OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/src/e_acos.c */ |
| 2 /* |
| 3 * ==================================================== |
| 4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 * |
| 6 * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 7 * Permission to use, copy, modify, and distribute this |
| 8 * software is freely granted, provided that this notice |
| 9 * is preserved. |
| 10 * ==================================================== |
| 11 */ |
| 12 /* acos(x) |
| 13 * Method : |
| 14 * acos(x) = pi/2 - asin(x) |
| 15 * acos(-x) = pi/2 + asin(x) |
| 16 * For |x|<=0.5 |
| 17 * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c) |
| 18 * For x>0.5 |
| 19 * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2))) |
| 20 * = 2asin(sqrt((1-x)/2)) |
| 21 * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z) |
| 22 * = 2f + (2c + 2s*z*R(z)) |
| 23 * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term |
| 24 * for f so that f+c ~ sqrt(z). |
| 25 * For x<-0.5 |
| 26 * acos(x) = pi - 2asin(sqrt((1-|x|)/2)) |
| 27 * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z) |
| 28 * |
| 29 * Special cases: |
| 30 * if x is NaN, return x itself; |
| 31 * if |x|>1, return NaN with invalid signal. |
| 32 * |
| 33 * Function needed: sqrt |
| 34 */ |
| 35 |
| 36 #include "libm.h" |
| 37 |
| 38 static const double |
| 39 pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */ |
| 40 pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */ |
| 41 pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */ |
| 42 pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */ |
| 43 pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */ |
| 44 pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */ |
| 45 pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */ |
| 46 pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */ |
| 47 qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */ |
| 48 qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */ |
| 49 qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */ |
| 50 qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */ |
| 51 |
| 52 static double R(double z) |
| 53 { |
| 54 double_t p, q; |
| 55 p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5))))); |
| 56 q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4))); |
| 57 return p/q; |
| 58 } |
| 59 |
| 60 double acos(double x) |
| 61 { |
| 62 double z,w,s,c,df; |
| 63 uint32_t hx,ix; |
| 64 |
| 65 GET_HIGH_WORD(hx, x); |
| 66 ix = hx & 0x7fffffff; |
| 67 /* |x| >= 1 or nan */ |
| 68 if (ix >= 0x3ff00000) { |
| 69 uint32_t lx; |
| 70 |
| 71 GET_LOW_WORD(lx,x); |
| 72 if ((ix-0x3ff00000 | lx) == 0) { |
| 73 /* acos(1)=0, acos(-1)=pi */ |
| 74 if (hx >> 31) |
| 75 return 2*pio2_hi + 0x1p-120f; |
| 76 return 0; |
| 77 } |
| 78 return 0/(x-x); |
| 79 } |
| 80 /* |x| < 0.5 */ |
| 81 if (ix < 0x3fe00000) { |
| 82 if (ix <= 0x3c600000) /* |x| < 2**-57 */ |
| 83 return pio2_hi + 0x1p-120f; |
| 84 return pio2_hi - (x - (pio2_lo-x*R(x*x))); |
| 85 } |
| 86 /* x < -0.5 */ |
| 87 if (hx >> 31) { |
| 88 z = (1.0+x)*0.5; |
| 89 s = sqrt(z); |
| 90 w = R(z)*s-pio2_lo; |
| 91 return 2*(pio2_hi - (s+w)); |
| 92 } |
| 93 /* x > 0.5 */ |
| 94 z = (1.0-x)*0.5; |
| 95 s = sqrt(z); |
| 96 df = s; |
| 97 SET_LOW_WORD(df,0); |
| 98 c = (z-df*df)/(s+df); |
| 99 w = R(z)*s+c; |
| 100 return 2*(df+w); |
| 101 } |
OLD | NEW |