OLD | NEW |
(Empty) | |
| 1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/s_log1pl.c */ |
| 2 /* |
| 3 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| 4 * |
| 5 * Permission to use, copy, modify, and distribute this software for any |
| 6 * purpose with or without fee is hereby granted, provided that the above |
| 7 * copyright notice and this permission notice appear in all copies. |
| 8 * |
| 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 16 */ |
| 17 /* |
| 18 * Relative error logarithm |
| 19 * Natural logarithm of 1+x, long double precision |
| 20 * |
| 21 * |
| 22 * SYNOPSIS: |
| 23 * |
| 24 * long double x, y, log1pl(); |
| 25 * |
| 26 * y = log1pl( x ); |
| 27 * |
| 28 * |
| 29 * DESCRIPTION: |
| 30 * |
| 31 * Returns the base e (2.718...) logarithm of 1+x. |
| 32 * |
| 33 * The argument 1+x is separated into its exponent and fractional |
| 34 * parts. If the exponent is between -1 and +1, the logarithm |
| 35 * of the fraction is approximated by |
| 36 * |
| 37 * log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x). |
| 38 * |
| 39 * Otherwise, setting z = 2(x-1)/x+1), |
| 40 * |
| 41 * log(x) = z + z^3 P(z)/Q(z). |
| 42 * |
| 43 * |
| 44 * ACCURACY: |
| 45 * |
| 46 * Relative error: |
| 47 * arithmetic domain # trials peak rms |
| 48 * IEEE -1.0, 9.0 100000 8.2e-20 2.5e-20 |
| 49 */ |
| 50 |
| 51 #include "libm.h" |
| 52 |
| 53 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| 54 long double log1pl(long double x) |
| 55 { |
| 56 return log1p(x); |
| 57 } |
| 58 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| 59 /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x) |
| 60 * 1/sqrt(2) <= x < sqrt(2) |
| 61 * Theoretical peak relative error = 2.32e-20 |
| 62 */ |
| 63 static const long double P[] = { |
| 64 4.5270000862445199635215E-5L, |
| 65 4.9854102823193375972212E-1L, |
| 66 6.5787325942061044846969E0L, |
| 67 2.9911919328553073277375E1L, |
| 68 6.0949667980987787057556E1L, |
| 69 5.7112963590585538103336E1L, |
| 70 2.0039553499201281259648E1L, |
| 71 }; |
| 72 static const long double Q[] = { |
| 73 /* 1.0000000000000000000000E0,*/ |
| 74 1.5062909083469192043167E1L, |
| 75 8.3047565967967209469434E1L, |
| 76 2.2176239823732856465394E2L, |
| 77 3.0909872225312059774938E2L, |
| 78 2.1642788614495947685003E2L, |
| 79 6.0118660497603843919306E1L, |
| 80 }; |
| 81 |
| 82 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), |
| 83 * where z = 2(x-1)/(x+1) |
| 84 * 1/sqrt(2) <= x < sqrt(2) |
| 85 * Theoretical peak relative error = 6.16e-22 |
| 86 */ |
| 87 static const long double R[4] = { |
| 88 1.9757429581415468984296E-3L, |
| 89 -7.1990767473014147232598E-1L, |
| 90 1.0777257190312272158094E1L, |
| 91 -3.5717684488096787370998E1L, |
| 92 }; |
| 93 static const long double S[4] = { |
| 94 /* 1.00000000000000000000E0L,*/ |
| 95 -2.6201045551331104417768E1L, |
| 96 1.9361891836232102174846E2L, |
| 97 -4.2861221385716144629696E2L, |
| 98 }; |
| 99 static const long double C1 = 6.9314575195312500000000E-1L; |
| 100 static const long double C2 = 1.4286068203094172321215E-6L; |
| 101 |
| 102 #define SQRTH 0.70710678118654752440L |
| 103 |
| 104 long double log1pl(long double xm1) |
| 105 { |
| 106 long double x, y, z; |
| 107 int e; |
| 108 |
| 109 if (isnan(xm1)) |
| 110 return xm1; |
| 111 if (xm1 == INFINITY) |
| 112 return xm1; |
| 113 if (xm1 == 0.0) |
| 114 return xm1; |
| 115 |
| 116 x = xm1 + 1.0; |
| 117 |
| 118 /* Test for domain errors. */ |
| 119 if (x <= 0.0) { |
| 120 if (x == 0.0) |
| 121 return -1/(x*x); /* -inf with divbyzero */ |
| 122 return 0/0.0f; /* nan with invalid */ |
| 123 } |
| 124 |
| 125 /* Separate mantissa from exponent. |
| 126 Use frexp so that denormal numbers will be handled properly. */ |
| 127 x = frexpl(x, &e); |
| 128 |
| 129 /* logarithm using log(x) = z + z^3 P(z)/Q(z), |
| 130 where z = 2(x-1)/x+1) */ |
| 131 if (e > 2 || e < -2) { |
| 132 if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ |
| 133 e -= 1; |
| 134 z = x - 0.5; |
| 135 y = 0.5 * z + 0.5; |
| 136 } else { /* 2 (x-1)/(x+1) */ |
| 137 z = x - 0.5; |
| 138 z -= 0.5; |
| 139 y = 0.5 * x + 0.5; |
| 140 } |
| 141 x = z / y; |
| 142 z = x*x; |
| 143 z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3)); |
| 144 z = z + e * C2; |
| 145 z = z + x; |
| 146 z = z + e * C1; |
| 147 return z; |
| 148 } |
| 149 |
| 150 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ |
| 151 if (x < SQRTH) { |
| 152 e -= 1; |
| 153 if (e != 0) |
| 154 x = 2.0 * x - 1.0; |
| 155 else |
| 156 x = xm1; |
| 157 } else { |
| 158 if (e != 0) |
| 159 x = x - 1.0; |
| 160 else |
| 161 x = xm1; |
| 162 } |
| 163 z = x*x; |
| 164 y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6)); |
| 165 y = y + e * C2; |
| 166 z = y - 0.5 * z; |
| 167 z = z + x; |
| 168 z = z + e * C1; |
| 169 return z; |
| 170 } |
| 171 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
| 172 // TODO: broken implementation to make things compile |
| 173 long double log1pl(long double x) |
| 174 { |
| 175 return log1p(x); |
| 176 } |
| 177 #endif |
OLD | NEW |