OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/src/e_exp.c */ |
| 2 /* |
| 3 * ==================================================== |
| 4 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. |
| 5 * |
| 6 * Permission to use, copy, modify, and distribute this |
| 7 * software is freely granted, provided that this notice |
| 8 * is preserved. |
| 9 * ==================================================== |
| 10 */ |
| 11 /* exp(x) |
| 12 * Returns the exponential of x. |
| 13 * |
| 14 * Method |
| 15 * 1. Argument reduction: |
| 16 * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. |
| 17 * Given x, find r and integer k such that |
| 18 * |
| 19 * x = k*ln2 + r, |r| <= 0.5*ln2. |
| 20 * |
| 21 * Here r will be represented as r = hi-lo for better |
| 22 * accuracy. |
| 23 * |
| 24 * 2. Approximation of exp(r) by a special rational function on |
| 25 * the interval [0,0.34658]: |
| 26 * Write |
| 27 * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... |
| 28 * We use a special Remez algorithm on [0,0.34658] to generate |
| 29 * a polynomial of degree 5 to approximate R. The maximum error |
| 30 * of this polynomial approximation is bounded by 2**-59. In |
| 31 * other words, |
| 32 * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 |
| 33 * (where z=r*r, and the values of P1 to P5 are listed below) |
| 34 * and |
| 35 * | 5 | -59 |
| 36 * | 2.0+P1*z+...+P5*z - R(z) | <= 2 |
| 37 * | | |
| 38 * The computation of exp(r) thus becomes |
| 39 * 2*r |
| 40 * exp(r) = 1 + ---------- |
| 41 * R(r) - r |
| 42 * r*c(r) |
| 43 * = 1 + r + ----------- (for better accuracy) |
| 44 * 2 - c(r) |
| 45 * where |
| 46 * 2 4 10 |
| 47 * c(r) = r - (P1*r + P2*r + ... + P5*r ). |
| 48 * |
| 49 * 3. Scale back to obtain exp(x): |
| 50 * From step 1, we have |
| 51 * exp(x) = 2^k * exp(r) |
| 52 * |
| 53 * Special cases: |
| 54 * exp(INF) is INF, exp(NaN) is NaN; |
| 55 * exp(-INF) is 0, and |
| 56 * for finite argument, only exp(0)=1 is exact. |
| 57 * |
| 58 * Accuracy: |
| 59 * according to an error analysis, the error is always less than |
| 60 * 1 ulp (unit in the last place). |
| 61 * |
| 62 * Misc. info. |
| 63 * For IEEE double |
| 64 * if x > 709.782712893383973096 then exp(x) overflows |
| 65 * if x < -745.133219101941108420 then exp(x) underflows |
| 66 */ |
| 67 |
| 68 #include "libm.h" |
| 69 |
| 70 static const double |
| 71 half[2] = {0.5,-0.5}, |
| 72 ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ |
| 73 ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ |
| 74 invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */ |
| 75 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ |
| 76 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ |
| 77 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ |
| 78 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ |
| 79 P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ |
| 80 |
| 81 double exp(double x) |
| 82 { |
| 83 double_t hi, lo, c, xx, y; |
| 84 int k, sign; |
| 85 uint32_t hx; |
| 86 |
| 87 GET_HIGH_WORD(hx, x); |
| 88 sign = hx>>31; |
| 89 hx &= 0x7fffffff; /* high word of |x| */ |
| 90 |
| 91 /* special cases */ |
| 92 if (hx >= 0x4086232b) { /* if |x| >= 708.39... */ |
| 93 if (isnan(x)) |
| 94 return x; |
| 95 if (x > 709.782712893383973096) { |
| 96 /* overflow if x!=inf */ |
| 97 x *= 0x1p1023; |
| 98 return x; |
| 99 } |
| 100 if (x < -708.39641853226410622) { |
| 101 /* underflow if x!=-inf */ |
| 102 FORCE_EVAL((float)(-0x1p-149/x)); |
| 103 if (x < -745.13321910194110842) |
| 104 return 0; |
| 105 } |
| 106 } |
| 107 |
| 108 /* argument reduction */ |
| 109 if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ |
| 110 if (hx >= 0x3ff0a2b2) /* if |x| >= 1.5 ln2 */ |
| 111 k = (int)(invln2*x + half[sign]); |
| 112 else |
| 113 k = 1 - sign - sign; |
| 114 hi = x - k*ln2hi; /* k*ln2hi is exact here */ |
| 115 lo = k*ln2lo; |
| 116 x = hi - lo; |
| 117 } else if (hx > 0x3e300000) { /* if |x| > 2**-28 */ |
| 118 k = 0; |
| 119 hi = x; |
| 120 lo = 0; |
| 121 } else { |
| 122 /* inexact if x!=0 */ |
| 123 FORCE_EVAL(0x1p1023 + x); |
| 124 return 1 + x; |
| 125 } |
| 126 |
| 127 /* x is now in primary range */ |
| 128 xx = x*x; |
| 129 c = x - xx*(P1+xx*(P2+xx*(P3+xx*(P4+xx*P5)))); |
| 130 y = 1 + (x*c/(2-c) - lo + hi); |
| 131 if (k == 0) |
| 132 return y; |
| 133 return scalbn(y, k); |
| 134 } |
OLD | NEW |