| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2015 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 | |
| 8 #include "GrTessellator.h" | |
| 9 | |
| 10 #include "GrBatchFlushState.h" | |
| 11 #include "GrBatchTest.h" | |
| 12 #include "GrDefaultGeoProcFactory.h" | |
| 13 #include "GrPathUtils.h" | |
| 14 #include "GrVertices.h" | |
| 15 #include "GrResourceCache.h" | |
| 16 #include "GrResourceProvider.h" | |
| 17 #include "SkGeometry.h" | |
| 18 #include "SkChunkAlloc.h" | |
| 19 | |
| 20 #include "batches/GrVertexBatch.h" | |
| 21 | |
| 22 #include <stdio.h> | |
| 23 | |
| 24 /* | |
| 25 * There are six stages to the algorithm: | |
| 26 * | |
| 27 * 1) Linearize the path contours into piecewise linear segments (path_to_contou
rs()). | |
| 28 * 2) Build a mesh of edges connecting the vertices (build_edges()). | |
| 29 * 3) Sort the vertices in Y (and secondarily in X) (merge_sort()). | |
| 30 * 4) Simplify the mesh by inserting new vertices at intersecting edges (simplif
y()). | |
| 31 * 5) Tessellate the simplified mesh into monotone polygons (tessellate()). | |
| 32 * 6) Triangulate the monotone polygons directly into a vertex buffer (polys_to_
triangles()). | |
| 33 * | |
| 34 * The vertex sorting in step (3) is a merge sort, since it plays well with the
linked list | |
| 35 * of vertices (and the necessity of inserting new vertices on intersection). | |
| 36 * | |
| 37 * Stages (4) and (5) use an active edge list, which a list of all edges for whi
ch the | |
| 38 * sweep line has crossed the top vertex, but not the bottom vertex. It's sorte
d | |
| 39 * left-to-right based on the point where both edges are active (when both top v
ertices | |
| 40 * have been seen, so the "lower" top vertex of the two). If the top vertices ar
e equal | |
| 41 * (shared), it's sorted based on the last point where both edges are active, so
the | |
| 42 * "upper" bottom vertex. | |
| 43 * | |
| 44 * The most complex step is the simplification (4). It's based on the Bentley-Ot
tman | |
| 45 * line-sweep algorithm, but due to floating point inaccuracy, the intersection
points are | |
| 46 * not exact and may violate the mesh topology or active edge list ordering. We | |
| 47 * accommodate this by adjusting the topology of the mesh and AEL to match the i
ntersection | |
| 48 * points. This occurs in three ways: | |
| 49 * | |
| 50 * A) Intersections may cause a shortened edge to no longer be ordered with resp
ect to its | |
| 51 * neighbouring edges at the top or bottom vertex. This is handled by merging
the | |
| 52 * edges (merge_collinear_edges()). | |
| 53 * B) Intersections may cause an edge to violate the left-to-right ordering of t
he | |
| 54 * active edge list. This is handled by splitting the neighbour edge on the | |
| 55 * intersected vertex (cleanup_active_edges()). | |
| 56 * C) Shortening an edge may cause an active edge to become inactive or an inact
ive edge | |
| 57 * to become active. This is handled by removing or inserting the edge in the
active | |
| 58 * edge list (fix_active_state()). | |
| 59 * | |
| 60 * The tessellation steps (5) and (6) are based on "Triangulating Simple Polygon
s and | |
| 61 * Equivalent Problems" (Fournier and Montuno); also a line-sweep algorithm. Not
e that it | |
| 62 * currently uses a linked list for the active edge list, rather than a 2-3 tree
as the | |
| 63 * paper describes. The 2-3 tree gives O(lg N) lookups, but insertion and remova
l also | |
| 64 * become O(lg N). In all the test cases, it was found that the cost of frequent
O(lg N) | |
| 65 * insertions and removals was greater than the cost of infrequent O(N) lookups
with the | |
| 66 * linked list implementation. With the latter, all removals are O(1), and most
insertions | |
| 67 * are O(1), since we know the adjacent edge in the active edge list based on th
e topology. | |
| 68 * Only type 2 vertices (see paper) require the O(N) lookups, and these are much
less | |
| 69 * frequent. There may be other data structures worth investigating, however. | |
| 70 * | |
