OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */ |
| 2 /* |
| 3 * ==================================================== |
| 4 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. |
| 5 * |
| 6 * Permission to use, copy, modify, and distribute this |
| 7 * software is freely granted, provided that this notice |
| 8 * is preserved. |
| 9 * ==================================================== |
| 10 */ |
| 11 /* pow(x,y) return x**y |
| 12 * |
| 13 * n |
| 14 * Method: Let x = 2 * (1+f) |
| 15 * 1. Compute and return log2(x) in two pieces: |
| 16 * log2(x) = w1 + w2, |
| 17 * where w1 has 53-24 = 29 bit trailing zeros. |
| 18 * 2. Perform y*log2(x) = n+y' by simulating muti-precision |
| 19 * arithmetic, where |y'|<=0.5. |
| 20 * 3. Return x**y = 2**n*exp(y'*log2) |
| 21 * |
| 22 * Special cases: |
| 23 * 1. (anything) ** 0 is 1 |
| 24 * 2. 1 ** (anything) is 1 |
| 25 * 3. (anything except 1) ** NAN is NAN |
| 26 * 4. NAN ** (anything except 0) is NAN |
| 27 * 5. +-(|x| > 1) ** +INF is +INF |
| 28 * 6. +-(|x| > 1) ** -INF is +0 |
| 29 * 7. +-(|x| < 1) ** +INF is +0 |
| 30 * 8. +-(|x| < 1) ** -INF is +INF |
| 31 * 9. -1 ** +-INF is 1 |
| 32 * 10. +0 ** (+anything except 0, NAN) is +0 |
| 33 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 |
| 34 * 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyze
ro |
| 35 * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyze
ro |
| 36 * 14. -0 ** (+odd integer) is -0 |
| 37 * 15. -0 ** (-odd integer) is -INF, raise divbyzero |
| 38 * 16. +INF ** (+anything except 0,NAN) is +INF |
| 39 * 17. +INF ** (-anything except 0,NAN) is +0 |
| 40 * 18. -INF ** (+odd integer) is -INF |
| 41 * 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer
) |
| 42 * 20. (anything) ** 1 is (anything) |
| 43 * 21. (anything) ** -1 is 1/(anything) |
| 44 * 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) |
| 45 * 23. (-anything except 0 and inf) ** (non-integer) is NAN |
| 46 * |
| 47 * Accuracy: |
| 48 * pow(x,y) returns x**y nearly rounded. In particular |
| 49 * pow(integer,integer) |
| 50 * always returns the correct integer provided it is |
| 51 * representable. |
| 52 * |
| 53 * Constants : |
| 54 * The hexadecimal values are the intended ones for the following |
| 55 * constants. The decimal values may be used, provided that the |
| 56 * compiler will convert from decimal to binary accurately enough |
| 57 * to produce the hexadecimal values shown. |
| 58 */ |
| 59 |
| 60 #include "libm.h" |
| 61 |
| 62 static const double |
| 63 bp[] = {1.0, 1.5,}, |
| 64 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ |
| 65 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ |
| 66 two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ |
| 67 huge = 1.0e300, |
| 68 tiny = 1.0e-300, |
| 69 /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ |
| 70 L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ |
| 71 L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ |
| 72 L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ |
| 73 L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ |
| 74 L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ |
| 75 L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ |
| 76 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
| 77 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
| 78 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
| 79 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
| 80 P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ |
| 81 lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ |
| 82 lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ |
| 83 lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ |
| 84 ovt = 8.0085662595372944372e-017, /* -(1024-log2(ovfl+.5ulp)) */ |
| 85 cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ |
| 86 cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ |
