OLD | NEW |
(Empty) | |
| 1 /* origin: OpenBSD /usr/src/lib/libm/src/s_catan.c */ |
| 2 /* |
| 3 * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| 4 * |
| 5 * Permission to use, copy, modify, and distribute this software for any |
| 6 * purpose with or without fee is hereby granted, provided that the above |
| 7 * copyright notice and this permission notice appear in all copies. |
| 8 * |
| 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 16 */ |
| 17 /* |
| 18 * Complex circular arc tangent |
| 19 * |
| 20 * |
| 21 * SYNOPSIS: |
| 22 * |
| 23 * double complex catan(); |
| 24 * double complex z, w; |
| 25 * |
| 26 * w = catan (z); |
| 27 * |
| 28 * |
| 29 * DESCRIPTION: |
| 30 * |
| 31 * If |
| 32 * z = x + iy, |
| 33 * |
| 34 * then |
| 35 * 1 ( 2x ) |
| 36 * Re w = - arctan(-----------) + k PI |
| 37 * 2 ( 2 2) |
| 38 * (1 - x - y ) |
| 39 * |
| 40 * ( 2 2) |
| 41 * 1 (x + (y+1) ) |
| 42 * Im w = - log(------------) |
| 43 * 4 ( 2 2) |
| 44 * (x + (y-1) ) |
| 45 * |
| 46 * Where k is an arbitrary integer. |
| 47 * |
| 48 * catan(z) = -i catanh(iz). |
| 49 * |
| 50 * ACCURACY: |
| 51 * |
| 52 * Relative error: |
| 53 * arithmetic domain # trials peak rms |
| 54 * DEC -10,+10 5900 1.3e-16 7.8e-18 |
| 55 * IEEE -10,+10 30000 2.3e-15 8.5e-17 |
| 56 * The check catan( ctan(z) ) = z, with |x| and |y| < PI/2, |
| 57 * had peak relative error 1.5e-16, rms relative error |
| 58 * 2.9e-17. See also clog(). |
| 59 */ |
| 60 |
| 61 #include "libm.h" |
| 62 |
| 63 #define MAXNUM 1.0e308 |
| 64 |
| 65 static const double DP1 = 3.14159265160560607910E0; |
| 66 static const double DP2 = 1.98418714791870343106E-9; |
| 67 static const double DP3 = 1.14423774522196636802E-17; |
| 68 |
| 69 static double _redupi(double x) |
| 70 { |
| 71 double t; |
| 72 long i; |
| 73 |
| 74 t = x/M_PI; |
| 75 if (t >= 0.0) |
| 76 t += 0.5; |
| 77 else |
| 78 t -= 0.5; |
| 79 |
| 80 i = t; /* the multiple */ |
| 81 t = i; |
| 82 t = ((x - t * DP1) - t * DP2) - t * DP3; |
| 83 return t; |
| 84 } |
| 85 |
| 86 double complex catan(double complex z) |
| 87 { |
| 88 double complex w; |
| 89 double a, t, x, x2, y; |
| 90 |
| 91 x = creal(z); |
| 92 y = cimag(z); |
| 93 |
| 94 if (x == 0.0 && y > 1.0) |
| 95 goto ovrf; |
| 96 |
| 97 x2 = x * x; |
| 98 a = 1.0 - x2 - (y * y); |
| 99 if (a == 0.0) |
| 100 goto ovrf; |
| 101 |
| 102 t = 0.5 * atan2(2.0 * x, a); |
| 103 w = _redupi(t); |
| 104 |
| 105 t = y - 1.0; |
| 106 a = x2 + (t * t); |
| 107 if (a == 0.0) |
| 108 goto ovrf; |
| 109 |
| 110 t = y + 1.0; |
| 111 a = (x2 + t * t)/a; |
| 112 w = w + (0.25 * log(a)) * I; |
| 113 return w; |
| 114 |
| 115 ovrf: |
| 116 // FIXME |
| 117 w = MAXNUM + MAXNUM * I; |
| 118 return w; |
| 119 } |
OLD | NEW |