| 71 * Note that the orientation of the line sweep algorithms is determined by the a
spect ratio of the | |
| 72 * path bounds. When the path is taller than it is wide, we sort vertices based
on increasing Y | |
| 73 * coordinate, and secondarily by increasing X coordinate. When the path is wide
r than it is tall, | |
| 74 * we sort by increasing X coordinate, but secondarily by *decreasing* Y coordin
ate. This is so | |
| 75 * that the "left" and "right" orientation in the code remains correct (edges to
the left are | |
| 76 * increasing in Y; edges to the right are decreasing in Y). That is, the settin
g rotates 90 | |
| 77 * degrees counterclockwise, rather that transposing. | |
| 78 */ | |
| 79 | |
| 80 #define LOGGING_ENABLED 0 | |
| 81 | |
| 82 #if LOGGING_ENABLED | |
| 83 #define LOG printf | |
| 84 #else | |
| 85 #define LOG(...) | |
| 86 #endif | |
| 87 | |
| 88 #define ALLOC_NEW(Type, args, alloc) new (alloc.allocThrow(sizeof(Type))) Type a
rgs | |
| 89 | |
| 90 namespace { | |
| 91 | |
| 92 struct Vertex; | |
| 93 struct Edge; | |
| 94 struct Poly; | |
| 95 | |
| 96 template <class T, T* T::*Prev, T* T::*Next> | |
| 97 void insert(T* t, T* prev, T* next, T** head, T** tail) { | |
| 98 t->*Prev = prev; | |
| 99 t->*Next = next; | |
| 100 if (prev) { | |
| 101 prev->*Next = t; | |
| 102 } else if (head) { | |
| 103 *head = t; | |
| 104 } | |
| 105 if (next) { | |
| 106 next->*Prev = t; | |
| 107 } else if (tail) { | |
| 108 *tail = t; | |
| 109 } | |
| 110 } | |
| 111 | |
| 112 template <class T, T* T::*Prev, T* T::*Next> | |
| 113 void remove(T* t, T** head, T** tail) { | |
| 114 if (t->*Prev) { | |
| 115 t->*Prev->*Next = t->*Next; | |
| 116 } else if (head) { | |
| 117 *head = t->*Next; | |
| 118 } | |
| 119 if (t->*Next) { | |
| 120 t->*Next->*Prev = t->*Prev; | |
| 121 } else if (tail) { | |
| 122 *tail = t->*Prev; | |
| 123 } | |
| 124 t->*Prev = t->*Next = nullptr; | |
| 125 } | |
| 126 | |
| 127 /** | |
| 128 * Vertices are used in three ways: first, the path contours are converted into
a | |
| 129 * circularly-linked list of Vertices for each contour. After edge construction,
the same Vertices | |
| 130 * are re-ordered by the merge sort according to the sweep_lt comparator (usuall
y, increasing | |
| 131 * in Y) using the same fPrev/fNext pointers that were used for the contours, to
avoid | |
| 132 * reallocation. Finally, MonotonePolys are built containing a circularly-linked
list of | |
| 133 * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePoly
s, since | |
| 134 * an individual Vertex from the path mesh may belong to multiple | |
| 135 * MonotonePolys, so the original Vertices cannot be re-used. | |
| 136 */ | |
| 137 | |
| 138 struct Vertex { | |
| 139 Vertex(const SkPoint& point) | |
| 140 : fPoint(point), fPrev(nullptr), fNext(nullptr) | |
| 141 , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr) | |
| 142 , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr) | |
| 143 , fProcessed(false) | |
| 144 #if LOGGING_ENABLED | |
| 145 , fID (-1.0f) | |
| 146 #endif | |
| 147 {} | |
| 148 SkPoint fPoint; // Vertex position | |
| 149 Vertex* fPrev; // Linked list of contours, then Y-sorted vertices
. | |
| 150 Vertex* fNext; // " | |
| 151 Edge* fFirstEdgeAbove; // Linked list of edges above this vertex. | |
| 152 Edge* fLastEdgeAbove; // " | |
| 153 Edge* fFirstEdgeBelow; // Linked list of edges below this vertex. | |
| 154 Edge* fLastEdgeBelow; // " | |
| 155 bool fProcessed; // Has this vertex been seen in simplify()? | |
| 156 #if LOGGING_ENABLED | |
| 157 float fID; // Identifier used for logging. | |
| 158 #endif | |
| 159 }; | |
| 160 | |
| 161 /*******************************************************************************
********/ | |
| 162 | |
| 163 typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b); | |
| 164 | |
| 165 struct Comparator { | |
| 166 CompareFunc sweep_lt; | |
| 167 CompareFunc sweep_gt; | |
| 168 }; | |
| 169 | |
| 170 bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) { | |
| 171 return a.fX == b.fX ? a.fY > b.fY : a.fX < b.fX; | |
| 172 } | |
| 173 | |
