_POST_UNION, |
| 2193 NFL_POST_CATENATION, |
| 2194 NFL_POST_ITERATION |
| 2195 } tre_nfl_stack_symbol_t; |
| 2196 |
| 2197 |
| 2198 /* Computes and fills in the fields `nullable', `firstpos', and `lastpos' for |
| 2199 the nodes of the AST `tree'. */ |
| 2200 static reg_errcode_t |
| 2201 tre_compute_nfl(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree) |
| 2202 { |
| 2203 int bottom = tre_stack_num_objects(stack); |
| 2204 |
| 2205 STACK_PUSHR(stack, voidptr, tree); |
| 2206 STACK_PUSHR(stack, int, NFL_RECURSE); |
| 2207 |
| 2208 while (tre_stack_num_objects(stack) > bottom) |
| 2209 { |
| 2210 tre_nfl_stack_symbol_t symbol; |
| 2211 tre_ast_node_t *node; |
| 2212 |
| 2213 symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack); |
| 2214 node = tre_stack_pop_voidptr(stack); |
| 2215 switch (symbol) |
| 2216 { |
| 2217 case NFL_RECURSE: |
| 2218 switch (node->type) |
| 2219 { |
| 2220 case LITERAL: |
| 2221 { |
| 2222 tre_literal_t *lit = (tre_literal_t *)node->obj; |
| 2223 if (IS_BACKREF(lit)) |
| 2224 { |
| 2225 /* Back references: nullable = false, firstpos = {i}, |
| 2226 lastpos = {i}. */ |
| 2227 node->nullable = 0; |
| 2228 node->firstpos = tre_set_one(mem, lit->position, 0, |
| 2229 TRE_CHAR_MAX, 0, NULL, -1); |
| 2230 if (!node->firstpos) |
| 2231 return REG_ESPACE; |
| 2232 node->lastpos = tre_set_one(mem, lit->position, 0, |
| 2233 TRE_CHAR_MAX, 0, NULL, |
| 2234 (int)lit->code_max); |
| 2235 if (!node->lastpos) |
| 2236 return REG_ESPACE; |
| 2237 } |
| 2238 else if (lit->code_min < 0) |
| 2239 { |
| 2240 /* Tags, empty strings, params, and zero width assertions: |
| 2241 nullable = true, firstpos = {}, and lastpos = {}. */ |
| 2242 node->nullable = 1; |
| 2243 node->firstpos = tre_set_empty(mem); |
| 2244 if (!node->firstpos) |
| 2245 return REG_ESPACE; |
| 2246 node->lastpos = tre_set_empty(mem); |
| 2247 if (!node->lastpos) |
| 2248 return REG_ESPACE; |
| 2249 } |
| 2250 else |
| 2251 { |
| 2252 /* Literal at position i: nullable = false, firstpos = {i}, |
| 2253 lastpos = {i}. */ |
| 2254 node->nullable = 0; |
| 2255 node->firstpos = |
| 2256 tre_set_one(mem, lit->position, (int)lit->code_min, |
| 2257 (int)lit->code_max, 0, NULL, -1); |
| 2258 if (!node->firstpos) |
| 2259 return REG_ESPACE; |
| 2260 node->lastpos = tre_set_one(mem, lit->position, |
| 2261 (int)lit->code_min, |
| 2262 (int)lit->code_max, |
| 2263 lit->class, lit->neg_classes, |
| 2264 -1); |
| 2265 if (!node->lastpos) |
| 2266 return REG_ESPACE; |
| 2267 } |
| 2268 break; |
| 2269 } |
| 2270 |
| 2271 case UNION: |
| 2272 /* Compute the attributes for the two subtrees, and after that |
| 2273 for this node. */ |
| 2274 STACK_PUSHR(stack, voidptr, node); |
| 2275 STACK_PUSHR(stack, int, NFL_POST_UNION); |
| 2276 STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->right); |
| 2277 STACK_PUSHR(stack, int, NFL_RECURSE); |
| 2278 STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->left); |
