OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/src/s_fmal.c */ |
| 2 /*- |
| 3 * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG> |
| 4 * All rights reserved. |
| 5 * |
| 6 * Redistribution and use in source and binary forms, with or without |
| 7 * modification, are permitted provided that the following conditions |
| 8 * are met: |
| 9 * 1. Redistributions of source code must retain the above copyright |
| 10 * notice, this list of conditions and the following disclaimer. |
| 11 * 2. Redistributions in binary form must reproduce the above copyright |
| 12 * notice, this list of conditions and the following disclaimer in the |
| 13 * documentation and/or other materials provided with the distribution. |
| 14 * |
| 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND |
| 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| 25 * SUCH DAMAGE. |
| 26 */ |
| 27 |
| 28 |
| 29 #include "libm.h" |
| 30 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| 31 long double fmal(long double x, long double y, long double z) |
| 32 { |
| 33 return fma(x, y, z); |
| 34 } |
| 35 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384 |
| 36 #include <fenv.h> |
| 37 #if LDBL_MANT_DIG == 64 |
| 38 #define LASTBIT(u) (u.i.m & 1) |
| 39 #define SPLIT (0x1p32L + 1) |
| 40 #elif LDBL_MANT_DIG == 113 |
| 41 #define LASTBIT(u) (u.i.lo & 1) |
| 42 #define SPLIT (0x1p57L + 1) |
| 43 #endif |
| 44 |
| 45 /* |
| 46 * A struct dd represents a floating-point number with twice the precision |
| 47 * of a long double. We maintain the invariant that "hi" stores the high-order |
| 48 * bits of the result. |
| 49 */ |
| 50 struct dd { |
| 51 long double hi; |
| 52 long double lo; |
| 53 }; |
| 54 |
| 55 /* |
| 56 * Compute a+b exactly, returning the exact result in a struct dd. We assume |
| 57 * that both a and b are finite, but make no assumptions about their relative |
| 58 * magnitudes. |
| 59 */ |
| 60 static inline struct dd dd_add(long double a, long double b) |
| 61 { |
| 62 struct dd ret; |
| 63 long double s; |
| 64 |
| 65 ret.hi = a + b; |
| 66 s = ret.hi - a; |
| 67 ret.lo = (a - (ret.hi - s)) + (b - s); |
| 68 return (ret); |
| 69 } |
| 70 |
| 71 /* |
| 72 * Compute a+b, with a small tweak: The least significant bit of the |
| 73 * result is adjusted into a sticky bit summarizing all the bits that |
| 74 * were lost to rounding. This adjustment negates the effects of double |
| 75 * rounding when the result is added to another number with a higher |
| 76 * exponent. For an explanation of round and sticky bits, see any reference |
| 77 * on FPU design, e.g., |
| 78 * |
| 79 * J. Coonen. An Implementation Guide to a Proposed Standard for |
| 80 * Floating-Point Arithmetic. Computer, vol. 13, no. 1, Jan 1980. |
| 81 */ |
| 82 static inline long double add_adjusted(long double a, long double b) |
| 83 { |
| 84 struct dd sum; |
| 85 union ldshape u; |
| 86 |
| 87 sum = dd_add(a, b); |
| 88 if (sum.lo != 0) { |
| 89 u.f = sum.hi; |
| 90 if (!LASTBIT(u)) |
| 91 sum.hi = nextafterl(sum.hi, INFINITY * sum.lo); |
| 92 } |
| 93 return (sum.hi); |
| 94 } |
| 95 |