| 174 bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) { | |
| 175 return a.fY == b.fY ? a.fX < b.fX : a.fY < b.fY; | |
| 176 } | |
| 177 | |
| 178 bool sweep_gt_horiz(const SkPoint& a, const SkPoint& b) { | |
| 179 return a.fX == b.fX ? a.fY < b.fY : a.fX > b.fX; | |
| 180 } | |
| 181 | |
| 182 bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) { | |
| 183 return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY; | |
| 184 } | |
| 185 | |
| 186 inline SkPoint* emit_vertex(Vertex* v, SkPoint* data) { | |
| 187 *data++ = v->fPoint; | |
| 188 return data; | |
| 189 } | |
| 190 | |
| 191 SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) { | |
| 192 #if WIREFRAME | |
| 193 data = emit_vertex(v0, data); | |
| 194 data = emit_vertex(v1, data); | |
| 195 data = emit_vertex(v1, data); | |
| 196 data = emit_vertex(v2, data); | |
| 197 data = emit_vertex(v2, data); | |
| 198 data = emit_vertex(v0, data); | |
| 199 #else | |
| 200 data = emit_vertex(v0, data); | |
| 201 data = emit_vertex(v1, data); | |
| 202 data = emit_vertex(v2, data); | |
| 203 #endif | |
| 204 return data; | |
| 205 } | |
| 206 | |
| 207 struct EdgeList { | |
| 208 EdgeList() : fHead(nullptr), fTail(nullptr) {} | |
| 209 Edge* fHead; | |
| 210 Edge* fTail; | |
| 211 }; | |
| 212 | |
| 213 /** | |
| 214 * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of
"edges above" and | |
| 215 * "edge below" a vertex as well as for the active edge list is handled by isLef
tOf()/isRightOf(). | |
| 216 * Note that an Edge will give occasionally dist() != 0 for its own endpoints (b
ecause floating | |
| 217 * point). For speed, that case is only tested by the callers which require it (
e.g., | |
| 218 * cleanup_active_edges()). Edges also handle checking for intersection with oth
er edges. | |
| 219 * Currently, this converts the edges to the parametric form, in order to avoid
doing a division | |
| 220 * until an intersection has been confirmed. This is slightly slower in the "fou
nd" case, but | |
| 221 * a lot faster in the "not found" case. | |
| 222 * | |
| 223 * The coefficients of the line equation stored in double precision to avoid cat
astrphic | |
| 224 * cancellation in the isLeftOf() and isRightOf() checks. Using doubles ensures
that the result is | |
| 225 * correct in float, since it's a polynomial of degree 2. The intersect() functi
on, being | |
| 226 * degree 5, is still subject to catastrophic cancellation. We deal with that by
assuming its | |
| 227 * output may be incorrect, and adjusting the mesh topology to match (see commen
t at the top of | |
| 228 * this file). | |
| 229 */ | |
| 230 | |
| 231 struct Edge { | |
| 232 Edge(Vertex* top, Vertex* bottom, int winding) | |
| 233 : fWinding(winding) | |
| 234 , fTop(top) | |
| 235 , fBottom(bottom) | |
| 236 , fLeft(nullptr) | |
| 237 , fRight(nullptr) | |
| 238 , fPrevEdgeAbove(nullptr) | |
| 239 , fNextEdgeAbove(nullptr) | |
| 240 , fPrevEdgeBelow(nullptr) | |
| 241 , fNextEdgeBelow(nullptr) | |
| 242 , fLeftPoly(nullptr) | |
| 243 , fRightPoly(nullptr) { | |
| 244 recompute(); | |
| 245 } | |
| 246 int fWinding; // 1 == edge goes downward; -1 = edge goes upwar
d. | |
| 247 Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt
). | |
| 248 Vertex* fBottom; // The bottom vertex in vertex-sort-order. | |
| 249 Edge* fLeft; // The linked list of edges in the active edge l
ist. | |
| 250 Edge* fRight; // " | |
| 251 Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex
's "edges above". | |
| 252 Edge* fNextEdgeAbove; // " | |
| 253 Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's
"edges below". | |
| 254 Edge* fNextEdgeBelow; // " | |
| 255 Poly* fLeftPoly; // The Poly to the left of this edge, if any. | |
| 256 Poly* fRightPoly; // The Poly to the right of this edge, if any. | |
| 257 double fDX; // The line equation for this edge, in implicit
form. | |
| 258 double fDY; // fDY * x + fDX * y + fC = 0, for point (x, y)
on the line. | |
| 259 double fC; | |
| 260 double dist(const SkPoint& p) const { | |
| 261 return fDY * p.fX - fDX * p.fY + fC; | |
| 262 } | |