| 2279 STACK_PUSHR(stack, int, NFL_RECURSE); |
| 2280 break; |
| 2281 |
| 2282 case CATENATION: |
| 2283 /* Compute the attributes for the two subtrees, and after that |
| 2284 for this node. */ |
| 2285 STACK_PUSHR(stack, voidptr, node); |
| 2286 STACK_PUSHR(stack, int, NFL_POST_CATENATION); |
| 2287 STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->right
); |
| 2288 STACK_PUSHR(stack, int, NFL_RECURSE); |
| 2289 STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->left)
; |
| 2290 STACK_PUSHR(stack, int, NFL_RECURSE); |
| 2291 break; |
| 2292 |
| 2293 case ITERATION: |
| 2294 /* Compute the attributes for the subtree, and after that for |
| 2295 this node. */ |
| 2296 STACK_PUSHR(stack, voidptr, node); |
| 2297 STACK_PUSHR(stack, int, NFL_POST_ITERATION); |
| 2298 STACK_PUSHR(stack, voidptr, ((tre_iteration_t *)node->obj)->arg); |
| 2299 STACK_PUSHR(stack, int, NFL_RECURSE); |
| 2300 break; |
| 2301 } |
| 2302 break; /* end case: NFL_RECURSE */ |
| 2303 |
| 2304 case NFL_POST_UNION: |
| 2305 { |
| 2306 tre_union_t *uni = (tre_union_t *)node->obj; |
| 2307 node->nullable = uni->left->nullable || uni->right->nullable; |
| 2308 node->firstpos = tre_set_union(mem, uni->left->firstpos, |
| 2309 uni->right->firstpos, NULL, 0); |
| 2310 if (!node->firstpos) |
| 2311 return REG_ESPACE; |
| 2312 node->lastpos = tre_set_union(mem, uni->left->lastpos, |
| 2313 uni->right->lastpos, NULL, 0); |
| 2314 if (!node->lastpos) |
| 2315 return REG_ESPACE; |
| 2316 break; |
| 2317 } |
| 2318 |
| 2319 case NFL_POST_ITERATION: |
| 2320 { |
| 2321 tre_iteration_t *iter = (tre_iteration_t *)node->obj; |
| 2322 |
| 2323 if (iter->min == 0 || iter->arg->nullable) |
| 2324 node->nullable = 1; |
| 2325 else |
| 2326 node->nullable = 0; |
| 2327 node->firstpos = iter->arg->firstpos; |
| 2328 node->lastpos = iter->arg->lastpos; |
| 2329 break; |
| 2330 } |
| 2331 |
| 2332 case NFL_POST_CATENATION: |
| 2333 { |
| 2334 int num_tags, *tags, assertions; |
| 2335 reg_errcode_t status; |
| 2336 tre_catenation_t *cat = node->obj; |
| 2337 node->nullable = cat->left->nullable && cat->right->nullable; |
| 2338 |
| 2339 /* Compute firstpos. */ |
| 2340 if (cat->left->nullable) |
| 2341 { |
| 2342 /* The left side matches the empty string. Make a first pass |
| 2343 with tre_match_empty() to get the number of tags and |
| 2344 parameters. */ |
| 2345 status = tre_match_empty(stack, cat->left, |
| 2346 NULL, NULL, &num_tags); |
| 2347 if (status != REG_OK) |
| 2348 return status; |
| 2349 /* Allocate arrays for the tags and parameters. */ |
| 2350 tags = xmalloc(sizeof(*tags) * (num_tags + 1)); |
| 2351 if (!tags) |
| 2352 return REG_ESPACE; |
| 2353 tags[0] = -1; |
| 2354 assertions = 0; |
| 2355 /* Second pass with tre_mach_empty() to get the list of |
| 2356 tags and parameters. */ |
| 2357 status = tre_match_empty(stack, cat->left, tags, |
| 2358 &assertions, NULL); |
