OLD | NEW |
(Empty) | |
| 1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_powl.c */ |
| 2 /* |
| 3 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| 4 * |
| 5 * Permission to use, copy, modify, and distribute this software for any |
| 6 * purpose with or without fee is hereby granted, provided that the above |
| 7 * copyright notice and this permission notice appear in all copies. |
| 8 * |
| 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 16 */ |
| 17 /* powl.c |
| 18 * |
| 19 * Power function, long double precision |
| 20 * |
| 21 * |
| 22 * SYNOPSIS: |
| 23 * |
| 24 * long double x, y, z, powl(); |
| 25 * |
| 26 * z = powl( x, y ); |
| 27 * |
| 28 * |
| 29 * DESCRIPTION: |
| 30 * |
| 31 * Computes x raised to the yth power. Analytically, |
| 32 * |
| 33 * x**y = exp( y log(x) ). |
| 34 * |
| 35 * Following Cody and Waite, this program uses a lookup table |
| 36 * of 2**-i/32 and pseudo extended precision arithmetic to |
| 37 * obtain several extra bits of accuracy in both the logarithm |
| 38 * and the exponential. |
| 39 * |
| 40 * |
| 41 * ACCURACY: |
| 42 * |
| 43 * The relative error of pow(x,y) can be estimated |
| 44 * by y dl ln(2), where dl is the absolute error of |
| 45 * the internally computed base 2 logarithm. At the ends |
| 46 * of the approximation interval the logarithm equal 1/32 |
| 47 * and its relative error is about 1 lsb = 1.1e-19. Hence |
| 48 * the predicted relative error in the result is 2.3e-21 y . |
| 49 * |
| 50 * Relative error: |
| 51 * arithmetic domain # trials peak rms |
| 52 * |
| 53 * IEEE +-1000 40000 2.8e-18 3.7e-19 |
| 54 * .001 < x < 1000, with log(x) uniformly distributed. |
| 55 * -1000 < y < 1000, y uniformly distributed. |
| 56 * |
| 57 * IEEE 0,8700 60000 6.5e-18 1.0e-18 |
| 58 * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed. |
| 59 * |
| 60 * |
| 61 * ERROR MESSAGES: |
| 62 * |
| 63 * message condition value returned |
| 64 * pow overflow x**y > MAXNUM INFINITY |
| 65 * pow underflow x**y < 1/MAXNUM 0.0 |
| 66 * pow domain x<0 and y noninteger 0.0 |
| 67 * |
| 68 */ |
| 69 |
| 70 #include "libm.h" |
| 71 |
| 72 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| 73 long double powl(long double x, long double y) |
| 74 { |
| 75 return pow(x, y); |
| 76 } |
| 77 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| 78 |
| 79 /* Table size */ |
| 80 #define NXT 32 |
| 81 |
| 82 /* log(1+x) = x - .5x^2 + x^3 * P(z)/Q(z) |
| 83 * on the domain 2^(-1/32) - 1 <= x <= 2^(1/32) - 1 |
| 84 */ |
| 85 static const long double P[] = { |
| 86 8.3319510773868690346226E-4L, |
| 87 4.9000050881978028599627E-1L, |
| 88 1.7500123722550302671919E0L, |
| 89 1.4000100839971580279335E0L, |
| 90 }; |
| 91 static const long double Q[] = { |
| 92 /* 1.0000000000000000000000E0L,*/ |
| 93 5.2500282295834889175431E0L, |
| 94 8.4000598057587009834666E0L, |
| 95 4.2000302519914740834728E0L, |
| 96 }; |
| 97 /* A[i] = 2^(-i/32), rounded to IEEE long double precision. |