| 263 bool isRightOf(Vertex* v) const { | |
| 264 return dist(v->fPoint) < 0.0; | |
| 265 } | |
| 266 bool isLeftOf(Vertex* v) const { | |
| 267 return dist(v->fPoint) > 0.0; | |
| 268 } | |
| 269 void recompute() { | |
| 270 fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX; | |
| 271 fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY; | |
| 272 fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX - | |
| 273 static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY; | |
| 274 } | |
| 275 bool intersect(const Edge& other, SkPoint* p) { | |
| 276 LOG("intersecting %g -> %g with %g -> %g\n", | |
| 277 fTop->fID, fBottom->fID, | |
| 278 other.fTop->fID, other.fBottom->fID); | |
| 279 if (fTop == other.fTop || fBottom == other.fBottom) { | |
| 280 return false; | |
| 281 } | |
| 282 double denom = fDX * other.fDY - fDY * other.fDX; | |
| 283 if (denom == 0.0) { | |
| 284 return false; | |
| 285 } | |
| 286 double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX
; | |
| 287 double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY
; | |
| 288 double sNumer = dy * other.fDX - dx * other.fDY; | |
| 289 double tNumer = dy * fDX - dx * fDY; | |
| 290 // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early. | |
| 291 // This saves us doing the divide below unless absolutely necessary. | |
| 292 if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNu
mer > denom) | |
| 293 : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNu
mer < denom)) { | |
| 294 return false; | |
| 295 } | |
| 296 double s = sNumer / denom; | |
| 297 SkASSERT(s >= 0.0 && s <= 1.0); | |
| 298 p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX); | |
| 299 p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY); | |
| 300 return true; | |
| 301 } | |
| 302 bool isActive(EdgeList* activeEdges) const { | |
| 303 return activeEdges && (fLeft || fRight || activeEdges->fHead == this); | |
| 304 } | |
| 305 }; | |
| 306 | |
| 307 /*******************************************************************************
********/ | |
| 308 | |
| 309 struct Poly { | |
| 310 Poly(int winding) | |
| 311 : fWinding(winding) | |
| 312 , fHead(nullptr) | |
| 313 , fTail(nullptr) | |
| 314 , fActive(nullptr) | |
| 315 , fNext(nullptr) | |
| 316 , fPartner(nullptr) | |
| 317 , fCount(0) | |
| 318 { | |
| 319 #if LOGGING_ENABLED | |
| 320 static int gID = 0; | |
| 321 fID = gID++; | |
| 322 LOG("*** created Poly %d\n", fID); | |
| 323 #endif | |
| 324 } | |
| 325 typedef enum { kNeither_Side, kLeft_Side, kRight_Side } Side; | |
| 326 struct MonotonePoly { | |
| 327 MonotonePoly() | |
| 328 : fSide(kNeither_Side) | |
| 329 , fHead(nullptr) | |
| 330 , fTail(nullptr) | |
| 331 , fPrev(nullptr) | |
| 332 , fNext(nullptr) {} | |
| 333 Side fSide; | |
| 334 Vertex* fHead; | |
| 335 Vertex* fTail; | |
| 336 MonotonePoly* fPrev; | |
| 337 MonotonePoly* fNext; | |
| 338 bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { | |
| 339 Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc); | |
| 340 bool done = false; | |
| 341 if (fSide == kNeither_Side) { | |
| 342 fSide = side; | |
| 343 } else { | |
| 344 done = side != fSide; | |
| 345 } | |
| 346 if (fHead == nullptr) { | |
| 347 fHead = fTail = newV; | |
| 348 } else if (fSide == kRight_Side) { | |
| 349 newV->fPrev = fTail; | |
| 350 fTail->fNext = newV; | |
| 351 fTail = newV; | |
| 352 } else { | |
| 353 newV->fNext = fHead; | |
| 354 fHead->fPrev = newV; | |
| 355 fHead = newV; | |
| 356 } | |
| 357 return done; | |
| 358 } | |
| 359 | |
| 360 SkPoint* emit(SkPoint* data) { | |
| 361 Vertex* first = fHead; | |
| 362 Vertex* v = first->fNext; | |
| 363 while (v != fTail) { | |
| 364 SkASSERT(v && v->fPrev && v->fNext); | |
| 365 Vertex* prev = v->fPrev; | |
| 366 Vertex* curr = v; | |
| 367 Vertex* next = v->fNext; | |
| 368 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.
fX; | |
| 369 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.
fY; | |
| 370 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.
fX; | |
| 371 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.
