OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright 2016 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 | |
8 #include "SkPngFilters.h" | |
9 #include "SkTypes.h" | |
10 | |
11 // Functions in this file look at most 3 pixels (a,b,c) to predict the fourth (d ). | |
12 // They're positioned like this: | |
13 // prev: c b | |
14 // row: a d | |
15 // The Sub filter predicts d=a, Avg d=(a+b)/2, and Paeth predicts d to be which ever | |
16 // of a, b, or c is closest to p=a+b-c. (Up also exists, predicting d=b.) | |
17 | |
18 #if defined(__SSE2__) | |
19 | |
20 static __m128i load4(const void* p) { | |
21 return _mm_cvtsi32_si128(*(const uint32_t*)p); | |
22 } | |
23 | |
24 static void store4(void* p, __m128i v) { | |
25 *(uint32_t*)p = _mm_cvtsi128_si32(v); | |
26 } | |
27 | |
28 void sk_sub4_sse2(png_row_infop row_info, png_bytep row_u8, png_const_bytep) { | |
29 // The Sub filter predicts each pixel as the previous pixel, a. | |
30 auto row = (uint32_t*)row_u8; | |
31 int n = row_info->rowbytes / 4; | |
32 | |
33 // There is no pixel to the left of the first pixel. It's encoded direc tly. | |
34 // That works with our main loop if we just say that left pixel was zero . | |
35 __m128i a, d = _mm_setzero_si128(); | |
36 | |
37 while (n --> 0) { | |
38 a = d; d = load4(row); | |
39 d = _mm_add_epi8(d, a); | |
40 store4(row++, d); | |
41 } | |
42 } | |
43 | |
44 void sk_avg4_sse2(png_row_infop row_info, png_bytep row_u8, png_const_bytep prev_u8) { | |
45 // The Avg filter predicts each pixel as the (truncated) average of a an d b. | |
46 auto prev = (const uint32_t*)prev_u8; | |
47 auto row = (uint32_t*)row_u8; | |
48 int n = row_info->rowbytes / 4; | |
49 | |
50 // There's no pixel to the left of the first pixel. Luckily, it's | |
51 // predicted to be half of the pixel above it. So again, this works | |
52 // perfectly with our loop if we make sure a starts at zero. | |
53 const __m128i zero = _mm_setzero_si128(); | |
54 __m128i b; | |
55 __m128i a, d = zero; | |
56 | |
57 while (n --> 0) { | |
58 b = load4(prev++); | |
59 a = d; d = load4(row ); | |
60 | |
61 // PNG requires a truncating average here, so sadly we can't just us e _mm_avg_epu8... | |
62 __m128i avg = _mm_avg_epu8(a,b); | |
63 // ...but we can fix it up by subtracting off 1 if it rounded up. | |
64 avg = _mm_sub_epi8(avg, _mm_and_si128(_mm_xor_si128(a,b), _mm_set1_e pi8(1))); | |
65 | |
66 d = _mm_add_epi8(d, avg); | |
67 store4(row++, d); | |
68 } | |
69 } | |
70 | |
71 // Returns bytewise |x-y|. | |
72 static __m128i absdiff_u8(__m128i x, __m128i y) { | |
73 // One of these two saturated subtractions will be the answer, the other zero. | |
74 return _mm_or_si128(_mm_subs_epu8(x,y), _mm_subs_epu8(y,x)); | |
75 } | |
76 | |
77 // Bytewise c ? t : e. | |
78 static __m128i if_then_else(__m128i c, __m128i t, __m128i e) { | |
79 // SSE 4.1+ would be: return _mm_blendv_epi8(e,t,c); | |
msarett
2016/01/27 20:56:10
Why not add a #if here?
mtklein
2016/01/27 21:00:16
Mostly because we won't have a bot to test it, tho
| |
80 return _mm_or_si128(_mm_and_si128(c, t), _mm_andnot_si128(c, e)); | |
81 } | |
82 | |
83 void sk_paeth4_sse2(png_row_infop row_info, png_bytep row_u8, png_const_byte p prev_u8) { | |
84 auto prev = (const uint32_t*)prev_u8; | |
85 auto row = (uint32_t*)row_u8; | |
86 int n = row_info->rowbytes / 4; | |
87 | |
88 // Paeth tries to predict pixel d using the pixel to the left of it, a, | |
89 // and two pixels from the previous row, b and c: | |
90 // prev: c b | |
91 // row: a d | |
92 // The Paeth function predicts d to be whichever of a, b, or c is neares t to p=a+b-c. | |
93 | |
94 // The first pixel has no left context, and so uses an Up filter, p = b. | |
95 // This works naturally with our main loop's p = a+b-c if we force a and c to zero. | |
96 // Here we zero b and d, which become c and a respectively at the start of the loop. | |
97 __m128i c, b = _mm_setzero_si128(), | |
98 a, d = _mm_setzero_si128(); | |
99 | |
100 while (n --> 0) { | |
101 c = b; b = load4(prev++); | |
102 a = d; d = load4(row); | |
103 | |
104 // We can't express p in 8 bits, but luckily we can use this faux p instead. | |
105 // (I have no deep insight here... I just proved this with brute for ce.) | |
106 __m128i min = _mm_min_epu8(a,b), | |
107 max = _mm_max_epu8(a,b), | |
108 faux_p = _mm_adds_epu8(min, _mm_subs_epu8(max, c)); | |
109 | |
110 // We could use faux_p for calculating all three of pa, pb, and pc, | |
111 // but it's a little quicker to calculate the correct pa and pb dire ctly, | |
112 // and the predictor remains the same. (Again, brute force.) | |
113 __m128i pa = absdiff_u8(b,c), // |a+b-c - a| == |b-c| | |
114 pb = absdiff_u8(a,c), // |a+b-c - b| == |a-c| | |
115 faux_pc = absdiff_u8(faux_p, c); | |
116 | |
117 // From here, things are straightforward. Find the smallest distanc e to p... | |
118 __m128i smallest = _mm_min_epu8(_mm_min_epu8(pa, pb), faux_pc); | |
119 | |
120 // ... then the predictor is the input corresponding to that smalles t distance, | |
121 // breaking ties in favor of a over b over c. | |
122 __m128i nearest = if_then_else(_mm_cmpeq_epi8(smallest, pa), a, | |
123 if_then_else(_mm_cmpeq_epi8(smallest, pb), b, | |
124 c)); | |
125 | |
126 // We've reconstructed d! Leave it for next round to become a, and write it out. | |
127 d = _mm_add_epi8(d, nearest); | |
128 store4(row++, d); | |
129 } | |
130 } | |
131 | |
132 #endif | |
OLD | NEW |