Chromium Code Reviews| Index: src/codec/SkPngFilters.cpp |
| diff --git a/src/codec/SkPngFilters.cpp b/src/codec/SkPngFilters.cpp |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..115810ea7cbffc5fbf0aeed7e2cacc0f5ca15d39 |
| --- /dev/null |
| +++ b/src/codec/SkPngFilters.cpp |
| @@ -0,0 +1,168 @@ |
| +/* |
| + * Copyright 2016 Google Inc. |
| + * |
| + * Use of this source code is governed by a BSD-style license that can be |
| + * found in the LICENSE file. |
| + */ |
| + |
| +#include "SkPngFilters.h" |
| +#include "SkTypes.h" |
| + |
| +// Functions in this file look at most 3 pixels (a,b,c) to predict the fourth (d). |
| +// They're positioned like this: |
| +// prev: c b |
| +// row: a d |
| +// The Sub filter predicts d=a, Avg d=(a+b)/2, and Paeth predicts d to be whichever |
| +// of a, b, or c is closest to p=a+b-c. (Up also exists, predicting d=b.) |
| + |
| +#if defined(__SSE2__) |
| + |
| + template <int bpp> |
| + static __m128i load(const void* p) { |
| + static_assert(bpp <= 4, ""); |
| + |
| + uint32_t packed; |
| + memcpy(&packed, p, bpp); |
| + return _mm_cvtsi32_si128(packed); |
| + } |
| + |
| + template <int bpp> |
| + static void store(void* p, __m128i v) { |
| + static_assert(bpp <= 4, ""); |
| + |
| + uint32_t packed = _mm_cvtsi128_si32(v); |
| + memcpy(p, &packed, bpp); |
| + } |
| + |
| + template <int bpp> |
| + static void sk_sub_sse2(png_row_infop row_info, png_bytep row, png_const_bytep) { |
| + // The Sub filter predicts each pixel as the previous pixel, a. |
| + // There is no pixel to the left of the first pixel. It's encoded directly. |
| + // That works with our main loop if we just say that left pixel was zero. |
| + __m128i a, d = _mm_setzero_si128(); |
| + |
| + int rb = row_info->rowbytes; |
| + while (rb > 0) { |
| + a = d; d = load<bpp>(row); |
| + d = _mm_add_epi8(d, a); |
| + store<bpp>(row, d); |
| + |
| + row += bpp; |
| + rb -= bpp; |
| + } |
| + } |
| + |
| + template <int bpp> |
| + void sk_avg_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { |
| + // The Avg filter predicts each pixel as the (truncated) average of a and b. |
| + // There's no pixel to the left of the first pixel. Luckily, it's |
| + // predicted to be half of the pixel above it. So again, this works |
| + // perfectly with our loop if we make sure a starts at zero. |
| + const __m128i zero = _mm_setzero_si128(); |
| + __m128i b; |
| + __m128i a, d = zero; |
| + |
| + int rb = row_info->rowbytes; |
| + while (rb > 0) { |
| + b = load<bpp>(prev); |
| + a = d; d = load<bpp>(row ); |
| + |
| + // PNG requires a truncating average here, so sadly we can't just use _mm_avg_epu8... |
| + __m128i avg = _mm_avg_epu8(a,b); |
| + // ...but we can fix it up by subtracting off 1 if it rounded up. |
| + avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), _mm_set1_epi8(1))); |
| + |
| + d = _mm_add_epi8(d, avg); |
| + store<bpp>(row, d); |
| + |
| + prev += bpp; |
| + row += bpp; |
| + rb -= bpp; |
| + } |
| + } |
| + |
| + // Returns bytewise |x-y|. |
| + static __m128i absdiff_u8(__m128i x, __m128i y) { |
| + // One of these two saturated subtractions will be the answer, the other zero. |
| + return _mm_or_si128(_mm_subs_epu8(x,y), _mm_subs_epu8(y,x)); |
| + } |
| + |
| + // Bytewise c ? t : e. |
| + static __m128i if_then_else(__m128i c, __m128i t, __m128i e) { |
| + // SSE 4.1+ would be: return _mm_blendv_epi8(e,t,c); |
| + return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e)); |
| + } |
| + |
| + template <int bpp> |
| + void sk_paeth_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { |
| + // Paeth tries to predict pixel d using the pixel to the left of it, a, |
| + // and two pixels from the previous row, b and c: |
| + // prev: c b |
| + // row: a d |
| + // The Paeth function predicts d to be whichever of a, b, or c is nearest to p=a+b-c. |
| + |
| + // The first pixel has no left context, and so uses an Up filter, p = b. |
| + // This works naturally with our main loop's p = a+b-c if we force a and c to zero. |
| + // Here we zero b and d, which become c and a respectively at the start of the loop. |
| + __m128i c, b = _mm_setzero_si128(), |
| + a, d = _mm_setzero_si128(); |
| + |
| + int rb = row_info->rowbytes; |
| + while (rb > 0) { |
| + c = b; b = load<bpp>(prev); |
| + a = d; d = load<bpp>(row ); |
| + |
| + // We can't express p in 8 bits, but luckily we can use this faux p instead. |
| + // (I have no deep insight here... I just proved this with brute force.) |
| + __m128i min = _mm_min_epu8(a,b), |
| + max = _mm_max_epu8(a,b), |
| + faux_p = _mm_adds_epu8(min, _mm_subs_epu8(max, c)); |
| + |
| + // We could use faux_p for calculating all three of pa, pb, and pc, |
| + // but it's a little quicker to calculate the correct pa and pb directly, |
| + // and the predictor remains the same. (Again, brute force.) |
|
msarett
2016/01/27 20:56:10
I've also confirmed this with brute force. Though
|
| + __m128i pa = absdiff_u8(b,c), // |a+b-c - a| == |b-c| |
| + pb = absdiff_u8(a,c), // |a+b-c - b| == |a-c| |
| + faux_pc = absdiff_u8(faux_p, c); |
| + |
| + // From here, things are straightforward. Find the smallest distance to p... |
| + __m128i smallest = _mm_min_epu8(_mm_min_epu8(pa, pb), faux_pc); |
| + |
| + // ... then the predictor is the input corresponding to that smallest distance, |
| + // breaking ties in favor of a over b over c. |
| + __m128i nearest = if_then_else(_mm_cmpeq_epi8(smallest, pa), a, |
| + if_then_else(_mm_cmpeq_epi8(smallest, pb), b, |
| + c)); |
| + |
| + // We've reconstructed d! Leave it for next round to become a, and write it out. |
| + d = _mm_add_epi8(d, nearest); |
| + store<bpp>(row, d); |
| + |
| + prev += bpp; |
| + row += bpp; |
| + rb -= bpp; |
| + } |
| + } |
| + |
| + void sk_sub3_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { |
| + sk_sub_sse2<3>(row_info, row, prev); |
| + } |
| + void sk_sub4_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { |
| + sk_sub_sse2<4>(row_info, row, prev); |
| + } |
| + |
| + void sk_avg3_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { |
| + sk_avg_sse2<3>(row_info, row, prev); |
| + } |
| + void sk_avg4_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { |
| + sk_avg_sse2<4>(row_info, row, prev); |
| + } |
| + |
| + void sk_paeth3_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { |
| + sk_paeth_sse2<3>(row_info, row, prev); |
| + } |
| + void sk_paeth4_sse2(png_row_infop row_info, png_bytep row, png_const_bytep prev) { |
| + sk_paeth_sse2<4>(row_info, row, prev); |
| + } |
| + |
| +#endif |