fY; | |
| 372 if (ax * by - ay * bx >= 0.0) { | |
| 373 data = emit_triangle(prev, curr, next, data); | |
| 374 v->fPrev->fNext = v->fNext; | |
| 375 v->fNext->fPrev = v->fPrev; | |
| 376 if (v->fPrev == first) { | |
| 377 v = v->fNext; | |
| 378 } else { | |
| 379 v = v->fPrev; | |
| 380 } | |
| 381 } else { | |
| 382 v = v->fNext; | |
| 383 } | |
| 384 } | |
| 385 return data; | |
| 386 } | |
| 387 }; | |
| 388 Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) { | |
| 389 LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoin
t.fX, v->fPoint.fY, | |
| 390 side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "ne
ither"); | |
| 391 Poly* partner = fPartner; | |
| 392 Poly* poly = this; | |
| 393 if (partner) { | |
| 394 fPartner = partner->fPartner = nullptr; | |
| 395 } | |
| 396 if (!fActive) { | |
| 397 fActive = ALLOC_NEW(MonotonePoly, (), alloc); | |
| 398 } | |
| 399 if (fActive->addVertex(v, side, alloc)) { | |
| 400 if (fTail) { | |
| 401 fActive->fPrev = fTail; | |
| 402 fTail->fNext = fActive; | |
| 403 fTail = fActive; | |
| 404 } else { | |
| 405 fHead = fTail = fActive; | |
| 406 } | |
| 407 if (partner) { | |
| 408 partner->addVertex(v, side, alloc); | |
| 409 poly = partner; | |
| 410 } else { | |
| 411 Vertex* prev = fActive->fSide == Poly::kLeft_Side ? | |
| 412 fActive->fHead->fNext : fActive->fTail->fPrev; | |
| 413 fActive = ALLOC_NEW(MonotonePoly, , alloc); | |
| 414 fActive->addVertex(prev, Poly::kNeither_Side, alloc); | |
| 415 fActive->addVertex(v, side, alloc); | |
| 416 } | |
| 417 } | |
| 418 fCount++; | |
| 419 return poly; | |
| 420 } | |
| 421 void end(Vertex* v, SkChunkAlloc& alloc) { | |
| 422 LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY); | |
| 423 if (fPartner) { | |
| 424 fPartner = fPartner->fPartner = nullptr; | |
| 425 } | |
| 426 addVertex(v, fActive->fSide == kLeft_Side ? kRight_Side : kLeft_Side, al
loc); | |
| 427 } | |
| 428 SkPoint* emit(SkPoint *data) { | |
| 429 if (fCount < 3) { | |
| 430 return data; | |
| 431 } | |
| 432 LOG("emit() %d, size %d\n", fID, fCount); | |
| 433 for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) { | |
| 434 data = m->emit(data); | |
| 435 } | |
| 436 return data; | |
| 437 } | |
| 438 int fWinding; | |
| 439 MonotonePoly* fHead; | |
| 440 MonotonePoly* fTail; | |
| 441 MonotonePoly* fActive; | |
| 442 Poly* fNext; | |
| 443 Poly* fPartner; | |
| 444 int fCount; | |
| 445 #if LOGGING_ENABLED | |
| 446 int fID; | |
| 447 #endif | |
| 448 }; | |
| 449 | |
| 450 /*******************************************************************************
********/ | |
| 451 | |
| 452 bool coincident(const SkPoint& a, const SkPoint& b) { | |
| 453 return a == b; | |
| 454 } | |
| 455 | |
| 456 Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) { | |
| 457 Poly* poly = ALLOC_NEW(Poly, (winding), alloc); | |
| 458 poly->addVertex(v, Poly::kNeither_Side, alloc); | |
| 459 poly->fNext = *head; | |
| 460 *head = poly; | |
| 461 return poly; | |
| 462 } | |
| 463 | |
| 464 Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head, | |
| 465 SkChunkAlloc& alloc) { | |
| 466 Vertex* v = ALLOC_NEW(Vertex, (p), alloc); | |
| 467 #if LOGGING_ENABLED | |
| 468 static float gID = 0.0f; | |
| 469 v->fID = gID++; | |
| 470 #endif | |
| 471 if (prev) { | |
| 472 prev->fNext = v; | |
| 473 v->fPrev = prev; | |
| 474 } else { | |
| 475 *head = v; | |
| 476 } | |
| 477 return v; | |
| 478 } | |
| 479 | |
| 480 Vertex* generate_quadratic_points(const SkPoint& p0, | |
| 481 const SkPoint& p1, | |
| 482 const SkPoint& p2, | |
| 483 SkScalar tolSqd, | |
| 484 Vertex* prev, | |
| 485 Vertex** head, | |
| 486 int pointsLeft, | |
| 487 SkChunkAlloc& alloc) { | |
| 488 SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2); | |
| 489 if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) { | |
| 490 return append_point_to_contour(p2, prev, head, alloc); | |
| 491 } | |
| 492 | |
| 493 const SkPoint q[] = { | |
| 494 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, | |
| 495 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, | |