| 2359 if (status != REG_OK) |
| 2360 { |
| 2361 xfree(tags); |
| 2362 return status; |
| 2363 } |
| 2364 node->firstpos = |
| 2365 tre_set_union(mem, cat->right->firstpos, cat->left->firstpos, |
| 2366 tags, assertions); |
| 2367 xfree(tags); |
| 2368 if (!node->firstpos) |
| 2369 return REG_ESPACE; |
| 2370 } |
| 2371 else |
| 2372 { |
| 2373 node->firstpos = cat->left->firstpos; |
| 2374 } |
| 2375 |
| 2376 /* Compute lastpos. */ |
| 2377 if (cat->right->nullable) |
| 2378 { |
| 2379 /* The right side matches the empty string. Make a first pass |
| 2380 with tre_match_empty() to get the number of tags and |
| 2381 parameters. */ |
| 2382 status = tre_match_empty(stack, cat->right, |
| 2383 NULL, NULL, &num_tags); |
| 2384 if (status != REG_OK) |
| 2385 return status; |
| 2386 /* Allocate arrays for the tags and parameters. */ |
| 2387 tags = xmalloc(sizeof(int) * (num_tags + 1)); |
| 2388 if (!tags) |
| 2389 return REG_ESPACE; |
| 2390 tags[0] = -1; |
| 2391 assertions = 0; |
| 2392 /* Second pass with tre_mach_empty() to get the list of |
| 2393 tags and parameters. */ |
| 2394 status = tre_match_empty(stack, cat->right, tags, |
| 2395 &assertions, NULL); |
| 2396 if (status != REG_OK) |
| 2397 { |
| 2398 xfree(tags); |
| 2399 return status; |
| 2400 } |
| 2401 node->lastpos = |
| 2402 tre_set_union(mem, cat->left->lastpos, cat->right->lastpos, |
| 2403 tags, assertions); |
| 2404 xfree(tags); |
| 2405 if (!node->lastpos) |
| 2406 return REG_ESPACE; |
| 2407 } |
| 2408 else |
| 2409 { |
| 2410 node->lastpos = cat->right->lastpos; |
| 2411 } |
| 2412 break; |
| 2413 } |
| 2414 |
| 2415 default: |
| 2416 assert(0); |
| 2417 break; |
| 2418 } |
| 2419 } |
| 2420 |
| 2421 return REG_OK; |
| 2422 } |
| 2423 |
| 2424 |
| 2425 /* Adds a transition from each position in `p1' to each position in `p2'. */ |
| 2426 static reg_errcode_t |
| 2427 tre_make_trans(tre_pos_and_tags_t *p1, tre_pos_and_tags_t *p2, |
| 2428 tre_tnfa_transition_t *transitions, |
| 2429 int *counts, int *offs) |
| 2430 { |
| 2431 tre_pos_and_tags_t *orig_p2 = p2; |
| 2432 tre_tnfa_transition_t *trans; |
| 2433 int i, j, k, l, dup, prev_p2_pos; |
| 2434 |
| 2435 if (transitions != NULL) |
| 2436 while (p1->position >= 0) |
| 2437 { |
| 2438 p2 = orig_p2; |
| 2439 prev_p2_pos = -1; |
| 2440 while (p2->position >= 0) |
| 2441 { |
| 2442 /* Optimization: if this position was already handled, skip it. */ |
| 2443 if (p2->position == prev_p2_pos) |
| 2444 { |
| 2445 p2++; |
| 2446 continue; |
| 2447 } |
| 2448 prev_p2_pos = p2->position; |
| 2449 /* Set `trans' to point to the next unused transition from |
| 2450 position `p1->position'. */ |
| 2451 trans = transitions + offs[p1->position]; |
| 2452 while (trans->state != NULL) |
| 2453 { |
| 2454 #if 0 |
| 2455 /* If we find a previous transition from `p1->position' to |
| 2456 `p2->position', it is overwritten. This can happen only |