| 87 cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/ |
| 88 ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ |
| 89 ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/ |
| 90 ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/ |
| 91 |
| 92 double pow(double x, double y) |
| 93 { |
| 94 double z,ax,z_h,z_l,p_h,p_l; |
| 95 double y1,t1,t2,r,s,t,u,v,w; |
| 96 int32_t i,j,k,yisint,n; |
| 97 int32_t hx,hy,ix,iy; |
| 98 uint32_t lx,ly; |
| 99 |
| 100 EXTRACT_WORDS(hx, lx, x); |
| 101 EXTRACT_WORDS(hy, ly, y); |
| 102 ix = hx & 0x7fffffff; |
| 103 iy = hy & 0x7fffffff; |
| 104 |
| 105 /* x**0 = 1, even if x is NaN */ |
| 106 if ((iy|ly) == 0) |
| 107 return 1.0; |
| 108 /* 1**y = 1, even if y is NaN */ |
| 109 if (hx == 0x3ff00000 && lx == 0) |
| 110 return 1.0; |
| 111 /* NaN if either arg is NaN */ |
| 112 if (ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0) || |
| 113 iy > 0x7ff00000 || (iy == 0x7ff00000 && ly != 0)) |
| 114 return x + y; |
| 115 |
| 116 /* determine if y is an odd int when x < 0 |
| 117 * yisint = 0 ... y is not an integer |
| 118 * yisint = 1 ... y is an odd int |
| 119 * yisint = 2 ... y is an even int |
| 120 */ |
| 121 yisint = 0; |
| 122 if (hx < 0) { |
| 123 if (iy >= 0x43400000) |
| 124 yisint = 2; /* even integer y */ |
| 125 else if (iy >= 0x3ff00000) { |
| 126 k = (iy>>20) - 0x3ff; /* exponent */ |
| 127 if (k > 20) { |
| 128 j = ly>>(52-k); |
| 129 if ((j<<(52-k)) == ly) |
| 130 yisint = 2 - (j&1); |
| 131 } else if (ly == 0) { |
| 132 j = iy>>(20-k); |
| 133 if ((j<<(20-k)) == iy) |
| 134 yisint = 2 - (j&1); |
| 135 } |
| 136 } |
| 137 } |
| 138 |
| 139 /* special value of y */ |
| 140 if (ly == 0) { |
| 141 if (iy == 0x7ff00000) { /* y is +-inf */ |
| 142 if (((ix-0x3ff00000)|lx) == 0) /* (-1)**+-inf is 1 */ |
| 143 return 1.0; |
| 144 else if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */ |
| 145 return hy >= 0 ? y : 0.0; |
| 146 else /* (|x|<1)**+-inf = 0,inf */ |
| 147 return hy >= 0 ? 0.0 : -y; |
| 148 } |
| 149 if (iy == 0x3ff00000) { /* y is +-1 */ |
| 150 if (hy >= 0) |
| 151 return x; |
| 152 y = 1/x; |
| 153 #if FLT_EVAL_METHOD!=0 |
| 154 { |
| 155 union {double f; uint64_t i;} u = {y}; |
| 156 uint64_t i = u.i & -1ULL/2; |
| 157 if (i>>52 == 0 && (i&(i-1))) |
| 158 FORCE_EVAL((float)y); |
| 159 } |
| 160 #endif |
| 161 return y; |
| 162 } |
| 163 if (hy == 0x40000000) /* y is 2 */ |
| 164 return x*x; |
| 165 if (hy == 0x3fe00000) { /* y is 0.5 */ |
| 166 if (hx >= 0) /* x >= +0 */ |
| 167 return sqrt(x); |
| 168 } |
| 169 } |
| 170 |
| 171 ax = fabs(x); |
| 172 /* special value of x */ |
| 173 if (lx == 0) { |
| 174 if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) { /* x is +
-0,+-inf,+-1 */ |
| 175 z = ax; |
| 176 if (hy < 0) /* z = (1/|x|) */ |
| 177 z = 1.0/z; |
| 178 if (hx < 0) { |
| 179 if (((ix-0x3ff00000)|yisint) == 0) { |
| 180 z = (z-z)/(z-z); /* (-1)**non-int is NaN
*/ |
| 181 } else if (yisint == 1) |
| 182 z = -z; /* (x<0)**odd = -(|x|**
odd) */ |
| 183 } |
| 184 return z; |
| 185 } |
| 186 } |
| 187 |
| 188 s = 1.0; /* sign of result */ |
| 189 if (hx < 0) { |
| 190 if (yisint == 0) /* (x<0)**(non-int) is NaN */ |
| 191 return (x-x)/(x-x); |
| 192 if (yisint == 1) /* (x<0)**(odd int) */ |
| 193 s = -1.0; |
| 194 } |
| 195 |
| 196 /* |y| is huge */ |
| 197 if (iy > 0x41e00000) { /* if |y| > 2**31 */ |
| 198 if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */ |
| 199 if (ix <= 0x3fefffff) |
| 200 return hy < 0 ? huge*huge : tiny*tiny; |
| 201 if (ix >= 0x3ff00000) |
| 202 return hy > 0 ? huge*huge : tiny*tiny; |
| 203 } |
| 204 /* over/underflow if x is not close to one */ |
| 205 if (ix < 0x3fefffff) |
| 206 return hy < 0 ? s*huge*huge : s*tiny*tiny; |
| 207 if (ix > 0x3ff00000) |
| 208 return hy > 0 ? s*huge*huge : s*tiny*tiny; |
| 209 /* now |1-x| is tiny <= 2**-20, suffice to compute |