| 496 }; | |
| 497 const SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1]
.fY) }; | |
| 498 | |
| 499 pointsLeft >>= 1; | |
| 500 prev = generate_quadratic_points(p0, q[0], r, tolSqd, prev, head, pointsLeft
, alloc); | |
| 501 prev = generate_quadratic_points(r, q[1], p2, tolSqd, prev, head, pointsLeft
, alloc); | |
| 502 return prev; | |
| 503 } | |
| 504 | |
| 505 Vertex* generate_cubic_points(const SkPoint& p0, | |
| 506 const SkPoint& p1, | |
| 507 const SkPoint& p2, | |
| 508 const SkPoint& p3, | |
| 509 SkScalar tolSqd, | |
| 510 Vertex* prev, | |
| 511 Vertex** head, | |
| 512 int pointsLeft, | |
| 513 SkChunkAlloc& alloc) { | |
| 514 SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3); | |
| 515 SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3); | |
| 516 if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) || | |
| 517 !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) { | |
| 518 return append_point_to_contour(p3, prev, head, alloc); | |
| 519 } | |
| 520 const SkPoint q[] = { | |
| 521 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, | |
| 522 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, | |
| 523 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } | |
| 524 }; | |
| 525 const SkPoint r[] = { | |
| 526 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, | |
| 527 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } | |
| 528 }; | |
| 529 const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1]
.fY) }; | |
| 530 pointsLeft >>= 1; | |
| 531 prev = generate_cubic_points(p0, q[0], r[0], s, tolSqd, prev, head, pointsLe
ft, alloc); | |
| 532 prev = generate_cubic_points(s, r[1], q[2], p3, tolSqd, prev, head, pointsLe
ft, alloc); | |
| 533 return prev; | |
| 534 } | |
| 535 | |
| 536 // Stage 1: convert the input path to a set of linear contours (linked list of V
ertices). | |
| 537 | |
| 538 void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clip
Bounds, | |
| 539 Vertex** contours, SkChunkAlloc& alloc, bool *isLinear) { | |
| 540 SkScalar toleranceSqd = tolerance * tolerance; | |
| 541 | |
| 542 SkPoint pts[4]; | |
| 543 bool done = false; | |
| 544 *isLinear = true; | |
| 545 SkPath::Iter iter(path, false); | |
| 546 Vertex* prev = nullptr; | |
| 547 Vertex* head = nullptr; | |
| 548 if (path.isInverseFillType()) { | |
| 549 SkPoint quad[4]; | |
| 550 clipBounds.toQuad(quad); | |
| 551 for (int i = 3; i >= 0; i--) { | |
| 552 prev = append_point_to_contour(quad[i], prev, &head, alloc); | |
| 553 } | |
| 554 head->fPrev = prev; | |
| 555 prev->fNext = head; | |
| 556 *contours++ = head; | |
| 557 head = prev = nullptr; | |
| 558 } | |
| 559 SkAutoConicToQuads converter; | |
| 560 while (!done) { | |
| 561 SkPath::Verb verb = iter.next(pts); | |
| 562 switch (verb) { | |
| 563 case SkPath::kConic_Verb: { | |
| 564 SkScalar weight = iter.conicWeight(); | |
| 565 const SkPoint* quadPts = converter.computeQuads(pts, weight, tol
eranceSqd); | |
| 566 for (int i = 0; i < converter.countQuads(); ++i) { | |
| 567 int pointsLeft = GrPathUtils::quadraticPointCount(quadPts, t
olerance); | |
| 568 prev = generate_quadratic_points(quadPts[0], quadPts[1], qua
dPts[2], | |
| 569 toleranceSqd, prev, &head,
pointsLeft, alloc); | |
| 570 quadPts += 2; | |
| 571 } | |
| 572 *isLinear = false; | |
| 573 break; | |
| 574 } | |
| 575 case SkPath::kMove_Verb: | |
| 576 if (head) { | |
| 577 head->fPrev = prev; | |
| 578 prev->fNext = head; | |
| 579 *contours++ = head; | |
| 580 } | |
| 581 head = prev = nullptr; | |
| 582 prev = append_point_to_contour(pts[0], prev, &head, alloc); | |
| 583 break; | |
| 584 case SkPath::kLine_Verb: { | |
| 585 prev = append_point_to_contour(pts[1], prev, &head, alloc); | |
| 586 break; | |
| 587 } | |
| 588 case SkPath::kQuad_Verb: { | |
| 589 int pointsLeft = GrPathUtils::quadraticPointCount(pts, tolerance
); | |
| 590 prev = generate_quadratic_points(pts[0], pts[1], pts[2], toleran
ceSqd, prev, | |
| 591 &head, pointsLeft, alloc); | |
| 592 *isLinear = false; | |
| 593 break; | |
| 594 } | |
