OLD | NEW |
(Empty) | |
| 1 /* origin: FreeBSD /usr/src/lib/msun/src/s_ctanh.c */ |
| 2 /*- |
| 3 * Copyright (c) 2011 David Schultz |
| 4 * All rights reserved. |
| 5 * |
| 6 * Redistribution and use in source and binary forms, with or without |
| 7 * modification, are permitted provided that the following conditions |
| 8 * are met: |
| 9 * 1. Redistributions of source code must retain the above copyright |
| 10 * notice unmodified, this list of conditions, and the following |
| 11 * disclaimer. |
| 12 * 2. Redistributions in binary form must reproduce the above copyright |
| 13 * notice, this list of conditions and the following disclaimer in the |
| 14 * documentation and/or other materials provided with the distribution. |
| 15 * |
| 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 26 */ |
| 27 /* |
| 28 * Hyperbolic tangent of a complex argument z = x + i y. |
| 29 * |
| 30 * The algorithm is from: |
| 31 * |
| 32 * W. Kahan. Branch Cuts for Complex Elementary Functions or Much |
| 33 * Ado About Nothing's Sign Bit. In The State of the Art in |
| 34 * Numerical Analysis, pp. 165 ff. Iserles and Powell, eds., 1987. |
| 35 * |
| 36 * Method: |
| 37 * |
| 38 * Let t = tan(x) |
| 39 * beta = 1/cos^2(y) |
| 40 * s = sinh(x) |
| 41 * rho = cosh(x) |
| 42 * |
| 43 * We have: |
| 44 * |
| 45 * tanh(z) = sinh(z) / cosh(z) |
| 46 * |
| 47 * sinh(x) cos(y) + i cosh(x) sin(y) |
| 48 * = --------------------------------- |
| 49 * cosh(x) cos(y) + i sinh(x) sin(y) |
| 50 * |
| 51 * cosh(x) sinh(x) / cos^2(y) + i tan(y) |
| 52 * = ------------------------------------- |
| 53 * 1 + sinh^2(x) / cos^2(y) |
| 54 * |
| 55 * beta rho s + i t |
| 56 * = ---------------- |
| 57 * 1 + beta s^2 |
| 58 * |
| 59 * Modifications: |
| 60 * |
| 61 * I omitted the original algorithm's handling of overflow in tan(x) after |
| 62 * verifying with nearpi.c that this can't happen in IEEE single or double |
| 63 * precision. I also handle large x differently. |
| 64 */ |
| 65 |
| 66 #include "libm.h" |
| 67 |
| 68 double complex ctanh(double complex z) |
| 69 { |
| 70 double x, y; |
| 71 double t, beta, s, rho, denom; |
| 72 uint32_t hx, ix, lx; |
| 73 |
| 74 x = creal(z); |
| 75 y = cimag(z); |
| 76 |
| 77 EXTRACT_WORDS(hx, lx, x); |
| 78 ix = hx & 0x7fffffff; |
| 79 |
| 80 /* |
| 81 * ctanh(NaN + i 0) = NaN + i 0 |
| 82 * |
| 83 * ctanh(NaN + i y) = NaN + i NaN for y != 0 |
| 84 * |
| 85 * The imaginary part has the sign of x*sin(2*y), but there's no |
| 86 * special effort to get this right. |
| 87 * |
| 88 * ctanh(+-Inf +- i Inf) = +-1 +- 0 |
| 89 * |
| 90 * ctanh(+-Inf + i y) = +-1 + 0 sin(2y) for y finite |
| 91 * |
| 92 * The imaginary part of the sign is unspecified. This special |
| 93 * case is only needed to avoid a spurious invalid exception when |
| 94 * y is infinite. |
| 95 */ |
| 96 if (ix >= 0x7ff00000) { |
| 97 if ((ix & 0xfffff) | lx) /* x is NaN */ |
| 98 return CMPLX(x, (y == 0 ? y : x * y)); |
| 99 SET_HIGH_WORD(x, hx - 0x40000000); /* x = copysign(1, x) */ |
| 100 return CMPLX(x, copysign(0, isinf(y) ? y : sin(y) * cos(y))); |
| 101 } |
| 102 |
| 103 /* |
| 104 * ctanh(+-0 + i NAN) = +-0 + i NaN |
| 105 * ctanh(+-0 +- i Inf) = +-0 + i NaN |
| 106 * ctanh(x + i NAN) = NaN + i NaN |
| 107 * ctanh(x +- i Inf) = NaN + i NaN |
| 108 */ |
| 109 if (!isfinite(y)) |
| 110 return CMPLX(x ? y - y : x, y - y); |
| 111 |
| 112 /* |
| 113 * ctanh(+-huge + i +-y) ~= +-1 +- i 2sin(2y)/exp(2x), using the |
| 114 * approximation sinh^2(huge) ~= exp(2*huge) / 4. |
| 115 * We use a modified formula to avoid spurious overflow. |
| 116 */ |
| 117 if (ix >= 0x40360000) { /* x >= 22 */ |
| 118 double exp_mx = exp(-fabs(x)); |
| 119 return CMPLX(copysign(1, x), 4 * sin(y) * cos(y) * exp_mx * exp_
mx); |
| 120 } |
| 121 |
| 122 /* Kahan's algorithm */ |
| 123 t = tan(y); |
| 124 beta = 1.0 + t * t; /* = 1 / cos^2(y) */ |
| 125 s = sinh(x); |
| 126 rho = sqrt(1 + s * s); /* = cosh(x) */ |
| 127 denom = 1 + beta * s * s; |
| 128 return CMPLX((beta * rho * s) / denom, t / denom); |
| 129 } |
OLD | NEW |