| 96 /* |
| 97 * Compute ldexp(a+b, scale) with a single rounding error. It is assumed |
| 98 * that the result will be subnormal, and care is taken to ensure that |
| 99 * double rounding does not occur. |
| 100 */ |
| 101 static inline long double add_and_denormalize(long double a, long double b, int
scale) |
| 102 { |
| 103 struct dd sum; |
| 104 int bits_lost; |
| 105 union ldshape u; |
| 106 |
| 107 sum = dd_add(a, b); |
| 108 |
| 109 /* |
| 110 * If we are losing at least two bits of accuracy to denormalization, |
| 111 * then the first lost bit becomes a round bit, and we adjust the |
| 112 * lowest bit of sum.hi to make it a sticky bit summarizing all the |
| 113 * bits in sum.lo. With the sticky bit adjusted, the hardware will |
| 114 * break any ties in the correct direction. |
| 115 * |
| 116 * If we are losing only one bit to denormalization, however, we must |
| 117 * break the ties manually. |
| 118 */ |
| 119 if (sum.lo != 0) { |
| 120 u.f = sum.hi; |
| 121 bits_lost = -u.i.se - scale + 1; |
| 122 if ((bits_lost != 1) ^ LASTBIT(u)) |
| 123 sum.hi = nextafterl(sum.hi, INFINITY * sum.lo); |
| 124 } |
| 125 return scalbnl(sum.hi, scale); |
| 126 } |
| 127 |
| 128 /* |
| 129 * Compute a*b exactly, returning the exact result in a struct dd. We assume |
| 130 * that both a and b are normalized, so no underflow or overflow will occur. |
| 131 * The current rounding mode must be round-to-nearest. |
| 132 */ |
| 133 static inline struct dd dd_mul(long double a, long double b) |
| 134 { |
| 135 struct dd ret; |
| 136 long double ha, hb, la, lb, p, q; |
| 137 |
| 138 p = a * SPLIT; |
| 139 ha = a - p; |
| 140 ha += p; |
| 141 la = a - ha; |
| 142 |
| 143 p = b * SPLIT; |
| 144 hb = b - p; |
| 145 hb += p; |
| 146 lb = b - hb; |
| 147 |
| 148 p = ha * hb; |
| 149 q = ha * lb + la * hb; |
| 150 |
| 151 ret.hi = p + q; |
| 152 ret.lo = p - ret.hi + q + la * lb; |
| 153 return (ret); |
| 154 } |
| 155 |
| 156 /* |
| 157 * Fused multiply-add: Compute x * y + z with a single rounding error. |
| 158 * |
| 159 * We use scaling to avoid overflow/underflow, along with the |
| 160 * canonical precision-doubling technique adapted from: |
| 161 * |
| 162 * Dekker, T. A Floating-Point Technique for Extending the |
| 163 * Available Precision. Numer. Math. 18, 224-242 (1971). |
| 164 */ |
| 165 long double fmal(long double x, long double y, long double z) |
| 166 { |
| 167 #pragma STDC FENV_ACCESS ON |
| 168 long double xs, ys, zs, adj; |
| 169 struct dd xy, r; |
| 170 int oround; |
| 171 int ex, ey, ez; |
| 172 int spread; |
| 173 |
| 174 /* |
| 175 * Handle special cases. The order of operations and the particular |
| 176 * return values here are crucial in handling special cases involving |
| 177 * infinities, NaNs, overflows, and signed zeroes correctly. |
| 178 */ |
| 179 if (!isfinite(x) || !isfinite(y)) |
| 180 return (x * y + z); |
| 181 if (!isfinite(z)) |
| 182 return (z); |
| 183 if (x == 0.0 || y == 0.0) |
| 184 return (x * y + z); |
| 185 if (z == 0.0) |
| 186 return (x * y); |
| 187 |
| 188 xs = frexpl(x, &ex); |
| 189 ys = frexpl(y, &ey); |