| 2457 if there are nested loops in the regexp, like in "((a)*)*". |
| 2458 In POSIX.2 repetition using the outer loop is always |
| 2459 preferred over using the inner loop. Therefore the |
| 2460 transition for the inner loop is useless and can be thrown |
| 2461 away. */ |
| 2462 /* XXX - The same position is used for all nodes in a bracket |
| 2463 expression, so this optimization cannot be used (it will |
| 2464 break bracket expressions) unless I figure out a way to |
| 2465 detect it here. */ |
| 2466 if (trans->state_id == p2->position) |
| 2467 { |
| 2468 break; |
| 2469 } |
| 2470 #endif |
| 2471 trans++; |
| 2472 } |
| 2473 |
| 2474 if (trans->state == NULL) |
| 2475 (trans + 1)->state = NULL; |
| 2476 /* Use the character ranges, assertions, etc. from `p1' for |
| 2477 the transition from `p1' to `p2'. */ |
| 2478 trans->code_min = p1->code_min; |
| 2479 trans->code_max = p1->code_max; |
| 2480 trans->state = transitions + offs[p2->position]; |
| 2481 trans->state_id = p2->position; |
| 2482 trans->assertions = p1->assertions | p2->assertions |
| 2483 | (p1->class ? ASSERT_CHAR_CLASS : 0) |
| 2484 | (p1->neg_classes != NULL ? ASSERT_CHAR_CLASS_NEG : 0); |
| 2485 if (p1->backref >= 0) |
| 2486 { |
| 2487 assert((trans->assertions & ASSERT_CHAR_CLASS) == 0); |
| 2488 assert(p2->backref < 0); |
| 2489 trans->u.backref = p1->backref; |
| 2490 trans->assertions |= ASSERT_BACKREF; |
| 2491 } |
| 2492 else |
| 2493 trans->u.class = p1->class; |
| 2494 if (p1->neg_classes != NULL) |
| 2495 { |
| 2496 for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++); |
| 2497 trans->neg_classes = |
| 2498 xmalloc(sizeof(*trans->neg_classes) * (i + 1)); |
| 2499 if (trans->neg_classes == NULL) |
| 2500 return REG_ESPACE; |
| 2501 for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++) |
| 2502 trans->neg_classes[i] = p1->neg_classes[i]; |
| 2503 trans->neg_classes[i] = (tre_ctype_t)0; |
| 2504 } |
| 2505 else |
| 2506 trans->neg_classes = NULL; |
| 2507 |
| 2508 /* Find out how many tags this transition has. */ |
| 2509 i = 0; |
| 2510 if (p1->tags != NULL) |
| 2511 while(p1->tags[i] >= 0) |
| 2512 i++; |
| 2513 j = 0; |
| 2514 if (p2->tags != NULL) |
| 2515 while(p2->tags[j] >= 0) |
| 2516 j++; |
| 2517 |
| 2518 /* If we are overwriting a transition, free the old tag array. */ |
| 2519 if (trans->tags != NULL) |
| 2520 xfree(trans->tags); |
| 2521 trans->tags = NULL; |
| 2522 |
| 2523 /* If there were any tags, allocate an array and fill it. */ |
| 2524 if (i + j > 0) |
| 2525 { |
| 2526 trans->tags = xmalloc(sizeof(*trans->tags) * (i + j + 1)); |
| 2527 if (!trans->tags) |
| 2528 return REG_ESPACE; |
| 2529 i = 0; |
| 2530 if (p1->tags != NULL) |
| 2531 while(p1->tags[i] >= 0) |
| 2532 { |
| 2533 trans->tags[i] = p1->tags[i]; |
| 2534 i++; |
| 2535 } |
| 2536 l = i; |
| 2537 j = 0; |
| 2538 if (p2->tags != NULL) |
| 2539 while (p2->tags[j] >= 0) |
| 2540 { |