| 98 * If i is even, A[i] + B[i/2] gives additional accuracy. |
| 99 */ |
| 100 static const long double A[33] = { |
| 101 1.0000000000000000000000E0L, |
| 102 9.7857206208770013448287E-1L, |
| 103 9.5760328069857364691013E-1L, |
| 104 9.3708381705514995065011E-1L, |
| 105 9.1700404320467123175367E-1L, |
| 106 8.9735453750155359320742E-1L, |
| 107 8.7812608018664974155474E-1L, |
| 108 8.5930964906123895780165E-1L, |
| 109 8.4089641525371454301892E-1L, |
| 110 8.2287773907698242225554E-1L, |
| 111 8.0524516597462715409607E-1L, |
| 112 7.8799042255394324325455E-1L, |
| 113 7.7110541270397041179298E-1L, |
| 114 7.5458221379671136985669E-1L, |
| 115 7.3841307296974965571198E-1L, |
| 116 7.2259040348852331001267E-1L, |
| 117 7.0710678118654752438189E-1L, |
| 118 6.9195494098191597746178E-1L, |
| 119 6.7712777346844636413344E-1L, |
| 120 6.6261832157987064729696E-1L, |
| 121 6.4841977732550483296079E-1L, |
| 122 6.3452547859586661129850E-1L, |
| 123 6.2092890603674202431705E-1L, |
| 124 6.0762367999023443907803E-1L, |
| 125 5.9460355750136053334378E-1L, |
| 126 5.8186242938878875689693E-1L, |
| 127 5.6939431737834582684856E-1L, |
| 128 5.5719337129794626814472E-1L, |
| 129 5.4525386633262882960438E-1L, |
| 130 5.3357020033841180906486E-1L, |
| 131 5.2213689121370692017331E-1L, |
| 132 5.1094857432705833910408E-1L, |
| 133 5.0000000000000000000000E-1L, |
| 134 }; |
| 135 static const long double B[17] = { |
| 136 0.0000000000000000000000E0L, |
| 137 2.6176170809902549338711E-20L, |
| 138 -1.0126791927256478897086E-20L, |
| 139 1.3438228172316276937655E-21L, |
| 140 1.2207982955417546912101E-20L, |
| 141 -6.3084814358060867200133E-21L, |
| 142 1.3164426894366316434230E-20L, |
| 143 -1.8527916071632873716786E-20L, |
| 144 1.8950325588932570796551E-20L, |
| 145 1.5564775779538780478155E-20L, |
| 146 6.0859793637556860974380E-21L, |
| 147 -2.0208749253662532228949E-20L, |
| 148 1.4966292219224761844552E-20L, |
| 149 3.3540909728056476875639E-21L, |
| 150 -8.6987564101742849540743E-22L, |
| 151 -1.2327176863327626135542E-20L, |
| 152 0.0000000000000000000000E0L, |
| 153 }; |
| 154 |
| 155 /* 2^x = 1 + x P(x), |
| 156 * on the interval -1/32 <= x <= 0 |
| 157 */ |
| 158 static const long double R[] = { |
| 159 1.5089970579127659901157E-5L, |
| 160 1.5402715328927013076125E-4L, |
| 161 1.3333556028915671091390E-3L, |
| 162 9.6181291046036762031786E-3L, |
| 163 5.5504108664798463044015E-2L, |
| 164 2.4022650695910062854352E-1L, |
| 165 6.9314718055994530931447E-1L, |
| 166 }; |
| 167 |
| 168 #define MEXP (NXT*16384.0L) |
| 169 /* The following if denormal numbers are supported, else -MEXP: */ |
| 170 #define MNEXP (-NXT*(16384.0L+64.0L)) |
| 171 /* log2(e) - 1 */ |
| 172 #define LOG2EA 0.44269504088896340735992L |
| 173 |
| 174 #define F W |
| 175 #define Fa Wa |
| 176 #define Fb Wb |
| 177 #define G W |
| 178 #define Ga Wa |
| 179 #define Gb u |
| 180 #define H W |
| 181 #define Ha Wb |
| 182 #define Hb Wb |
| 183 |
| 184 static const long double MAXLOGL = 1.1356523406294143949492E4L; |
