OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */ |
| 2 /* |
| 3 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. |
| 4 */ |
| 5 /* |
| 6 * ==================================================== |
| 7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 8 * |
| 9 * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 10 * Permission to use, copy, modify, and distribute this |
| 11 * software is freely granted, provided that this notice |
| 12 * is preserved. |
| 13 * ==================================================== |
| 14 */ |
| 15 |
| 16 #define _GNU_SOURCE |
| 17 #include "libm.h" |
| 18 |
| 19 float jnf(int n, float x) |
| 20 { |
| 21 uint32_t ix; |
| 22 int nm1, sign, i; |
| 23 float a, b, temp; |
| 24 |
| 25 GET_FLOAT_WORD(ix, x); |
| 26 sign = ix>>31; |
| 27 ix &= 0x7fffffff; |
| 28 if (ix > 0x7f800000) /* nan */ |
| 29 return x; |
| 30 |
| 31 /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */ |
| 32 if (n == 0) |
| 33 return j0f(x); |
| 34 if (n < 0) { |
| 35 nm1 = -(n+1); |
| 36 x = -x; |
| 37 sign ^= 1; |
| 38 } else |
| 39 nm1 = n-1; |
| 40 if (nm1 == 0) |
| 41 return j1f(x); |
| 42 |
| 43 sign &= n; /* even n: 0, odd n: signbit(x) */ |
| 44 x = fabsf(x); |
| 45 if (ix == 0 || ix == 0x7f800000) /* if x is 0 or inf */ |
| 46 b = 0.0f; |
| 47 else if (nm1 < x) { |
| 48 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
| 49 a = j0f(x); |
| 50 b = j1f(x); |
| 51 for (i=0; i<nm1; ){ |
| 52 i++; |
| 53 temp = b; |
| 54 b = b*(2.0f*i/x) - a; |
| 55 a = temp; |
| 56 } |
| 57 } else { |
| 58 if (ix < 0x35800000) { /* x < 2**-20 */ |
| 59 /* x is tiny, return the first Taylor expansion of J(n,x
) |
| 60 * J(n,x) = 1/n!*(x/2)^n - ... |
| 61 */ |
| 62 if (nm1 > 8) /* underflow */ |
| 63 nm1 = 8; |
| 64 temp = 0.5f * x; |
| 65 b = temp; |
| 66 a = 1.0f; |
| 67 for (i=2; i<=nm1+1; i++) { |
| 68 a *= (float)i; /* a = n! */ |
| 69 b *= temp; /* b = (x/2)^n */ |
| 70 } |
| 71 b = b/a; |
| 72 } else { |
| 73 /* use backward recurrence */ |
| 74 /* x x^2 x^2 |
| 75 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
| 76 * 2n - 2(n+1) - 2(n+2) |
| 77 * |
| 78 * 1 1 1 |
| 79 * (for large x) = ---- ------ ------ ..... |
| 80 * 2n 2(n+1) 2(n+2) |
| 81 * -- - ------ - ------ - |
| 82 * x x x |
| 83 * |
| 84 * Let w = 2n/x and h=2/x, then the above quotient |
| 85 * is equal to the continued fraction: |
| 86 * 1 |
| 87 * = ----------------------- |
| 88 * 1 |
| 89 * w - ----------------- |
| 90 * 1 |
| 91 * w+h - --------- |
| 92 * w+2h - ... |
| 93 * |
| 94 * To determine how many terms needed, let |
| 95 * Q(0) = w, Q(1) = w(w+h) - 1, |
| 96 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
| 97 * When Q(k) > 1e4 good for single |
| 98 * When Q(k) > 1e9 good for double |
| 99 * When Q(k) > 1e17 good for quadruple |
| 100 */ |
| 101 /* determine k */ |
| 102 float t,q0,q1,w,h,z,tmp,nf; |
| 103 int k; |
| 104 |
| 105 nf = nm1+1.0f; |
| 106 w = 2*nf/x; |
| 107 h = 2/x; |
| 108 z = w+h; |
| 109 q0 = w; |
| 110 q1 = w*z - 1.0f; |
| 111 k = 1; |
| 112 while (q1 < 1.0e4f) { |
| 113 k += 1; |
| 114 z += h; |
| 115 tmp = z*q1 - q0; |
| 116 q0 = q1; |
| 117 q1 = tmp; |
| 118 } |
| 119 for (t=0.0f, i=k; i>=0; i--) |
| 120 t = 1.0f/(2*(i+nf)/x-t); |
| 121 a = t; |
| 122 b = 1.0f; |
| 123 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
| 124 * Hence, if n*(log(2n/x)) > ... |
| 125 * single 8.8722839355e+01 |
| 126 * double 7.09782712893383973096e+02 |
| 127 * long double 1.13565234062941439494919310779707650061
70e+04 |
| 128 * then recurrent value may overflow and the result is |
| 129 * likely underflow to zero |
| 130 */ |
| 131 tmp = nf*logf(fabsf(w)); |
| 132 if (tmp < 88.721679688f) { |
| 133 for (i=nm1; i>0; i--) { |
| 134 temp = b; |
| 135 b = 2.0f*i*b/x - a; |
| 136 a = temp; |
| 137 } |
| 138 } else { |
| 139 for (i=nm1; i>0; i--){ |
| 140 temp = b; |
| 141 b = 2.0f*i*b/x - a; |
| 142 a = temp; |
| 143 /* scale b to avoid spurious overflow */ |
| 144 if (b > 0x1p60f) { |
| 145 a /= b; |
| 146 t /= b; |
| 147 b = 1.0f; |
| 148 } |
| 149 } |
| 150 } |
| 151 z = j0f(x); |
| 152 w = j1f(x); |
| 153 if (fabsf(z) >= fabsf(w)) |
| 154 b = t*z/b; |
| 155 else |
| 156 b = t*w/a; |
| 157 } |
| 158 } |
| 159 return sign ? -b : b; |
| 160 } |
| 161 |
| 162 float ynf(int n, float x) |
| 163 { |
| 164 uint32_t ix, ib; |
| 165 int nm1, sign, i; |
| 166 float a, b, temp; |
| 167 |
| 168 GET_FLOAT_WORD(ix, x); |
| 169 sign = ix>>31; |
| 170 ix &= 0x7fffffff; |
| 171 if (ix > 0x7f800000) /* nan */ |
| 172 return x; |
| 173 if (sign && ix != 0) /* x < 0 */ |
| 174 return 0/0.0f; |
| 175 if (ix == 0x7f800000) |
| 176 return 0.0f; |
| 177 |
| 178 if (n == 0) |
| 179 return y0f(x); |
| 180 if (n < 0) { |
| 181 nm1 = -(n+1); |
| 182 sign = n&1; |
| 183 } else { |
| 184 nm1 = n-1; |
| 185 sign = 0; |
| 186 } |
| 187 if (nm1 == 0) |
| 188 return sign ? -y1f(x) : y1f(x); |
| 189 |
| 190 a = y0f(x); |
| 191 b = y1f(x); |
| 192 /* quit if b is -inf */ |
| 193 GET_FLOAT_WORD(ib,b); |
| 194 for (i = 0; i < nm1 && ib != 0xff800000; ) { |
| 195 i++; |
| 196 temp = b; |
| 197 b = (2.0f*i/x)*b - a; |
| 198 GET_FLOAT_WORD(ib, b); |
| 199 a = temp; |
| 200 } |
| 201 return sign ? -b : b; |
| 202 } |
OLD | NEW |