| 2541 /* Don't add duplicates. */ |
| 2542 dup = 0; |
| 2543 for (k = 0; k < i; k++) |
| 2544 if (trans->tags[k] == p2->tags[j]) |
| 2545 { |
| 2546 dup = 1; |
| 2547 break; |
| 2548 } |
| 2549 if (!dup) |
| 2550 trans->tags[l++] = p2->tags[j]; |
| 2551 j++; |
| 2552 } |
| 2553 trans->tags[l] = -1; |
| 2554 } |
| 2555 |
| 2556 p2++; |
| 2557 } |
| 2558 p1++; |
| 2559 } |
| 2560 else |
| 2561 /* Compute a maximum limit for the number of transitions leaving |
| 2562 from each state. */ |
| 2563 while (p1->position >= 0) |
| 2564 { |
| 2565 p2 = orig_p2; |
| 2566 while (p2->position >= 0) |
| 2567 { |
| 2568 counts[p1->position]++; |
| 2569 p2++; |
| 2570 } |
| 2571 p1++; |
| 2572 } |
| 2573 return REG_OK; |
| 2574 } |
| 2575 |
| 2576 /* Converts the syntax tree to a TNFA. All the transitions in the TNFA are |
| 2577 labelled with one character range (there are no transitions on empty |
| 2578 strings). The TNFA takes O(n^2) space in the worst case, `n' is size of |
| 2579 the regexp. */ |
| 2580 static reg_errcode_t |
| 2581 tre_ast_to_tnfa(tre_ast_node_t *node, tre_tnfa_transition_t *transitions, |
| 2582 int *counts, int *offs) |
| 2583 { |
| 2584 tre_union_t *uni; |
| 2585 tre_catenation_t *cat; |
| 2586 tre_iteration_t *iter; |
| 2587 reg_errcode_t errcode = REG_OK; |
| 2588 |
| 2589 /* XXX - recurse using a stack!. */ |
| 2590 switch (node->type) |
| 2591 { |
| 2592 case LITERAL: |
| 2593 break; |
| 2594 case UNION: |
| 2595 uni = (tre_union_t *)node->obj; |
| 2596 errcode = tre_ast_to_tnfa(uni->left, transitions, counts, offs); |
| 2597 if (errcode != REG_OK) |
| 2598 return errcode; |
| 2599 errcode = tre_ast_to_tnfa(uni->right, transitions, counts, offs); |
| 2600 break; |
| 2601 |
| 2602 case CATENATION: |
| 2603 cat = (tre_catenation_t *)node->obj; |
| 2604 /* Add a transition from each position in cat->left->lastpos |
| 2605 to each position in cat->right->firstpos. */ |
| 2606 errcode = tre_make_trans(cat->left->lastpos, cat->right->firstpos, |
| 2607 transitions, counts, offs); |
| 2608 if (errcode != REG_OK) |
| 2609 return errcode; |
| 2610 errcode = tre_ast_to_tnfa(cat->left, transitions, counts, offs); |
| 2611 if (errcode != REG_OK) |
| 2612 return errcode; |
| 2613 errcode = tre_ast_to_tnfa(cat->right, transitions, counts, offs); |
| 2614 break; |
| 2615 |
| 2616 case ITERATION: |
| 2617 iter = (tre_iteration_t *)node->obj; |
| 2618 assert(iter->max == -1 || iter->max == 1); |
| 2619 |
| 2620 if (iter->max == -1) |
| 2621 { |
| 2622 assert(iter->min == 0 || iter->min == 1); |
| 2623 /* Add a transition from each last position in the iterated |
| 2624 expression to each first position. */ |
| 2625 errcode = tre_make_trans(iter->arg->lastpos, iter->arg->firstpos, |
| 2626 transitions, counts, offs); |
| 2627 if (errcode != REG_OK) |
| 2628 return errcode; |
| 2629 } |
| 2630 errcode = tre_ast_to_tnfa(iter->arg, transitions, counts, offs); |
| 2631 break; |
