| OLD | NEW | 
|---|
| (Empty) |  | 
|  | 1 /* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */ | 
|  | 2 /* | 
|  | 3  * ==================================================== | 
|  | 4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
|  | 5  * | 
|  | 6  * Developed at SunSoft, a Sun Microsystems, Inc. business. | 
|  | 7  * Permission to use, copy, modify, and distribute this | 
|  | 8  * software is freely granted, provided that this notice | 
|  | 9  * is preserved. | 
|  | 10  * ==================================================== | 
|  | 11  * | 
|  | 12  */ | 
|  | 13 /* lgamma_r(x, signgamp) | 
|  | 14  * Reentrant version of the logarithm of the Gamma function | 
|  | 15  * with user provide pointer for the sign of Gamma(x). | 
|  | 16  * | 
|  | 17  * Method: | 
|  | 18  *   1. Argument Reduction for 0 < x <= 8 | 
|  | 19  *      Since gamma(1+s)=s*gamma(s), for x in [0,8], we may | 
|  | 20  *      reduce x to a number in [1.5,2.5] by | 
|  | 21  *              lgamma(1+s) = log(s) + lgamma(s) | 
|  | 22  *      for example, | 
|  | 23  *              lgamma(7.3) = log(6.3) + lgamma(6.3) | 
|  | 24  *                          = log(6.3*5.3) + lgamma(5.3) | 
|  | 25  *                          = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) | 
|  | 26  *   2. Polynomial approximation of lgamma around its | 
|  | 27  *      minimun ymin=1.461632144968362245 to maintain monotonicity. | 
|  | 28  *      On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use | 
|  | 29  *              Let z = x-ymin; | 
|  | 30  *              lgamma(x) = -1.214862905358496078218 + z^2*poly(z) | 
|  | 31  *      where | 
|  | 32  *              poly(z) is a 14 degree polynomial. | 
|  | 33  *   2. Rational approximation in the primary interval [2,3] | 
|  | 34  *      We use the following approximation: | 
|  | 35  *              s = x-2.0; | 
|  | 36  *              lgamma(x) = 0.5*s + s*P(s)/Q(s) | 
|  | 37  *      with accuracy | 
|  | 38  *              |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 | 
|  | 39  *      Our algorithms are based on the following observation | 
|  | 40  * | 
|  | 41  *                             zeta(2)-1    2    zeta(3)-1    3 | 
|  | 42  * lgamma(2+s) = s*(1-Euler) + --------- * s  -  --------- * s  + ... | 
|  | 43  *                                 2                 3 | 
|  | 44  * | 
|  | 45  *      where Euler = 0.5771... is the Euler constant, which is very | 
|  | 46  *      close to 0.5. | 
|  | 47  * | 
|  | 48  *   3. For x>=8, we have | 
|  | 49  *      lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... | 
|  | 50  *      (better formula: | 
|  | 51  *         lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) | 
|  | 52  *      Let z = 1/x, then we approximation | 
|  | 53  *              f(z) = lgamma(x) - (x-0.5)(log(x)-1) | 
|  | 54  *      by | 
|  | 55  *                                  3       5             11 | 
|  | 56  *              w = w0 + w1*z + w2*z  + w3*z  + ... + w6*z | 
|  | 57  *      where | 
|  | 58  *              |w - f(z)| < 2**-58.74 | 
|  | 59  * | 
|  | 60  *   4. For negative x, since (G is gamma function) | 
|  | 61  *              -x*G(-x)*G(x) = pi/sin(pi*x), | 
|  | 62  *      we have | 
|  | 63  *              G(x) = pi/(sin(pi*x)*(-x)*G(-x)) | 
|  | 64  *      since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 | 
|  | 65  *      Hence, for x<0, signgam = sign(sin(pi*x)) and | 
|  | 66  *              lgamma(x) = log(|Gamma(x)|) | 
|  | 67  *                        = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); | 
|  | 68  *      Note: one should avoid compute pi*(-x) directly in the | 
|  | 69  *            computation of sin(pi*(-x)). | 
|  | 70  * | 
|  | 71  *   5. Special Cases | 
|  | 72  *              lgamma(2+s) ~ s*(1-Euler) for tiny s | 
|  | 73  *              lgamma(1) = lgamma(2) = 0 | 
|  | 74  *              lgamma(x) ~ -log(|x|) for tiny x | 
|  | 75  *              lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero | 
|  | 76  *              lgamma(inf) = inf | 
|  | 77  *              lgamma(-inf) = inf (bug for bug compatible with C99!?) | 
|  | 78  * | 
|  | 79  */ | 
|  | 80 | 
|  | 81 #include "libm.h" | 
|  | 82 #include "libc.h" | 
|  | 83 | 
|  | 84 static const double | 
|  | 85 pi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ | 
|  | 86 a0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ | 
|  | 87 a1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ | 
|  | 88 a2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ | 
|  | 89 a3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ | 
|  | 90 a4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ | 
|  | 91 a5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ | 
|  | 92 a6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ | 
|  | 93 a7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ | 
|  | 94 a8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ | 
|  | 95 a9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ | 
