OLD | NEW |
(Empty) | |
| 1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expl.c */ |
| 2 /* |
| 3 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| 4 * |
| 5 * Permission to use, copy, modify, and distribute this software for any |
| 6 * purpose with or without fee is hereby granted, provided that the above |
| 7 * copyright notice and this permission notice appear in all copies. |
| 8 * |
| 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 16 */ |
| 17 /* |
| 18 * Exponential function, long double precision |
| 19 * |
| 20 * |
| 21 * SYNOPSIS: |
| 22 * |
| 23 * long double x, y, expl(); |
| 24 * |
| 25 * y = expl( x ); |
| 26 * |
| 27 * |
| 28 * DESCRIPTION: |
| 29 * |
| 30 * Returns e (2.71828...) raised to the x power. |
| 31 * |
| 32 * Range reduction is accomplished by separating the argument |
| 33 * into an integer k and fraction f such that |
| 34 * |
| 35 * x k f |
| 36 * e = 2 e. |
| 37 * |
| 38 * A Pade' form of degree 5/6 is used to approximate exp(f) - 1 |
| 39 * in the basic range [-0.5 ln 2, 0.5 ln 2]. |
| 40 * |
| 41 * |
| 42 * ACCURACY: |
| 43 * |
| 44 * Relative error: |
| 45 * arithmetic domain # trials peak rms |
| 46 * IEEE +-10000 50000 1.12e-19 2.81e-20 |
| 47 * |
| 48 * |
| 49 * Error amplification in the exponential function can be |
| 50 * a serious matter. The error propagation involves |
| 51 * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), |
| 52 * which shows that a 1 lsb error in representing X produces |
| 53 * a relative error of X times 1 lsb in the function. |
| 54 * While the routine gives an accurate result for arguments |
| 55 * that are exactly represented by a long double precision |
| 56 * computer number, the result contains amplified roundoff |
| 57 * error for large arguments not exactly represented. |
| 58 * |
| 59 * |
| 60 * ERROR MESSAGES: |
| 61 * |
| 62 * message condition value returned |
| 63 * exp underflow x < MINLOG 0.0 |
| 64 * exp overflow x > MAXLOG MAXNUM |
| 65 * |
| 66 */ |
| 67 |
| 68 #include "libm.h" |
| 69 |
| 70 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
| 71 long double expl(long double x) |
| 72 { |
| 73 return exp(x); |
| 74 } |
| 75 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| 76 |
| 77 static const long double P[3] = { |
| 78 1.2617719307481059087798E-4L, |
| 79 3.0299440770744196129956E-2L, |
| 80 9.9999999999999999991025E-1L, |
| 81 }; |
| 82 static const long double Q[4] = { |
| 83 3.0019850513866445504159E-6L, |
| 84 2.5244834034968410419224E-3L, |
| 85 2.2726554820815502876593E-1L, |
| 86 2.0000000000000000000897E0L, |
| 87 }; |
| 88 static const long double |
| 89 LN2HI = 6.9314575195312500000000E-1L, |
| 90 LN2LO = 1.4286068203094172321215E-6L, |
| 91 LOG2E = 1.4426950408889634073599E0L; |
| 92 |
| 93 long double expl(long double x) |
| 94 { |
| 95 long double px, xx; |
| 96 int k; |
| 97 |
| 98 if (isnan(x)) |
| 99 return x; |
| 100 if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */ |
| 101 return x * 0x1p16383L; |
| 102 if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */ |
| 103 return -0x1p-16445L/x; |
| 104 |
| 105 /* Express e**x = e**f 2**k |
| 106 * = e**(f + k ln(2)) |
| 107 */ |
| 108 px = floorl(LOG2E * x + 0.5); |
| 109 k = px; |
| 110 x -= px * LN2HI; |
| 111 x -= px * LN2LO; |
| 112 |
| 113 /* rational approximation of the fractional part: |
| 114 * e**x = 1 + 2x P(x**2)/(Q(x**2) - x P(x**2)) |
| 115 */ |
| 116 xx = x * x; |
| 117 px = x * __polevll(xx, P, 2); |
| 118 x = px/(__polevll(xx, Q, 3) - px); |
| 119 x = 1.0 + 2.0 * x; |
| 120 return scalbnl(x, k); |
| 121 } |
| 122 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
| 123 // TODO: broken implementation to make things compile |
| 124 long double expl(long double x) |
| 125 { |
| 126 return exp(x); |
| 127 } |
| 128 #endif |
OLD | NEW |