| 2632 } |
| 2633 return errcode; |
| 2634 } |
| 2635 |
| 2636 |
| 2637 #define ERROR_EXIT(err) \ |
| 2638 do \ |
| 2639 { \ |
| 2640 errcode = err; \ |
| 2641 if (/*CONSTCOND*/1) \ |
| 2642 goto error_exit; \ |
| 2643 } \ |
| 2644 while (/*CONSTCOND*/0) |
| 2645 |
| 2646 |
| 2647 int |
| 2648 regcomp(regex_t *restrict preg, const char *restrict regex, int cflags) |
| 2649 { |
| 2650 tre_stack_t *stack; |
| 2651 tre_ast_node_t *tree, *tmp_ast_l, *tmp_ast_r; |
| 2652 tre_pos_and_tags_t *p; |
| 2653 int *counts = NULL, *offs = NULL; |
| 2654 int i, add = 0; |
| 2655 tre_tnfa_transition_t *transitions, *initial; |
| 2656 tre_tnfa_t *tnfa = NULL; |
| 2657 tre_submatch_data_t *submatch_data; |
| 2658 tre_tag_direction_t *tag_directions = NULL; |
| 2659 reg_errcode_t errcode; |
| 2660 tre_mem_t mem; |
| 2661 |
| 2662 /* Parse context. */ |
| 2663 tre_parse_ctx_t parse_ctx; |
| 2664 |
| 2665 /* Allocate a stack used throughout the compilation process for various |
| 2666 purposes. */ |
| 2667 stack = tre_stack_new(512, 10240, 128); |
| 2668 if (!stack) |
| 2669 return REG_ESPACE; |
| 2670 /* Allocate a fast memory allocator. */ |
| 2671 mem = tre_mem_new(); |
| 2672 if (!mem) |
| 2673 { |
| 2674 tre_stack_destroy(stack); |
| 2675 return REG_ESPACE; |
| 2676 } |
| 2677 |
| 2678 /* Parse the regexp. */ |
| 2679 memset(&parse_ctx, 0, sizeof(parse_ctx)); |
| 2680 parse_ctx.mem = mem; |
| 2681 parse_ctx.stack = stack; |
| 2682 parse_ctx.re = regex; |
| 2683 parse_ctx.cflags = cflags; |
| 2684 parse_ctx.max_backref = -1; |
| 2685 errcode = tre_parse(&parse_ctx); |
| 2686 if (errcode != REG_OK) |
| 2687 ERROR_EXIT(errcode); |
| 2688 preg->re_nsub = parse_ctx.submatch_id - 1; |
| 2689 tree = parse_ctx.n; |
| 2690 |
| 2691 #ifdef TRE_DEBUG |
| 2692 tre_ast_print(tree); |
| 2693 #endif /* TRE_DEBUG */ |
| 2694 |
| 2695 /* Referring to nonexistent subexpressions is illegal. */ |
| 2696 if (parse_ctx.max_backref > (int)preg->re_nsub) |
| 2697 ERROR_EXIT(REG_ESUBREG); |
| 2698 |
| 2699 /* Allocate the TNFA struct. */ |
| 2700 tnfa = xcalloc(1, sizeof(tre_tnfa_t)); |
| 2701 if (tnfa == NULL) |
| 2702 ERROR_EXIT(REG_ESPACE); |
| 2703 tnfa->have_backrefs = parse_ctx.max_backref >= 0; |
| 2704 tnfa->have_approx = 0; |
| 2705 tnfa->num_submatches = parse_ctx.submatch_id; |
| 2706 |
| 2707 /* Set up tags for submatch addressing. If REG_NOSUB is set and the |
| 2708 regexp does not have back references, this can be skipped. */ |
| 2709 if (tnfa->have_backrefs || !(cflags & REG_NOSUB)) |
| 2710 { |
| 2711 |
| 2712 /* Figure out how many tags we will need. */ |
| 2713 errcode = tre_add_tags(NULL, stack, tree, tnfa); |
| 2714 if (errcode != REG_OK) |
| 2715 ERROR_EXIT(errcode); |
| 2716 |
| 2717 if (tnfa->num_tags > 0) |
| 2718 { |
| 2719 tag_directions = xmalloc(sizeof(*tag_directions) |
| 2720 * (tnfa->num_tags + 1)); |
| 2721 if (tag_directions == NULL) |
| 2722 ERROR_EXIT(REG_ESPACE); |
