OLD | NEW |
(Empty) | |
| 1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expm1l.c */ |
| 2 /* |
| 3 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| 4 * |
| 5 * Permission to use, copy, modify, and distribute this software for any |
| 6 * purpose with or without fee is hereby granted, provided that the above |
| 7 * copyright notice and this permission notice appear in all copies. |
| 8 * |
| 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 16 */ |
| 17 /* |
| 18 * Exponential function, minus 1 |
| 19 * Long double precision |
| 20 * |
| 21 * |
| 22 * SYNOPSIS: |
| 23 * |
| 24 * long double x, y, expm1l(); |
| 25 * |
| 26 * y = expm1l( x ); |
| 27 * |
| 28 * |
| 29 * DESCRIPTION: |
| 30 * |
| 31 * Returns e (2.71828...) raised to the x power, minus 1. |
| 32 * |
| 33 * Range reduction is accomplished by separating the argument |
| 34 * into an integer k and fraction f such that |
| 35 * |
| 36 * x k f |
| 37 * e = 2 e. |
| 38 * |
| 39 * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1 |
| 40 * in the basic range [-0.5 ln 2, 0.5 ln 2]. |
| 41 * |
| 42 * |
| 43 * ACCURACY: |
| 44 * |
| 45 * Relative error: |
| 46 * arithmetic domain # trials peak rms |
| 47 * IEEE -45,+maxarg 200,000 1.2e-19 2.5e-20 |
| 48 */ |
| 49 |
| 50 #include "libm.h" |
| 51 |
| 52 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| 53 long double expm1l(long double x) |
| 54 { |
| 55 return expm1(x); |
| 56 } |
| 57 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| 58 |
| 59 /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x) |
| 60 -.5 ln 2 < x < .5 ln 2 |
| 61 Theoretical peak relative error = 3.4e-22 */ |
| 62 static const long double |
| 63 P0 = -1.586135578666346600772998894928250240826E4L, |
| 64 P1 = 2.642771505685952966904660652518429479531E3L, |
| 65 P2 = -3.423199068835684263987132888286791620673E2L, |
| 66 P3 = 1.800826371455042224581246202420972737840E1L, |
| 67 P4 = -5.238523121205561042771939008061958820811E-1L, |
| 68 Q0 = -9.516813471998079611319047060563358064497E4L, |
| 69 Q1 = 3.964866271411091674556850458227710004570E4L, |
| 70 Q2 = -7.207678383830091850230366618190187434796E3L, |
| 71 Q3 = 7.206038318724600171970199625081491823079E2L, |
| 72 Q4 = -4.002027679107076077238836622982900945173E1L, |
| 73 /* Q5 = 1.000000000000000000000000000000000000000E0 */ |
| 74 /* C1 + C2 = ln 2 */ |
| 75 C1 = 6.93145751953125E-1L, |
| 76 C2 = 1.428606820309417232121458176568075500134E-6L, |
| 77 /* ln 2^-65 */ |
| 78 minarg = -4.5054566736396445112120088E1L, |
| 79 /* ln 2^16384 */ |
| 80 maxarg = 1.1356523406294143949492E4L; |
| 81 |
| 82 long double expm1l(long double x) |
| 83 { |
| 84 long double px, qx, xx; |
| 85 int k; |
| 86 |
| 87 if (isnan(x)) |
| 88 return x; |
| 89 if (x > maxarg) |
| 90 return x*0x1p16383L; /* overflow, unless x==inf */ |
| 91 if (x == 0.0) |
| 92 return x; |
| 93 if (x < minarg) |
| 94 return -1.0; |
| 95 |
| 96 xx = C1 + C2; |
| 97 /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */ |
| 98 px = floorl(0.5 + x / xx); |
| 99 k = px; |
| 100 /* remainder times ln 2 */ |
| 101 x -= px * C1; |
| 102 x -= px * C2; |
| 103 |
| 104 /* Approximate exp(remainder ln 2).*/ |
| 105 px = (((( P4 * x + P3) * x + P2) * x + P1) * x + P0) * x; |
| 106 qx = (((( x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0; |
| 107 xx = x * x; |
| 108 qx = x + (0.5 * xx + xx * px / qx); |
| 109 |
| 110 /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2). |
| 111 We have qx = exp(remainder ln 2) - 1, so |
| 112 exp(x) - 1 = 2^k (qx + 1) - 1 = 2^k qx + 2^k - 1. */ |
| 113 px = scalbnl(1.0, k); |
| 114 x = px * qx + (px - 1.0); |
| 115 return x; |
| 116 } |
| 117 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
| 118 // TODO: broken implementation to make things compile |
| 119 long double expm1l(long double x) |
| 120 { |
| 121 return expm1(x); |
| 122 } |
| 123 #endif |
OLD | NEW |