OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */ |
| 2 /* |
| 3 * ==================================================== |
| 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 * |
| 6 * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 7 * Permission to use, copy, modify, and distribute this |
| 8 * software is freely granted, provided that this notice |
| 9 * is preserved. |
| 10 * ==================================================== |
| 11 */ |
| 12 /* |
| 13 * jn(n, x), yn(n, x) |
| 14 * floating point Bessel's function of the 1st and 2nd kind |
| 15 * of order n |
| 16 * |
| 17 * Special cases: |
| 18 * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; |
| 19 * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. |
| 20 * Note 2. About jn(n,x), yn(n,x) |
| 21 * For n=0, j0(x) is called, |
| 22 * for n=1, j1(x) is called, |
| 23 * for n<=x, forward recursion is used starting |
| 24 * from values of j0(x) and j1(x). |
| 25 * for n>x, a continued fraction approximation to |
| 26 * j(n,x)/j(n-1,x) is evaluated and then backward |
| 27 * recursion is used starting from a supposed value |
| 28 * for j(n,x). The resulting value of j(0,x) is |
| 29 * compared with the actual value to correct the |
| 30 * supposed value of j(n,x). |
| 31 * |
| 32 * yn(n,x) is similar in all respects, except |
| 33 * that forward recursion is used for all |
| 34 * values of n>1. |
| 35 */ |
| 36 |
| 37 #include "libm.h" |
| 38 |
| 39 static const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x504
29B6D */ |
| 40 |
| 41 double jn(int n, double x) |
| 42 { |
| 43 uint32_t ix, lx; |
| 44 int nm1, i, sign; |
| 45 double a, b, temp; |
| 46 |
| 47 EXTRACT_WORDS(ix, lx, x); |
| 48 sign = ix>>31; |
| 49 ix &= 0x7fffffff; |
| 50 |
| 51 if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */ |
| 52 return x; |
| 53 |
| 54 /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) |
| 55 * Thus, J(-n,x) = J(n,-x) |
| 56 */ |
| 57 /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */ |
| 58 if (n == 0) |
| 59 return j0(x); |
| 60 if (n < 0) { |
| 61 nm1 = -(n+1); |
| 62 x = -x; |
| 63 sign ^= 1; |
| 64 } else |
| 65 nm1 = n-1; |
| 66 if (nm1 == 0) |
| 67 return j1(x); |
| 68 |
| 69 sign &= n; /* even n: 0, odd n: signbit(x) */ |
| 70 x = fabs(x); |
| 71 if ((ix|lx) == 0 || ix == 0x7ff00000) /* if x is 0 or inf */ |
| 72 b = 0.0; |
| 73 else if (nm1 < x) { |
| 74 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ |
| 75 if (ix >= 0x52d00000) { /* x > 2**302 */ |
| 76 /* (x >> n**2) |
| 77 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| 78 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| 79 * Let s=sin(x), c=cos(x), |
| 80 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
| 81 * |
| 82 * n sin(xn)*sqt2 cos(xn)*sqt2 |
| 83 * ---------------------------------- |
| 84 * 0 s-c c+s |
| 85 * 1 -s-c -c+s |
| 86 * 2 -s+c -c-s |
| 87 * 3 s+c c-s |
| 88 */ |
| 89 switch(nm1&3) { |
| 90 case 0: temp = -cos(x)+sin(x); break; |
| 91 case 1: temp = -cos(x)-sin(x); break; |
| 92 case 2: temp = cos(x)-sin(x); break; |
| 93 default: |
| 94 case 3: temp = cos(x)+sin(x); break; |
| 95 } |
| 96 b = invsqrtpi*temp/sqrt(x); |
| 97 } else { |
| 98 a = j0(x); |
| 99 b = j1(x); |
| 100 for (i=0; i<nm1; ) { |
| 101 i++; |
| 102 temp = b; |
| 103 b = b*(2.0*i/x) - a; /* avoid underflow */ |
| 104 a = temp; |
| 105 } |
| 106 } |
| 107 } else { |
| 108 if (ix < 0x3e100000) { /* x < 2**-29 */ |
| 109 /* x is tiny, return the first Taylor expansion of J(n,x
) |
| 110 * J(n,x) = 1/n!*(x/2)^n - ... |
| 111 */ |
| 112 if (nm1 > 32) /* underflow */ |
| 113 b = 0.0; |
| 114 else { |
| 115 temp = x*0.5; |
| 116 b = temp; |
| 117 a = 1.0; |
| 118 for (i=2; i<=nm1+1; i++) { |
| 119 a *= (double)i; /* a = n! */ |
| 120 b *= temp; /* b = (x/2)^n */ |
| 121 } |
| 122 b = b/a; |
| 123 } |
| 124 } else { |
| 125 /* use backward recurrence */ |
| 126 /* x x^2 x^2 |
| 127 * J(n,x)/J(n-1,x) = ---- ------ ------ ..... |