| 595 case SkPath::kCubic_Verb: { | |
| 596 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance); | |
| 597 prev = generate_cubic_points(pts[0], pts[1], pts[2], pts[3], | |
| 598 toleranceSqd, prev, &head, pointsLeft, alloc); | |
| 599 *isLinear = false; | |
| 600 break; | |
| 601 } | |
| 602 case SkPath::kClose_Verb: | |
| 603 if (head) { | |
| 604 head->fPrev = prev; | |
| 605 prev->fNext = head; | |
| 606 *contours++ = head; | |
| 607 } | |
| 608 head = prev = nullptr; | |
| 609 break; | |
| 610 case SkPath::kDone_Verb: | |
| 611 if (head) { | |
| 612 head->fPrev = prev; | |
| 613 prev->fNext = head; | |
| 614 *contours++ = head; | |
| 615 } | |
| 616 done = true; | |
| 617 break; | |
| 618 } | |
| 619 } | |
| 620 } | |
| 621 | |
| 622 inline bool apply_fill_type(SkPath::FillType fillType, int winding) { | |
| 623 switch (fillType) { | |
| 624 case SkPath::kWinding_FillType: | |
| 625 return winding != 0; | |
| 626 case SkPath::kEvenOdd_FillType: | |
| 627 return (winding & 1) != 0; | |
| 628 case SkPath::kInverseWinding_FillType: | |
| 629 return winding == 1; | |
| 630 case SkPath::kInverseEvenOdd_FillType: | |
| 631 return (winding & 1) == 1; | |
| 632 default: | |
| 633 SkASSERT(false); | |
| 634 return false; | |
| 635 } | |
| 636 } | |
| 637 | |
| 638 Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c) { | |
| 639 int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1; | |
| 640 Vertex* top = winding < 0 ? next : prev; | |
| 641 Vertex* bottom = winding < 0 ? prev : next; | |
| 642 return ALLOC_NEW(Edge, (top, bottom, winding), alloc); | |
| 643 } | |
| 644 | |
| 645 void remove_edge(Edge* edge, EdgeList* edges) { | |
| 646 LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); | |
| 647 SkASSERT(edge->isActive(edges)); | |
| 648 remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &edges->fHead, &edges->fTail
); | |
| 649 } | |
| 650 | |
| 651 void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) { | |
| 652 LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); | |
| 653 SkASSERT(!edge->isActive(edges)); | |
| 654 Edge* next = prev ? prev->fRight : edges->fHead; | |
| 655 insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &edges->fHead, &
edges->fTail); | |
| 656 } | |
| 657 | |
| 658 void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right)
{ | |
| 659 if (v->fFirstEdgeAbove) { | |
| 660 *left = v->fFirstEdgeAbove->fLeft; | |
| 661 *right = v->fLastEdgeAbove->fRight; | |
| 662 return; | |
| 663 } | |
| 664 Edge* next = nullptr; | |
| 665 Edge* prev; | |
| 666 for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) { | |
| 667 if (prev->isLeftOf(v)) { | |
| 668 break; | |
| 669 } | |
| 670 next = prev; | |
| 671 } | |
| 672 *left = prev; | |
| 673 *right = next; | |
| 674 return; | |
| 675 } | |
| 676 | |
| 677 void find_enclosing_edges(Edge* edge, EdgeList* edges, Comparator& c, Edge** lef
t, Edge** right) { | |
| 678 Edge* prev = nullptr; | |
| 679 Edge* next; | |
| 680 for (next = edges->fHead; next != nullptr; next = next->fRight) { | |
| 681 if ((c.sweep_gt(edge->fTop->fPoint, next->fTop->fPoint) && next->isRight
Of(edge->fTop)) || | |
| 682 (c.sweep_gt(next->fTop->fPoint, edge->fTop->fPoint) && edge->isLeftO
f(next->fTop)) || | |
| 683 (c.sweep_lt(edge->fBottom->fPoint, next->fBottom->fPoint) && | |
| 684 next->isRightOf(edge->fBottom)) || | |
| 685 (c.sweep_lt(next->fBottom->fPoint, edge->fBottom->fPoint) && | |
| 686 edge->isLeftOf(next->fBottom))) { | |
| 687 break; | |
| 688 } | |
| 689 prev = next; | |
| 690 } | |
| 691 *left = prev; | |
| 692 *right = next; | |
| 693 return; | |
| 694 } | |
| 695 | |
| 696 void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) { | |
| 697 if (edge->isActive(activeEdges)) { | |
| 698 if (edge->fBottom->fProcessed || !edge->fTop->fProcessed) { | |
| 699 remove_edge(edge, activeEdges); | |
| 700 } | |
| 701 } else if (edge->fTop->fProcessed && !edge->fBottom->fProcessed) { | |
| 702 Edge* left; | |
| 703 Edge* right; | |
| 704 find_enclosing_edges(edge, activeEdges, c, &left, &right); | |
