OLD | NEW |
(Empty) | |
| 1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_log10l.c */ |
| 2 /* |
| 3 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| 4 * |
| 5 * Permission to use, copy, modify, and distribute this software for any |
| 6 * purpose with or without fee is hereby granted, provided that the above |
| 7 * copyright notice and this permission notice appear in all copies. |
| 8 * |
| 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 16 */ |
| 17 /* |
| 18 * Common logarithm, long double precision |
| 19 * |
| 20 * |
| 21 * SYNOPSIS: |
| 22 * |
| 23 * long double x, y, log10l(); |
| 24 * |
| 25 * y = log10l( x ); |
| 26 * |
| 27 * |
| 28 * DESCRIPTION: |
| 29 * |
| 30 * Returns the base 10 logarithm of x. |
| 31 * |
| 32 * The argument is separated into its exponent and fractional |
| 33 * parts. If the exponent is between -1 and +1, the logarithm |
| 34 * of the fraction is approximated by |
| 35 * |
| 36 * log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x). |
| 37 * |
| 38 * Otherwise, setting z = 2(x-1)/x+1), |
| 39 * |
| 40 * log(x) = z + z**3 P(z)/Q(z). |
| 41 * |
| 42 * |
| 43 * ACCURACY: |
| 44 * |
| 45 * Relative error: |
| 46 * arithmetic domain # trials peak rms |
| 47 * IEEE 0.5, 2.0 30000 9.0e-20 2.6e-20 |
| 48 * IEEE exp(+-10000) 30000 6.0e-20 2.3e-20 |
| 49 * |
| 50 * In the tests over the interval exp(+-10000), the logarithms |
| 51 * of the random arguments were uniformly distributed over |
| 52 * [-10000, +10000]. |
| 53 * |
| 54 * ERROR MESSAGES: |
| 55 * |
| 56 * log singularity: x = 0; returns MINLOG |
| 57 * log domain: x < 0; returns MINLOG |
| 58 */ |
| 59 |
| 60 #include "libm.h" |
| 61 |
| 62 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| 63 long double log10l(long double x) |
| 64 { |
| 65 return log10(x); |
| 66 } |
| 67 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| 68 /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x) |
| 69 * 1/sqrt(2) <= x < sqrt(2) |
| 70 * Theoretical peak relative error = 6.2e-22 |
| 71 */ |
| 72 static const long double P[] = { |
| 73 4.9962495940332550844739E-1L, |
| 74 1.0767376367209449010438E1L, |
| 75 7.7671073698359539859595E1L, |
| 76 2.5620629828144409632571E2L, |
| 77 4.2401812743503691187826E2L, |
| 78 3.4258224542413922935104E2L, |
| 79 1.0747524399916215149070E2L, |
| 80 }; |
| 81 static const long double Q[] = { |
| 82 /* 1.0000000000000000000000E0,*/ |
| 83 2.3479774160285863271658E1L, |
| 84 1.9444210022760132894510E2L, |
| 85 7.7952888181207260646090E2L, |
| 86 1.6911722418503949084863E3L, |
| 87 2.0307734695595183428202E3L, |
| 88 1.2695660352705325274404E3L, |
| 89 3.2242573199748645407652E2L, |
| 90 }; |
| 91 |
| 92 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2), |
| 93 * where z = 2(x-1)/(x+1) |
| 94 * 1/sqrt(2) <= x < sqrt(2) |
| 95 * Theoretical peak relative error = 6.16e-22 |
| 96 */ |
| 97 static const long double R[4] = { |
| 98 1.9757429581415468984296E-3L, |
| 99 -7.1990767473014147232598E-1L, |
| 100 1.0777257190312272158094E1L, |
| 101 -3.5717684488096787370998E1L, |
| 102 }; |
| 103 static const long double S[4] = { |
| 104 /* 1.00000000000000000000E0L,*/ |
| 105 -2.6201045551331104417768E1L, |
| 106 1.9361891836232102174846E2L, |
| 107 -4.2861221385716144629696E2L, |
| 108 }; |
| 109 /* log10(2) */ |
| 110 #define L102A 0.3125L |
| 111 #define L102B -1.1470004336018804786261e-2L |
| 112 /* log10(e) */ |
| 113 #define L10EA 0.5L |
| 114 #define L10EB -6.5705518096748172348871e-2L |
| 115 |
| 116 #define SQRTH 0.70710678118654752440L |
| 117 |
| 118 long double log10l(long double x) |
| 119 { |
| 120 long double y, z; |
| 121 int e; |
| 122 |
| 123 if (isnan(x)) |
| 124 return x; |
| 125 if(x <= 0.0) { |
| 126 if(x == 0.0) |
| 127 return -1.0 / (x*x); |
| 128 return (x - x) / 0.0; |
| 129 } |
| 130 if (x == INFINITY) |
| 131 return INFINITY; |
| 132 /* separate mantissa from exponent */ |
| 133 /* Note, frexp is used so that denormal numbers |
| 134 * will be handled properly. |
| 135 */ |
| 136 x = frexpl(x, &e); |
| 137 |
| 138 /* logarithm using log(x) = z + z**3 P(z)/Q(z), |
| 139 * where z = 2(x-1)/x+1) |
| 140 */ |
| 141 if (e > 2 || e < -2) { |
| 142 if (x < SQRTH) { /* 2(2x-1)/(2x+1) */ |
| 143 e -= 1; |
| 144 z = x - 0.5; |
| 145 y = 0.5 * z + 0.5; |
| 146 } else { /* 2 (x-1)/(x+1) */ |
| 147 z = x - 0.5; |
| 148 z -= 0.5; |
| 149 y = 0.5 * x + 0.5; |
| 150 } |
| 151 x = z / y; |
| 152 z = x*x; |
| 153 y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3)); |
| 154 goto done; |
| 155 } |
| 156 |
| 157 /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */ |
| 158 if (x < SQRTH) { |
| 159 e -= 1; |
| 160 x = 2.0*x - 1.0; |
| 161 } else { |
| 162 x = x - 1.0; |
| 163 } |
| 164 z = x*x; |
| 165 y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7)); |
| 166 y = y - 0.5*z; |
| 167 |
| 168 done: |
| 169 /* Multiply log of fraction by log10(e) |
| 170 * and base 2 exponent by log10(2). |
| 171 * |
| 172 * ***CAUTION*** |
| 173 * |
| 174 * This sequence of operations is critical and it may |
| 175 * be horribly defeated by some compiler optimizers. |
| 176 */ |
| 177 z = y * (L10EB); |
| 178 z += x * (L10EB); |
| 179 z += e * (L102B); |
| 180 z += y * (L10EA); |
| 181 z += x * (L10EA); |
| 182 z += e * (L102A); |
| 183 return z; |
| 184 } |
| 185 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
| 186 // TODO: broken implementation to make things compile |
| 187 long double log10l(long double x) |
| 188 { |
| 189 return log10(x); |
| 190 } |
| 191 #endif |
OLD | NEW |