| 185 static const long double MINLOGL = -1.13994985314888605586758E4L; |
| 186 static const long double LOGE2L = 6.9314718055994530941723E-1L; |
| 187 static const long double huge = 0x1p10000L; |
| 188 /* XXX Prevent gcc from erroneously constant folding this. */ |
| 189 static const volatile long double twom10000 = 0x1p-10000L; |
| 190 |
| 191 static long double reducl(long double); |
| 192 static long double powil(long double, int); |
| 193 |
| 194 long double powl(long double x, long double y) |
| 195 { |
| 196 /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */ |
| 197 int i, nflg, iyflg, yoddint; |
| 198 long e; |
| 199 volatile long double z=0; |
| 200 long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0; |
| 201 |
| 202 /* make sure no invalid exception is raised by nan comparision */ |
| 203 if (isnan(x)) { |
| 204 if (!isnan(y) && y == 0.0) |
| 205 return 1.0; |
| 206 return x; |
| 207 } |
| 208 if (isnan(y)) { |
| 209 if (x == 1.0) |
| 210 return 1.0; |
| 211 return y; |
| 212 } |
| 213 if (x == 1.0) |
| 214 return 1.0; /* 1**y = 1, even if y is nan */ |
| 215 if (x == -1.0 && !isfinite(y)) |
| 216 return 1.0; /* -1**inf = 1 */ |
| 217 if (y == 0.0) |
| 218 return 1.0; /* x**0 = 1, even if x is nan */ |
| 219 if (y == 1.0) |
| 220 return x; |
| 221 if (y >= LDBL_MAX) { |
| 222 if (x > 1.0 || x < -1.0) |
| 223 return INFINITY; |
| 224 if (x != 0.0) |
| 225 return 0.0; |
| 226 } |
| 227 if (y <= -LDBL_MAX) { |
| 228 if (x > 1.0 || x < -1.0) |
| 229 return 0.0; |
| 230 if (x != 0.0 || y == -INFINITY) |
| 231 return INFINITY; |
| 232 } |
| 233 if (x >= LDBL_MAX) { |
| 234 if (y > 0.0) |
| 235 return INFINITY; |
| 236 return 0.0; |
| 237 } |
| 238 |
| 239 w = floorl(y); |
| 240 |
| 241 /* Set iyflg to 1 if y is an integer. */ |
| 242 iyflg = 0; |
| 243 if (w == y) |
| 244 iyflg = 1; |
| 245 |
| 246 /* Test for odd integer y. */ |
| 247 yoddint = 0; |
| 248 if (iyflg) { |
| 249 ya = fabsl(y); |
| 250 ya = floorl(0.5 * ya); |
| 251 yb = 0.5 * fabsl(w); |
| 252 if( ya != yb ) |
| 253 yoddint = 1; |
| 254 } |
| 255 |
| 256 if (x <= -LDBL_MAX) { |
| 257 if (y > 0.0) { |
| 258 if (yoddint) |
| 259 return -INFINITY; |
| 260 return INFINITY; |
| 261 } |
| 262 if (y < 0.0) { |
| 263 if (yoddint) |
| 264 return -0.0; |
| 265 return 0.0; |
| 266 } |
| 267 } |
| 268 nflg = 0; /* (x<0)**(odd int) */ |
| 269 if (x <= 0.0) { |
| 270 if (x == 0.0) { |
| 271 if (y < 0.0) { |
| 272 if (signbit(x) && yoddint) |
| 273 /* (-0.0)**(-odd int) = -inf, divbyzero
*/ |
| 274 return -1.0/0.0; |
| 275 /* (+-0.0)**(negative) = inf, divbyzero */ |
| 276 return 1.0/0.0; |
| 277 } |
| 278 if (signbit(x) && yoddint) |
| 279 return -0.0; |
| 280 return 0.0; |
| 281 } |
| 282 if (iyflg == 0) |
| 283 return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */ |
| 284 /* (x<0)**(integer) */ |
| 285 if (yoddint) |
| 286 nflg = 1; /* negate result */ |
| 287 x = -x; |
| 288 } |
| 289 /* (+integer)**(integer) */ |
| 290 if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) { |
