OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */ |
| 2 /* |
| 3 * ==================================================== |
| 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 * |
| 6 * Developed at SunPro, a Sun Microsystems, Inc. business. |
| 7 * Permission to use, copy, modify, and distribute this |
| 8 * software is freely granted, provided that this notice |
| 9 * is preserved. |
| 10 * ==================================================== |
| 11 */ |
| 12 /* atan(x) |
| 13 * Method |
| 14 * 1. Reduce x to positive by atan(x) = -atan(-x). |
| 15 * 2. According to the integer k=4t+0.25 chopped, t=x, the argument |
| 16 * is further reduced to one of the following intervals and the |
| 17 * arctangent of t is evaluated by the corresponding formula: |
| 18 * |
| 19 * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) |
| 20 * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) |
| 21 * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) |
| 22 * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) |
| 23 * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) |
| 24 * |
| 25 * Constants: |
| 26 * The hexadecimal values are the intended ones for the following |
| 27 * constants. The decimal values may be used, provided that the |
| 28 * compiler will convert from decimal to binary accurately enough |
| 29 * to produce the hexadecimal values shown. |
| 30 */ |
| 31 |
| 32 |
| 33 #include "libm.h" |
| 34 |
| 35 static const double atanhi[] = { |
| 36 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ |
| 37 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ |
| 38 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ |
| 39 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ |
| 40 }; |
| 41 |
| 42 static const double atanlo[] = { |
| 43 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ |
| 44 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ |
| 45 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ |
| 46 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ |
| 47 }; |
| 48 |
| 49 static const double aT[] = { |
| 50 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ |
| 51 -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ |
| 52 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ |
| 53 -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ |
| 54 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ |
| 55 -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ |
| 56 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ |
| 57 -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ |
| 58 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ |
| 59 -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ |
| 60 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ |
| 61 }; |
| 62 |
| 63 double atan(double x) |
| 64 { |
| 65 double_t w,s1,s2,z; |
| 66 uint32_t ix,sign; |
| 67 int id; |
| 68 |
| 69 GET_HIGH_WORD(ix, x); |
| 70 sign = ix >> 31; |
| 71 ix &= 0x7fffffff; |
| 72 if (ix >= 0x44100000) { /* if |x| >= 2^66 */ |
| 73 if (isnan(x)) |
| 74 return x; |
| 75 z = atanhi[3] + 0x1p-120f; |
| 76 return sign ? -z : z; |
| 77 } |
| 78 if (ix < 0x3fdc0000) { /* |x| < 0.4375 */ |
| 79 if (ix < 0x3e400000) { /* |x| < 2^-27 */ |
| 80 if (ix < 0x00100000) |
| 81 /* raise underflow for subnormal x */ |
| 82 FORCE_EVAL((float)x); |
| 83 return x; |
| 84 } |
| 85 id = -1; |
| 86 } else { |
| 87 x = fabs(x); |
| 88 if (ix < 0x3ff30000) { /* |x| < 1.1875 */ |
| 89 if (ix < 0x3fe60000) { /* 7/16 <= |x| < 11/16 */ |
| 90 id = 0; |
| 91 x = (2.0*x-1.0)/(2.0+x); |
| 92 } else { /* 11/16 <= |x| < 19/16 */ |
| 93 id = 1; |
| 94 x = (x-1.0)/(x+1.0); |
| 95 } |
| 96 } else { |
| 97 if (ix < 0x40038000) { /* |x| < 2.4375 */ |
| 98 id = 2; |
| 99 x = (x-1.5)/(1.0+1.5*x); |
| 100 } else { /* 2.4375 <= |x| < 2^66 */ |
| 101 id = 3; |
| 102 x = -1.0/x; |
| 103 } |
| 104 } |
| 105 } |
| 106 /* end of argument reduction */ |
| 107 z = x*x; |
| 108 w = z*z; |
| 109 /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */ |
| 110 s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10]))))); |
| 111 s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9])))); |
| 112 if (id < 0) |
| 113 return x - x*(s1+s2); |
| 114 z = atanhi[id] - (x*(s1+s2) - atanlo[id] - x); |
| 115 return sign ? -z : z; |
| 116 } |
OLD | NEW |