| 128 * 2n - 2(n+1) - 2(n+2) |
| 129 * |
| 130 * 1 1 1 |
| 131 * (for large x) = ---- ------ ------ ..... |
| 132 * 2n 2(n+1) 2(n+2) |
| 133 * -- - ------ - ------ - |
| 134 * x x x |
| 135 * |
| 136 * Let w = 2n/x and h=2/x, then the above quotient |
| 137 * is equal to the continued fraction: |
| 138 * 1 |
| 139 * = ----------------------- |
| 140 * 1 |
| 141 * w - ----------------- |
| 142 * 1 |
| 143 * w+h - --------- |
| 144 * w+2h - ... |
| 145 * |
| 146 * To determine how many terms needed, let |
| 147 * Q(0) = w, Q(1) = w(w+h) - 1, |
| 148 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), |
| 149 * When Q(k) > 1e4 good for single |
| 150 * When Q(k) > 1e9 good for double |
| 151 * When Q(k) > 1e17 good for quadruple |
| 152 */ |
| 153 /* determine k */ |
| 154 double t,q0,q1,w,h,z,tmp,nf; |
| 155 int k; |
| 156 |
| 157 nf = nm1 + 1.0; |
| 158 w = 2*nf/x; |
| 159 h = 2/x; |
| 160 z = w+h; |
| 161 q0 = w; |
| 162 q1 = w*z - 1.0; |
| 163 k = 1; |
| 164 while (q1 < 1.0e9) { |
| 165 k += 1; |
| 166 z += h; |
| 167 tmp = z*q1 - q0; |
| 168 q0 = q1; |
| 169 q1 = tmp; |
| 170 } |
| 171 for (t=0.0, i=k; i>=0; i--) |
| 172 t = 1/(2*(i+nf)/x - t); |
| 173 a = t; |
| 174 b = 1.0; |
| 175 /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) |
| 176 * Hence, if n*(log(2n/x)) > ... |
| 177 * single 8.8722839355e+01 |
| 178 * double 7.09782712893383973096e+02 |
| 179 * long double 1.13565234062941439494919310779707650061
70e+04 |
| 180 * then recurrent value may overflow and the result is |
| 181 * likely underflow to zero |
| 182 */ |
| 183 tmp = nf*log(fabs(w)); |
| 184 if (tmp < 7.09782712893383973096e+02) { |
| 185 for (i=nm1; i>0; i--) { |
| 186 temp = b; |
| 187 b = b*(2.0*i)/x - a; |
| 188 a = temp; |
| 189 } |
| 190 } else { |
| 191 for (i=nm1; i>0; i--) { |
| 192 temp = b; |
| 193 b = b*(2.0*i)/x - a; |
| 194 a = temp; |
| 195 /* scale b to avoid spurious overflow */ |
| 196 if (b > 0x1p500) { |
| 197 a /= b; |
| 198 t /= b; |
| 199 b = 1.0; |
| 200 } |
| 201 } |
| 202 } |
| 203 z = j0(x); |
| 204 w = j1(x); |
| 205 if (fabs(z) >= fabs(w)) |
| 206 b = t*z/b; |
| 207 else |
| 208 b = t*w/a; |
| 209 } |
| 210 } |
| 211 return sign ? -b : b; |
| 212 } |
| 213 |
| 214 |
| 215 double yn(int n, double x) |
| 216 { |
| 217 uint32_t ix, lx, ib; |
| 218 int nm1, sign, i; |
| 219 double a, b, temp; |
| 220 |
| 221 EXTRACT_WORDS(ix, lx, x); |
| 222 sign = ix>>31; |
| 223 ix &= 0x7fffffff; |
| 224 |
| 225 if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */ |
| 226 return x; |
| 227 if (sign && (ix|lx)!=0) /* x < 0 */ |
| 228 return 0/0.0; |
| 229 if (ix == 0x7ff00000) |
| 230 return 0.0; |
| 231 |
| 232 if (n == 0) |
| 233 return y0(x); |
| 234 if (n < 0) { |
| 235 nm1 = -(n+1); |
| 236 sign = n&1; |
| 237 } else { |
| 238 nm1 = n-1; |
| 239 sign = 0; |
| 240 } |
| 241 if (nm1 == 0) |
| 242 return sign ? -y1(x) : y1(x); |
| 243 |
| 244 if (ix >= 0x52d00000) { /* x > 2**302 */ |
| 245 /* (x >> n**2) |
| 246 * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| 247 * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) |
| 248 * Let s=sin(x), c=cos(x), |
| 249 * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then |
| 250 * |
| 251 * n sin(xn)*sqt2 cos(xn)*sqt2 |
| 252 * ---------------------------------- |
| 253 * 0 s-c c+s |
| 254 * 1 -s-c -c+s |
| 255 * 2 -s+c -c-s |
| 256 * 3 s+c c-s |
| 257 */ |
| 258 switch(nm1&3) { |
| 259 case 0: temp = -sin(x)-cos(x); break; |
| 260 case 1: temp = -sin(x)+cos(x); break; |
| 261 case 2: temp = sin(x)+cos(x); break; |
| 262 default: |
| 263 case 3: temp = sin(x)-cos(x); break; |
| 264 } |
| 265 b = invsqrtpi*temp/sqrt(x); |
| 266 } else { |
| 267 a = y0(x); |
| 268 b = y1(x); |
| 269 /* quit if b is -inf */ |
| 270 GET_HIGH_WORD(ib, b); |
| 271 for (i=0; i<nm1 && ib!=0xfff00000; ){ |
| 272 i++; |
| 273 temp = b; |
| 274 b = (2.0*i/x)*b - a; |
| 275 GET_HIGH_WORD(ib, b); |
| 276 a = temp; |
| 277 } |
| 278 } |
| 279 return sign ? -b : b; |
| 280 } |
OLD | NEW |