OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/ld80/k_cosl.c */ |
| 2 /* origin: FreeBSD /usr/src/lib/msun/ld128/k_cosl.c */ |
| 3 /* |
| 4 * ==================================================== |
| 5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 6 * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans. |
| 7 * |
| 8 * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 9 * Permission to use, copy, modify, and distribute this |
| 10 * software is freely granted, provided that this notice |
| 11 * is preserved. |
| 12 * ==================================================== |
| 13 */ |
| 14 |
| 15 |
| 16 #include "libm.h" |
| 17 |
| 18 #if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384 |
| 19 #if LDBL_MANT_DIG == 64 |
| 20 /* |
| 21 * ld80 version of __cos.c. See __cos.c for most comments. |
| 22 */ |
| 23 /* |
| 24 * Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]: |
| 25 * |cos(x) - c(x)| < 2**-75.1 |
| 26 * |
| 27 * The coefficients of c(x) were generated by a pari-gp script using |
| 28 * a Remez algorithm that searches for the best higher coefficients |
| 29 * after rounding leading coefficients to a specified precision. |
| 30 * |
| 31 * Simpler methods like Chebyshev or basic Remez barely suffice for |
| 32 * cos() in 64-bit precision, because we want the coefficient of x^2 |
| 33 * to be precisely -0.5 so that multiplying by it is exact, and plain |
| 34 * rounding of the coefficients of a good polynomial approximation only |
| 35 * gives this up to about 64-bit precision. Plain rounding also gives |
| 36 * a mediocre approximation for the coefficient of x^4, but a rounding |
| 37 * error of 0.5 ulps for this coefficient would only contribute ~0.01 |
| 38 * ulps to the final error, so this is unimportant. Rounding errors in |
| 39 * higher coefficients are even less important. |
| 40 * |
| 41 * In fact, coefficients above the x^4 one only need to have 53-bit |
| 42 * precision, and this is more efficient. We get this optimization |
| 43 * almost for free from the complications needed to search for the best |
| 44 * higher coefficients. |
| 45 */ |
| 46 static const long double |
| 47 C1 = 0.0416666666666666666136L; /* 0xaaaaaaaaaaaaaa9b.0p-68 */ |
| 48 static const double |
| 49 C2 = -0.0013888888888888874, /* -0x16c16c16c16c10.0p-62 */ |
| 50 C3 = 0.000024801587301571716, /* 0x1a01a01a018e22.0p-68 */ |
| 51 C4 = -0.00000027557319215507120, /* -0x127e4fb7602f22.0p-74 */ |
| 52 C5 = 0.0000000020876754400407278, /* 0x11eed8caaeccf1.0p-81 */ |
| 53 C6 = -1.1470297442401303e-11, /* -0x19393412bd1529.0p-89 */ |
| 54 C7 = 4.7383039476436467e-14; /* 0x1aac9d9af5c43e.0p-97 */ |
| 55 #define POLY(z) (z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7))))))) |
| 56 #elif LDBL_MANT_DIG == 113 |
| 57 /* |
| 58 * ld128 version of __cos.c. See __cos.c for most comments. |
| 59 */ |
| 60 /* |
| 61 * Domain [-0.7854, 0.7854], range ~[-1.80e-37, 1.79e-37]: |
| 62 * |cos(x) - c(x))| < 2**-122.0 |
| 63 * |
| 64 * 113-bit precision requires more care than 64-bit precision, since |
| 65 * simple methods give a minimax polynomial with coefficient for x^2 |
| 66 * that is 1 ulp below 0.5, but we want it to be precisely 0.5. See |
| 67 * above for more details. |
| 68 */ |
| 69 static const long double |
| 70 C1 = 0.04166666666666666666666666666666658424671L, |
| 71 C2 = -0.001388888888888888888888888888863490893732L, |
| 72 C3 = 0.00002480158730158730158730158600795304914210L, |
| 73 C4 = -0.2755731922398589065255474947078934284324e-6L, |
| 74 C5 = 0.2087675698786809897659225313136400793948e-8L, |
| 75 C6 = -0.1147074559772972315817149986812031204775e-10L, |
| 76 C7 = 0.4779477332386808976875457937252120293400e-13L; |
| 77 static const double |
| 78 C8 = -0.1561920696721507929516718307820958119868e-15, |
| 79 C9 = 0.4110317413744594971475941557607804508039e-18, |
| 80 C10 = -0.8896592467191938803288521958313920156409e-21, |
| 81 C11 = 0.1601061435794535138244346256065192782581e-23; |
| 82 #define POLY(z) (z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*(C7+ \ |
| 83 z*(C8+z*(C9+z*(C10+z*C11))))))))))) |
| 84 #endif |
| 85 |
| 86 long double __cosl(long double x, long double y) |
| 87 { |
| 88 long double hz,z,r,w; |
| 89 |
| 90 z = x*x; |
| 91 r = POLY(z); |
| 92 hz = 0.5*z; |
| 93 w = 1.0-hz; |
| 94 return w + (((1.0-w)-hz) + (z*r-x*y)); |
| 95 } |
| 96 #endif |
OLD | NEW |