|  | 96 a10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ | 
|  | 97 a11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ | 
|  | 98 tc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ | 
|  | 99 tf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ | 
|  | 100 /* tt = -(tail of tf) */ | 
|  | 101 tt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ | 
|  | 102 t0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ | 
|  | 103 t1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ | 
|  | 104 t2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ | 
|  | 105 t3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ | 
|  | 106 t4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ | 
|  | 107 t5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ | 
|  | 108 t6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ | 
|  | 109 t7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ | 
|  | 110 t8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ | 
|  | 111 t9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ | 
|  | 112 t10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ | 
|  | 113 t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ | 
|  | 114 t12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ | 
|  | 115 t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ | 
|  | 116 t14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ | 
|  | 117 u0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ | 
|  | 118 u1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ | 
|  | 119 u2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ | 
|  | 120 u3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ | 
|  | 121 u4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ | 
|  | 122 u5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ | 
|  | 123 v1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ | 
|  | 124 v2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ | 
|  | 125 v3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ | 
|  | 126 v4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ | 
|  | 127 v5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ | 
|  | 128 s0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ | 
|  | 129 s1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ | 
|  | 130 s2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ | 
|  | 131 s3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ | 
|  | 132 s4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ | 
|  | 133 s5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ | 
|  | 134 s6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ | 
|  | 135 r1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ | 
|  | 136 r2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ | 
|  | 137 r3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ | 
|  | 138 r4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ | 
|  | 139 r5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ | 
|  | 140 r6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ | 
|  | 141 w0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ | 
|  | 142 w1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ | 
|  | 143 w2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ | 
|  | 144 w3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ | 
|  | 145 w4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ | 
|  | 146 w5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ | 
|  | 147 w6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ | 
|  | 148 | 
|  | 149 /* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */ | 
|  | 150 static double sin_pi(double x) | 
|  | 151 { | 
|  | 152         int n; | 
|  | 153 | 
|  | 154         /* spurious inexact if odd int */ | 
|  | 155         x = 2.0*(x*0.5 - floor(x*0.5));  /* x mod 2.0 */ | 
|  | 156 | 
|  | 157         n = (int)(x*4.0); | 
|  | 158         n = (n+1)/2; | 
|  | 159         x -= n*0.5f; | 
|  | 160         x *= pi; | 
|  | 161 | 
|  | 162         switch (n) { | 
|  | 163         default: /* case 4: */ | 
|  | 164         case 0: return __sin(x, 0.0, 0); | 
|  | 165         case 1: return __cos(x, 0.0); | 
|  | 166         case 2: return __sin(-x, 0.0, 0); | 
|  | 167         case 3: return -__cos(x, 0.0); | 
|  | 168         } | 
|  | 169 } | 
|  | 170 | 
|  | 171 double __lgamma_r(double x, int *signgamp) | 
|  | 172 { | 
|  | 173         union {double f; uint64_t i;} u = {x}; | 
|  | 174         double_t t,y,z,nadj,p,p1,p2,p3,q,r,w; | 
|  | 175         uint32_t ix; | 
|  | 176         int sign,i; | 
|  | 177 | 
|  | 178         /* purge off +-inf, NaN, +-0, tiny and negative arguments */ | 
|  | 179         *signgamp = 1; | 
|  | 180         sign = u.i>>63; | 
|  | 181         ix = u.i>>32 & 0x7fffffff; | 
|  | 182         if (ix >= 0x7ff00000) | 
|  | 183                 return x*x; | 
|  | 184         if (ix < (0x3ff-70)<<20) {  /* |x|<2**-70, return -log(|x|) */ | 
|  | 185                 if(sign) { | 
|  | 186                         x = -x; | 
|  | 187                         *signgamp = -1; | 
|  | 188                 } | 
