OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */ |
| 2 /* |
| 3 * ==================================================== |
| 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 * |
| 6 * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 7 * Permission to use, copy, modify, and distribute this |
| 8 * software is freely granted, provided that this notice |
| 9 * is preserved. |
| 10 * ==================================================== |
| 11 */ |
| 12 /* |
| 13 * Return the base 10 logarithm of x. See log.c for most comments. |
| 14 * |
| 15 * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2 |
| 16 * as in log.c, then combine and scale in extra precision: |
| 17 * log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2) |
| 18 */ |
| 19 |
| 20 #include <math.h> |
| 21 #include <stdint.h> |
| 22 |
| 23 static const double |
| 24 ivln10hi = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */ |
| 25 ivln10lo = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */ |
| 26 log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */ |
| 27 log10_2lo = 3.69423907715893078616e-13, /* 0x3D59FEF3, 0x11F12B36 */ |
| 28 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ |
| 29 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ |
| 30 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ |
| 31 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ |
| 32 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ |
| 33 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ |
| 34 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
| 35 |
| 36 double log10(double x) |
| 37 { |
| 38 union {double f; uint64_t i;} u = {x}; |
| 39 double_t hfsq,f,s,z,R,w,t1,t2,dk,y,hi,lo,val_hi,val_lo; |
| 40 uint32_t hx; |
| 41 int k; |
| 42 |
| 43 hx = u.i>>32; |
| 44 k = 0; |
| 45 if (hx < 0x00100000 || hx>>31) { |
| 46 if (u.i<<1 == 0) |
| 47 return -1/(x*x); /* log(+-0)=-inf */ |
| 48 if (hx>>31) |
| 49 return (x-x)/0.0; /* log(-#) = NaN */ |
| 50 /* subnormal number, scale x up */ |
| 51 k -= 54; |
| 52 x *= 0x1p54; |
| 53 u.f = x; |
| 54 hx = u.i>>32; |
| 55 } else if (hx >= 0x7ff00000) { |
| 56 return x; |
| 57 } else if (hx == 0x3ff00000 && u.i<<32 == 0) |
| 58 return 0; |
| 59 |
| 60 /* reduce x into [sqrt(2)/2, sqrt(2)] */ |
| 61 hx += 0x3ff00000 - 0x3fe6a09e; |
| 62 k += (int)(hx>>20) - 0x3ff; |
| 63 hx = (hx&0x000fffff) + 0x3fe6a09e; |
| 64 u.i = (uint64_t)hx<<32 | (u.i&0xffffffff); |
| 65 x = u.f; |
| 66 |
| 67 f = x - 1.0; |
| 68 hfsq = 0.5*f*f; |
| 69 s = f/(2.0+f); |
| 70 z = s*s; |
| 71 w = z*z; |
| 72 t1 = w*(Lg2+w*(Lg4+w*Lg6)); |
| 73 t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); |
| 74 R = t2 + t1; |
| 75 |
| 76 /* See log2.c for details. */ |
| 77 /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */ |
| 78 hi = f - hfsq; |
| 79 u.f = hi; |
| 80 u.i &= (uint64_t)-1<<32; |
| 81 hi = u.f; |
| 82 lo = f - hi - hfsq + s*(hfsq+R); |
| 83 |
| 84 /* val_hi+val_lo ~ log10(1+f) + k*log10(2) */ |
| 85 val_hi = hi*ivln10hi; |
| 86 dk = k; |
| 87 y = dk*log10_2hi; |
| 88 val_lo = dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi; |
| 89 |
| 90 /* |
| 91 * Extra precision in for adding y is not strictly needed |
| 92 * since there is no very large cancellation near x = sqrt(2) or |
| 93 * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs |
| 94 * with some parallelism and it reduces the error for many args. |
| 95 */ |
| 96 w = y + val_hi; |
| 97 val_lo += (y - w) + val_hi; |
| 98 val_hi = w; |
| 99 |
| 100 return val_lo + val_hi; |
| 101 } |
OLD | NEW |