| 291 w = powil(x, (int)y); |
| 292 return nflg ? -w : w; |
| 293 } |
| 294 |
| 295 /* separate significand from exponent */ |
| 296 x = frexpl(x, &i); |
| 297 e = i; |
| 298 |
| 299 /* find significand in antilog table A[] */ |
| 300 i = 1; |
| 301 if (x <= A[17]) |
| 302 i = 17; |
| 303 if (x <= A[i+8]) |
| 304 i += 8; |
| 305 if (x <= A[i+4]) |
| 306 i += 4; |
| 307 if (x <= A[i+2]) |
| 308 i += 2; |
| 309 if (x >= A[1]) |
| 310 i = -1; |
| 311 i += 1; |
| 312 |
| 313 /* Find (x - A[i])/A[i] |
| 314 * in order to compute log(x/A[i]): |
| 315 * |
| 316 * log(x) = log( a x/a ) = log(a) + log(x/a) |
| 317 * |
| 318 * log(x/a) = log(1+v), v = x/a - 1 = (x-a)/a |
| 319 */ |
| 320 x -= A[i]; |
| 321 x -= B[i/2]; |
| 322 x /= A[i]; |
| 323 |
| 324 /* rational approximation for log(1+v): |
| 325 * |
| 326 * log(1+v) = v - v**2/2 + v**3 P(v) / Q(v) |
| 327 */ |
| 328 z = x*x; |
| 329 w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3)); |
| 330 w = w - 0.5*z; |
| 331 |
| 332 /* Convert to base 2 logarithm: |
| 333 * multiply by log2(e) = 1 + LOG2EA |
| 334 */ |
| 335 z = LOG2EA * w; |
| 336 z += w; |
| 337 z += LOG2EA * x; |
| 338 z += x; |
| 339 |
| 340 /* Compute exponent term of the base 2 logarithm. */ |
| 341 w = -i; |
| 342 w /= NXT; |
| 343 w += e; |
| 344 /* Now base 2 log of x is w + z. */ |
| 345 |
| 346 /* Multiply base 2 log by y, in extended precision. */ |
| 347 |
| 348 /* separate y into large part ya |
| 349 * and small part yb less than 1/NXT |
| 350 */ |
| 351 ya = reducl(y); |
| 352 yb = y - ya; |
| 353 |
| 354 /* (w+z)(ya+yb) |
| 355 * = w*ya + w*yb + z*y |
| 356 */ |
| 357 F = z * y + w * yb; |
| 358 Fa = reducl(F); |
| 359 Fb = F - Fa; |
| 360 |
| 361 G = Fa + w * ya; |
| 362 Ga = reducl(G); |
| 363 Gb = G - Ga; |
| 364 |
| 365 H = Fb + Gb; |
| 366 Ha = reducl(H); |
| 367 w = (Ga + Ha) * NXT; |
| 368 |
| 369 /* Test the power of 2 for overflow */ |
| 370 if (w > MEXP) |
| 371 return huge * huge; /* overflow */ |
| 372 if (w < MNEXP) |
| 373 return twom10000 * twom10000; /* underflow */ |
| 374 |
| 375 e = w; |
| 376 Hb = H - Ha; |
| 377 |
| 378 if (Hb > 0.0) { |
| 379 e += 1; |
| 380 Hb -= 1.0/NXT; /*0.0625L;*/ |
| 381 } |
| 382 |
| 383 /* Now the product y * log2(x) = Hb + e/NXT. |
| 384 * |
| 385 * Compute base 2 exponential of Hb, |
| 386 * where -0.0625 <= Hb <= 0. |
| 387 */ |
| 388 z = Hb * __polevll(Hb, R, 6); /* z = 2**Hb - 1 */ |
| 389 |
| 390 /* Express e/NXT as an integer plus a negative number of (1/NXT)ths. |
| 391 * Find lookup table entry for the fractional power of 2. |
| 392 */ |
| 393 if (e < 0) |
| 394 i = 0; |
| 395 else |
| 396 i = 1; |
| 397 i = e/NXT + i; |
| 398 e = NXT*i - e; |
| 399 w = A[e]; |
| 400 z = w * z; /* 2**-e * ( 1 + (2**Hb-1) ) */ |
| 401 z = z + w; |
| 402 z = scalbnl(z, i); /* multiply by integer power of 2 */ |
| 403 |
| 404 if (nflg) |
| 405 z = -z; |
| 406 return z; |
| 407 } |
| 408 |
| 409 |
| 410 /* Find a multiple of 1/NXT that is within 1/NXT of x. */ |