|  | 189                 return -log(x); | 
|  | 190         } | 
|  | 191         if (sign) { | 
|  | 192                 x = -x; | 
|  | 193                 t = sin_pi(x); | 
|  | 194                 if (t == 0.0) /* -integer */ | 
|  | 195                         return 1.0/(x-x); | 
|  | 196                 if (t > 0.0) | 
|  | 197                         *signgamp = -1; | 
|  | 198                 else | 
|  | 199                         t = -t; | 
|  | 200                 nadj = log(pi/(t*x)); | 
|  | 201         } | 
|  | 202 | 
|  | 203         /* purge off 1 and 2 */ | 
|  | 204         if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0) | 
|  | 205                 r = 0; | 
|  | 206         /* for x < 2.0 */ | 
|  | 207         else if (ix < 0x40000000) { | 
|  | 208                 if (ix <= 0x3feccccc) {   /* lgamma(x) = lgamma(x+1)-log(x) */ | 
|  | 209                         r = -log(x); | 
|  | 210                         if (ix >= 0x3FE76944) { | 
|  | 211                                 y = 1.0 - x; | 
|  | 212                                 i = 0; | 
|  | 213                         } else if (ix >= 0x3FCDA661) { | 
|  | 214                                 y = x - (tc-1.0); | 
|  | 215                                 i = 1; | 
|  | 216                         } else { | 
|  | 217                                 y = x; | 
|  | 218                                 i = 2; | 
|  | 219                         } | 
|  | 220                 } else { | 
|  | 221                         r = 0.0; | 
|  | 222                         if (ix >= 0x3FFBB4C3) {  /* [1.7316,2] */ | 
|  | 223                                 y = 2.0 - x; | 
|  | 224                                 i = 0; | 
|  | 225                         } else if(ix >= 0x3FF3B4C4) {  /* [1.23,1.73] */ | 
|  | 226                                 y = x - tc; | 
|  | 227                                 i = 1; | 
|  | 228                         } else { | 
|  | 229                                 y = x - 1.0; | 
|  | 230                                 i = 2; | 
|  | 231                         } | 
|  | 232                 } | 
|  | 233                 switch (i) { | 
|  | 234                 case 0: | 
|  | 235                         z = y*y; | 
|  | 236                         p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10)))); | 
|  | 237                         p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11))))); | 
|  | 238                         p = y*p1+p2; | 
|  | 239                         r += (p-0.5*y); | 
|  | 240                         break; | 
|  | 241                 case 1: | 
|  | 242                         z = y*y; | 
|  | 243                         w = z*y; | 
|  | 244                         p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));    /* parallel comp
      */ | 
|  | 245                         p2 = t1+w*(t4+w*(t7+w*(t10+w*t13))); | 
|  | 246                         p3 = t2+w*(t5+w*(t8+w*(t11+w*t14))); | 
|  | 247                         p = z*p1-(tt-w*(p2+y*p3)); | 
|  | 248                         r += tf + p; | 
|  | 249                         break; | 
|  | 250                 case 2: | 
|  | 251                         p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5))))); | 
|  | 252                         p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5)))); | 
|  | 253                         r += -0.5*y + p1/p2; | 
|  | 254                 } | 
|  | 255         } else if (ix < 0x40200000) {  /* x < 8.0 */ | 
|  | 256                 i = (int)x; | 
|  | 257                 y = x - (double)i; | 
|  | 258                 p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6)))))); | 
|  | 259                 q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6))))); | 
|  | 260                 r = 0.5*y+p/q; | 
|  | 261                 z = 1.0;    /* lgamma(1+s) = log(s) + lgamma(s) */ | 
|  | 262                 switch (i) { | 
|  | 263                 case 7: z *= y + 6.0;  /* FALLTHRU */ | 
|  | 264                 case 6: z *= y + 5.0;  /* FALLTHRU */ | 
|  | 265                 case 5: z *= y + 4.0;  /* FALLTHRU */ | 
|  | 266                 case 4: z *= y + 3.0;  /* FALLTHRU */ | 
|  | 267                 case 3: z *= y + 2.0;  /* FALLTHRU */ | 
|  | 268                         r += log(z); | 
|  | 269                         break; | 
|  | 270                 } | 
|  | 271         } else if (ix < 0x43900000) {  /* 8.0 <= x < 2**58 */ | 
|  | 272                 t = log(x); | 
|  | 273                 z = 1.0/x; | 
|  | 274                 y = z*z; | 
|  | 275                 w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6))))); | 
|  | 276                 r = (x-0.5)*(t-1.0)+w; | 
|  | 277         } else                         /* 2**58 <= x <= inf */ | 
|  | 278                 r =  x*(log(x)-1.0); | 
|  | 279         if (sign) | 
|  | 280                 r = nadj - r; | 
|  | 281         return r; | 
|  | 282 } | 
|  | 283 | 
|  | 284 weak_alias(__lgamma_r, lgamma_r); | 
| OLD | NEW | 
|---|