| 190 zs = frexpl(z, &ez); |
| 191 oround = fegetround(); |
| 192 spread = ex + ey - ez; |
| 193 |
| 194 /* |
| 195 * If x * y and z are many orders of magnitude apart, the scaling |
| 196 * will overflow, so we handle these cases specially. Rounding |
| 197 * modes other than FE_TONEAREST are painful. |
| 198 */ |
| 199 if (spread < -LDBL_MANT_DIG) { |
| 200 #ifdef FE_INEXACT |
| 201 feraiseexcept(FE_INEXACT); |
| 202 #endif |
| 203 #ifdef FE_UNDERFLOW |
| 204 if (!isnormal(z)) |
| 205 feraiseexcept(FE_UNDERFLOW); |
| 206 #endif |
| 207 switch (oround) { |
| 208 default: /* FE_TONEAREST */ |
| 209 return (z); |
| 210 #ifdef FE_TOWARDZERO |
| 211 case FE_TOWARDZERO: |
| 212 if (x > 0.0 ^ y < 0.0 ^ z < 0.0) |
| 213 return (z); |
| 214 else |
| 215 return (nextafterl(z, 0)); |
| 216 #endif |
| 217 #ifdef FE_DOWNWARD |
| 218 case FE_DOWNWARD: |
| 219 if (x > 0.0 ^ y < 0.0) |
| 220 return (z); |
| 221 else |
| 222 return (nextafterl(z, -INFINITY)); |
| 223 #endif |
| 224 #ifdef FE_UPWARD |
| 225 case FE_UPWARD: |
| 226 if (x > 0.0 ^ y < 0.0) |
| 227 return (nextafterl(z, INFINITY)); |
| 228 else |
| 229 return (z); |
| 230 #endif |
| 231 } |
| 232 } |
| 233 if (spread <= LDBL_MANT_DIG * 2) |
| 234 zs = scalbnl(zs, -spread); |
| 235 else |
| 236 zs = copysignl(LDBL_MIN, zs); |
| 237 |
| 238 fesetround(FE_TONEAREST); |
| 239 |
| 240 /* |
| 241 * Basic approach for round-to-nearest: |
| 242 * |
| 243 * (xy.hi, xy.lo) = x * y (exact) |
| 244 * (r.hi, r.lo) = xy.hi + z (exact) |
| 245 * adj = xy.lo + r.lo (inexact; low bit is sticky) |
| 246 * result = r.hi + adj (correctly rounded) |
| 247 */ |
| 248 xy = dd_mul(xs, ys); |
| 249 r = dd_add(xy.hi, zs); |
| 250 |
| 251 spread = ex + ey; |
| 252 |
| 253 if (r.hi == 0.0) { |
| 254 /* |
| 255 * When the addends cancel to 0, ensure that the result has |
| 256 * the correct sign. |
| 257 */ |
| 258 fesetround(oround); |
| 259 volatile long double vzs = zs; /* XXX gcc CSE bug workaround */ |
| 260 return xy.hi + vzs + scalbnl(xy.lo, spread); |
| 261 } |
| 262 |
| 263 if (oround != FE_TONEAREST) { |
| 264 /* |
| 265 * There is no need to worry about double rounding in directed |
| 266 * rounding modes. |
| 267 * But underflow may not be raised correctly, example in downwar
d rounding: |
| 268 * fmal(0x1.0000000001p-16000L, 0x1.0000000001p-400L, -0x1p-1644
0L) |
| 269 */ |
| 270 long double ret; |
| 271 #if defined(FE_INEXACT) && defined(FE_UNDERFLOW) |
| 272 int e = fetestexcept(FE_INEXACT); |
| 273 feclearexcept(FE_INEXACT); |
| 274 #endif |
| 275 fesetround(oround); |
| 276 adj = r.lo + xy.lo; |
| 277 ret = scalbnl(r.hi + adj, spread); |
| 278 #if defined(FE_INEXACT) && defined(FE_UNDERFLOW) |
| 279 if (ilogbl(ret) < -16382 && fetestexcept(FE_INEXACT)) |
| 280 feraiseexcept(FE_UNDERFLOW); |
| 281 else if (e) |
| 282 feraiseexcept(FE_INEXACT); |
| 283 #endif |
| 284 return ret; |
| 285 } |
| 286 |
| 287 adj = add_adjusted(r.lo, xy.lo); |
| 288 if (spread + ilogbl(r.hi) > -16383) |
| 289 return scalbnl(r.hi + adj, spread); |
| 290 else |
| 291 return add_and_denormalize(r.hi, adj, spread); |
| 292 } |
| 293 #endif |
OLD | NEW |