| 2723 tnfa->tag_directions = tag_directions; |
| 2724 memset(tag_directions, -1, |
| 2725 sizeof(*tag_directions) * (tnfa->num_tags + 1)); |
| 2726 } |
| 2727 tnfa->minimal_tags = xcalloc((unsigned)tnfa->num_tags * 2 + 1, |
| 2728 sizeof(*tnfa->minimal_tags)); |
| 2729 if (tnfa->minimal_tags == NULL) |
| 2730 ERROR_EXIT(REG_ESPACE); |
| 2731 |
| 2732 submatch_data = xcalloc((unsigned)parse_ctx.submatch_id, |
| 2733 sizeof(*submatch_data)); |
| 2734 if (submatch_data == NULL) |
| 2735 ERROR_EXIT(REG_ESPACE); |
| 2736 tnfa->submatch_data = submatch_data; |
| 2737 |
| 2738 errcode = tre_add_tags(mem, stack, tree, tnfa); |
| 2739 if (errcode != REG_OK) |
| 2740 ERROR_EXIT(errcode); |
| 2741 |
| 2742 } |
| 2743 |
| 2744 /* Expand iteration nodes. */ |
| 2745 errcode = tre_expand_ast(mem, stack, tree, &parse_ctx.position, |
| 2746 tag_directions); |
| 2747 if (errcode != REG_OK) |
| 2748 ERROR_EXIT(errcode); |
| 2749 |
| 2750 /* Add a dummy node for the final state. |
| 2751 XXX - For certain patterns this dummy node can be optimized away, |
| 2752 for example "a*" or "ab*". Figure out a simple way to detect |
| 2753 this possibility. */ |
| 2754 tmp_ast_l = tree; |
| 2755 tmp_ast_r = tre_ast_new_literal(mem, 0, 0, parse_ctx.position++); |
| 2756 if (tmp_ast_r == NULL) |
| 2757 ERROR_EXIT(REG_ESPACE); |
| 2758 |
| 2759 tree = tre_ast_new_catenation(mem, tmp_ast_l, tmp_ast_r); |
| 2760 if (tree == NULL) |
| 2761 ERROR_EXIT(REG_ESPACE); |
| 2762 |
| 2763 errcode = tre_compute_nfl(mem, stack, tree); |
| 2764 if (errcode != REG_OK) |
| 2765 ERROR_EXIT(errcode); |
| 2766 |
| 2767 counts = xmalloc(sizeof(int) * parse_ctx.position); |
| 2768 if (counts == NULL) |
| 2769 ERROR_EXIT(REG_ESPACE); |
| 2770 |
| 2771 offs = xmalloc(sizeof(int) * parse_ctx.position); |
| 2772 if (offs == NULL) |
| 2773 ERROR_EXIT(REG_ESPACE); |
| 2774 |
| 2775 for (i = 0; i < parse_ctx.position; i++) |
| 2776 counts[i] = 0; |
| 2777 tre_ast_to_tnfa(tree, NULL, counts, NULL); |
| 2778 |
| 2779 add = 0; |
| 2780 for (i = 0; i < parse_ctx.position; i++) |
| 2781 { |
| 2782 offs[i] = add; |
| 2783 add += counts[i] + 1; |
| 2784 counts[i] = 0; |
| 2785 } |
| 2786 transitions = xcalloc((unsigned)add + 1, sizeof(*transitions)); |
| 2787 if (transitions == NULL) |
| 2788 ERROR_EXIT(REG_ESPACE); |
| 2789 tnfa->transitions = transitions; |
| 2790 tnfa->num_transitions = add; |
| 2791 |
| 2792 errcode = tre_ast_to_tnfa(tree, transitions, counts, offs); |
| 2793 if (errcode != REG_OK) |
| 2794 ERROR_EXIT(errcode); |
| 2795 |
| 2796 tnfa->firstpos_chars = NULL; |
| 2797 |
| 2798 p = tree->firstpos; |
| 2799 i = 0; |
| 2800 while (p->position >= 0) |
| 2801 { |
| 2802 i++; |
| 2803 p++; |
| 2804 } |
| 2805 |
| 2806 initial = xcalloc((unsigned)i + 1, sizeof(tre_tnfa_transition_t)); |
| 2807 if (initial == NULL) |
| 2808 ERROR_EXIT(REG_ESPACE); |
| 2809 tnfa->initial = initial; |
| 2810 |
| 2811 i = 0; |