| 210 log(x) by x-x^2/2+x^3/3-x^4/4 */ |
| 211 t = ax - 1.0; /* t has 20 trailing zeros */ |
| 212 w = (t*t)*(0.5 - t*(0.3333333333333333333333-t*0.25)); |
| 213 u = ivln2_h*t; /* ivln2_h has 21 sig. bits */ |
| 214 v = t*ivln2_l - w*ivln2; |
| 215 t1 = u + v; |
| 216 SET_LOW_WORD(t1, 0); |
| 217 t2 = v - (t1-u); |
| 218 } else { |
| 219 double ss,s2,s_h,s_l,t_h,t_l; |
| 220 n = 0; |
| 221 /* take care subnormal number */ |
| 222 if (ix < 0x00100000) { |
| 223 ax *= two53; |
| 224 n -= 53; |
| 225 GET_HIGH_WORD(ix,ax); |
| 226 } |
| 227 n += ((ix)>>20) - 0x3ff; |
| 228 j = ix & 0x000fffff; |
| 229 /* determine interval */ |
| 230 ix = j | 0x3ff00000; /* normalize ix */ |
| 231 if (j <= 0x3988E) /* |x|<sqrt(3/2) */ |
| 232 k = 0; |
| 233 else if (j < 0xBB67A) /* |x|<sqrt(3) */ |
| 234 k = 1; |
| 235 else { |
| 236 k = 0; |
| 237 n += 1; |
| 238 ix -= 0x00100000; |
| 239 } |
| 240 SET_HIGH_WORD(ax, ix); |
| 241 |
| 242 /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ |
| 243 u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ |
| 244 v = 1.0/(ax+bp[k]); |
| 245 ss = u*v; |
| 246 s_h = ss; |
| 247 SET_LOW_WORD(s_h, 0); |
| 248 /* t_h=ax+bp[k] High */ |
| 249 t_h = 0.0; |
| 250 SET_HIGH_WORD(t_h, ((ix>>1)|0x20000000) + 0x00080000 + (k<<18)); |
| 251 t_l = ax - (t_h-bp[k]); |
| 252 s_l = v*((u-s_h*t_h)-s_h*t_l); |
| 253 /* compute log(ax) */ |
| 254 s2 = ss*ss; |
| 255 r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6))))); |
| 256 r += s_l*(s_h+ss); |
| 257 s2 = s_h*s_h; |
| 258 t_h = 3.0 + s2 + r; |
| 259 SET_LOW_WORD(t_h, 0); |
| 260 t_l = r - ((t_h-3.0)-s2); |
| 261 /* u+v = ss*(1+...) */ |
| 262 u = s_h*t_h; |
| 263 v = s_l*t_h + t_l*ss; |
| 264 /* 2/(3log2)*(ss+...) */ |
| 265 p_h = u + v; |
| 266 SET_LOW_WORD(p_h, 0); |
| 267 p_l = v - (p_h-u); |
| 268 z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */ |
| 269 z_l = cp_l*p_h+p_l*cp + dp_l[k]; |
| 270 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ |
| 271 t = (double)n; |
| 272 t1 = ((z_h + z_l) + dp_h[k]) + t; |
| 273 SET_LOW_WORD(t1, 0); |
| 274 t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); |
| 275 } |
| 276 |
| 277 /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ |
| 278 y1 = y; |
| 279 SET_LOW_WORD(y1, 0); |
| 280 p_l = (y-y1)*t1 + y*t2; |
| 281 p_h = y1*t1; |
| 282 z = p_l + p_h; |
| 283 EXTRACT_WORDS(j, i, z); |
| 284 if (j >= 0x40900000) { /* z >= 1024 */ |
| 285 if (((j-0x40900000)|i) != 0) /* if z > 1024 */ |
| 286 return s*huge*huge; /* overflow */ |
| 287 if (p_l + ovt > z - p_h) |
| 288 return s*huge*huge; /* overflow */ |
| 289 } else if ((j&0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */ // FIXME:
instead of abs(j) use unsigned j |
| 290 if (((j-0xc090cc00)|i) != 0) /* z < -1075 */ |
| 291 return s*tiny*tiny; /* underflow */ |
| 292 if (p_l <= z - p_h) |
| 293 return s*tiny*tiny; /* underflow */ |
| 294 } |
| 295 /* |
| 296 * compute 2**(p_h+p_l) |
| 297 */ |
| 298 i = j & 0x7fffffff; |
| 299 k = (i>>20) - 0x3ff; |
| 300 n = 0; |
| 301 if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ |
| 302 n = j + (0x00100000>>(k+1)); |
| 303 k = ((n&0x7fffffff)>>20) - 0x3ff; /* new k for n */ |
| 304 t = 0.0; |
| 305 SET_HIGH_WORD(t, n & ~(0x000fffff>>k)); |
| 306 n = ((n&0x000fffff)|0x00100000)>>(20-k); |
| 307 if (j < 0) |
| 308 n = -n; |
| 309 p_h -= t; |
| 310 } |
| 311 t = p_l + p_h; |
| 312 SET_LOW_WORD(t, 0); |
| 313 u = t*lg2_h; |
| 314 v = (p_l-(t-p_h))*lg2 + t*lg2_l; |
| 315 z = u + v; |
| 316 w = v - (z-u); |
| 317 t = z*z; |
| 318 t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5)))); |
| 319 r = (z*t1)/(t1-2.0) - (w + z*w); |
| 320 z = 1.0 - (r-z); |
| 321 GET_HIGH_WORD(j, z); |
| 322 j += n<<20; |
| 323 if ((j>>20) <= 0) /* subnormal output */ |
| 324 z = scalbn(z,n); |
| 325 else |
| 326 SET_HIGH_WORD(z, j); |
| 327 return s*z; |
| 328 } |
OLD | NEW |