| 411 static long double reducl(long double x) |
| 412 { |
| 413 long double t; |
| 414 |
| 415 t = x * NXT; |
| 416 t = floorl(t); |
| 417 t = t / NXT; |
| 418 return t; |
| 419 } |
| 420 |
| 421 /* |
| 422 * Positive real raised to integer power, long double precision |
| 423 * |
| 424 * |
| 425 * SYNOPSIS: |
| 426 * |
| 427 * long double x, y, powil(); |
| 428 * int n; |
| 429 * |
| 430 * y = powil( x, n ); |
| 431 * |
| 432 * |
| 433 * DESCRIPTION: |
| 434 * |
| 435 * Returns argument x>0 raised to the nth power. |
| 436 * The routine efficiently decomposes n as a sum of powers of |
| 437 * two. The desired power is a product of two-to-the-kth |
| 438 * powers of x. Thus to compute the 32767 power of x requires |
| 439 * 28 multiplications instead of 32767 multiplications. |
| 440 * |
| 441 * |
| 442 * ACCURACY: |
| 443 * |
| 444 * Relative error: |
| 445 * arithmetic x domain n domain # trials peak rms |
| 446 * IEEE .001,1000 -1022,1023 50000 4.3e-17 7.8e-18 |
| 447 * IEEE 1,2 -1022,1023 20000 3.9e-17 7.6e-18 |
| 448 * IEEE .99,1.01 0,8700 10000 3.6e-16 7.2e-17 |
| 449 * |
| 450 * Returns MAXNUM on overflow, zero on underflow. |
| 451 */ |
| 452 |
| 453 static long double powil(long double x, int nn) |
| 454 { |
| 455 long double ww, y; |
| 456 long double s; |
| 457 int n, e, sign, lx; |
| 458 |
| 459 if (nn == 0) |
| 460 return 1.0; |
| 461 |
| 462 if (nn < 0) { |
| 463 sign = -1; |
| 464 n = -nn; |
| 465 } else { |
| 466 sign = 1; |
| 467 n = nn; |
| 468 } |
| 469 |
| 470 /* Overflow detection */ |
| 471 |
| 472 /* Calculate approximate logarithm of answer */ |
| 473 s = x; |
| 474 s = frexpl( s, &lx); |
| 475 e = (lx - 1)*n; |
| 476 if ((e == 0) || (e > 64) || (e < -64)) { |
| 477 s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L)
; |
| 478 s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L; |
| 479 } else { |
| 480 s = LOGE2L * e; |
| 481 } |
| 482 |
| 483 if (s > MAXLOGL) |
| 484 return huge * huge; /* overflow */ |
| 485 |
| 486 if (s < MINLOGL) |
| 487 return twom10000 * twom10000; /* underflow */ |
| 488 /* Handle tiny denormal answer, but with less accuracy |
| 489 * since roundoff error in 1.0/x will be amplified. |
| 490 * The precise demarcation should be the gradual underflow threshold. |
| 491 */ |
| 492 if (s < -MAXLOGL+2.0) { |
| 493 x = 1.0/x; |
| 494 sign = -sign; |
| 495 } |
| 496 |
| 497 /* First bit of the power */ |
| 498 if (n & 1) |
| 499 y = x; |
| 500 else |
| 501 y = 1.0; |
| 502 |
| 503 ww = x; |
| 504 n >>= 1; |
| 505 while (n) { |
| 506 ww = ww * ww; /* arg to the 2-to-the-kth power */ |
| 507 if (n & 1) /* if that bit is set, then include in product */ |
| 508 y *= ww; |
| 509 n >>= 1; |
| 510 } |
| 511 |
| 512 if (sign < 0) |
| 513 y = 1.0/y; |
| 514 return y; |
| 515 } |
| 516 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
| 517 // TODO: broken implementation to make things compile |
| 518 long double powl(long double x, long double y) |
| 519 { |
| 520 return pow(x, y); |
| 521 } |
| 522 #endif |
OLD | NEW |