| 2812 for (p = tree->firstpos; p->position >= 0; p++) |
| 2813 { |
| 2814 initial[i].state = transitions + offs[p->position]; |
| 2815 initial[i].state_id = p->position; |
| 2816 initial[i].tags = NULL; |
| 2817 /* Copy the arrays p->tags, and p->params, they are allocated |
| 2818 from a tre_mem object. */ |
| 2819 if (p->tags) |
| 2820 { |
| 2821 int j; |
| 2822 for (j = 0; p->tags[j] >= 0; j++); |
| 2823 initial[i].tags = xmalloc(sizeof(*p->tags) * (j + 1)); |
| 2824 if (!initial[i].tags) |
| 2825 ERROR_EXIT(REG_ESPACE); |
| 2826 memcpy(initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1)); |
| 2827 } |
| 2828 initial[i].assertions = p->assertions; |
| 2829 i++; |
| 2830 } |
| 2831 initial[i].state = NULL; |
| 2832 |
| 2833 tnfa->num_transitions = add; |
| 2834 tnfa->final = transitions + offs[tree->lastpos[0].position]; |
| 2835 tnfa->num_states = parse_ctx.position; |
| 2836 tnfa->cflags = cflags; |
| 2837 |
| 2838 tre_mem_destroy(mem); |
| 2839 tre_stack_destroy(stack); |
| 2840 xfree(counts); |
| 2841 xfree(offs); |
| 2842 |
| 2843 preg->TRE_REGEX_T_FIELD = (void *)tnfa; |
| 2844 return REG_OK; |
| 2845 |
| 2846 error_exit: |
| 2847 /* Free everything that was allocated and return the error code. */ |
| 2848 tre_mem_destroy(mem); |
| 2849 if (stack != NULL) |
| 2850 tre_stack_destroy(stack); |
| 2851 if (counts != NULL) |
| 2852 xfree(counts); |
| 2853 if (offs != NULL) |
| 2854 xfree(offs); |
| 2855 preg->TRE_REGEX_T_FIELD = (void *)tnfa; |
| 2856 regfree(preg); |
| 2857 return errcode; |
| 2858 } |
| 2859 |
| 2860 |
| 2861 |
| 2862 |
| 2863 void |
| 2864 regfree(regex_t *preg) |
| 2865 { |
| 2866 tre_tnfa_t *tnfa; |
| 2867 unsigned int i; |
| 2868 tre_tnfa_transition_t *trans; |
| 2869 |
| 2870 tnfa = (void *)preg->TRE_REGEX_T_FIELD; |
| 2871 if (!tnfa) |
| 2872 return; |
| 2873 |
| 2874 for (i = 0; i < tnfa->num_transitions; i++) |
| 2875 if (tnfa->transitions[i].state) |
| 2876 { |
| 2877 if (tnfa->transitions[i].tags) |
| 2878 xfree(tnfa->transitions[i].tags); |
| 2879 if (tnfa->transitions[i].neg_classes) |
| 2880 xfree(tnfa->transitions[i].neg_classes); |
| 2881 } |
| 2882 if (tnfa->transitions) |
| 2883 xfree(tnfa->transitions); |
| 2884 |
| 2885 if (tnfa->initial) |
| 2886 { |
| 2887 for (trans = tnfa->initial; trans->state; trans++) |
| 2888 { |
| 2889 if (trans->tags) |
| 2890 xfree(trans->tags); |
| 2891 } |
| 2892 xfree(tnfa->initial); |
| 2893 } |
| 2894 |
| 2895 if (tnfa->submatch_data) |
| 2896 { |
| 2897 for (i = 0; i < tnfa->num_submatches; i++) |
| 2898 if (tnfa->submatch_data[i].parents) |
| 2899 xfree(tnfa->submatch_data[i].parents); |
| 2900 xfree(tnfa->submatch_data); |
| 2901 } |
| 2902 |
| 2903 if (tnfa->tag_directions) |
| 2904 xfree(tnfa->tag_directions); |
| 2905 if (tnfa->firstpos_chars) |
| 2906 xfree(tnfa->firstpos_chars); |
| 2907 if (tnfa->minimal_tags) |
| 2908 xfree(tnfa->minimal_tags); |
| 2909 xfree(tnfa); |
| 2910 } |
OLD | NEW |