| 705 insert_edge(edge, left, activeEdges); | |
| 706 } | |
| 707 } | |
| 708 | |
| 709 void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) { | |
| 710 if (edge->fTop->fPoint == edge->fBottom->fPoint || | |
| 711 c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) { | |
| 712 return; | |
| 713 } | |
| 714 LOG("insert edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBott
om->fID, v->fID); | |
| 715 Edge* prev = nullptr; | |
| 716 Edge* next; | |
| 717 for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) { | |
| 718 if (next->isRightOf(edge->fTop)) { | |
| 719 break; | |
| 720 } | |
| 721 prev = next; | |
| 722 } | |
| 723 insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( | |
| 724 edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove); | |
| 725 } | |
| 726 | |
| 727 void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) { | |
| 728 if (edge->fTop->fPoint == edge->fBottom->fPoint || | |
| 729 c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) { | |
| 730 return; | |
| 731 } | |
| 732 LOG("insert edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBott
om->fID, v->fID); | |
| 733 Edge* prev = nullptr; | |
| 734 Edge* next; | |
| 735 for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) { | |
| 736 if (next->isRightOf(edge->fBottom)) { | |
| 737 break; | |
| 738 } | |
| 739 prev = next; | |
| 740 } | |
| 741 insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( | |
| 742 edge, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow); | |
| 743 } | |
| 744 | |
| 745 void remove_edge_above(Edge* edge) { | |
| 746 LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBo
ttom->fID, | |
| 747 edge->fBottom->fID); | |
| 748 remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( | |
| 749 edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove); | |
| 750 } | |
| 751 | |
| 752 void remove_edge_below(Edge* edge) { | |
| 753 LOG("removing edge (%g -> %g) below vertex %g\n", edge->fTop->fID, edge->fBo
ttom->fID, | |
| 754 edge->fTop->fID); | |
| 755 remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( | |
| 756 edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow); | |
| 757 } | |
| 758 | |
| 759 void erase_edge_if_zero_winding(Edge* edge, EdgeList* edges) { | |
| 760 if (edge->fWinding != 0) { | |
| 761 return; | |
| 762 } | |
| 763 LOG("erasing edge (%g -> %g)\n", edge->fTop->fID, edge->fBottom->fID); | |
| 764 remove_edge_above(edge); | |
| 765 remove_edge_below(edge); | |
| 766 if (edge->isActive(edges)) { | |
| 767 remove_edge(edge, edges); | |
| 768 } | |
| 769 } | |
| 770 | |
| 771 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c); | |
| 772 | |
| 773 void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) { | |
| 774 remove_edge_below(edge); | |
| 775 edge->fTop = v; | |
| 776 edge->recompute(); | |
| 777 insert_edge_below(edge, v, c); | |
| 778 fix_active_state(edge, activeEdges, c); | |
| 779 merge_collinear_edges(edge, activeEdges, c); | |
| 780 } | |
| 781 | |
| 782 void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) { | |
| 783 remove_edge_above(edge); | |
| 784 edge->fBottom = v; | |
| 785 edge->recompute(); | |
| 786 insert_edge_above(edge, v, c); | |
| 787 fix_active_state(edge, activeEdges, c); | |
| 788 merge_collinear_edges(edge, activeEdges, c); | |
| 789 } | |
| 790 | |
| 791 void merge_edges_above(Edge* edge, Edge* other, EdgeList* activeEdges, Comparato
r& c) { | |
| 792 if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) { | |
| 793 LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n", | |
| 794 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, | |
| 795 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); | |
| 796 other->fWinding += edge->fWinding; | |
| 797 erase_edge_if_zero_winding(other, activeEdges); | |
| 798 edge->fWinding = 0; | |
| 799 erase_edge_if_zero_winding(edge, activeEdges); | |
| 800 } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) { | |
| 801 other->fWinding += edge->fWinding; | |
| 802 erase_edge_if_zero_winding(other, activeEdges); | |
| 803 set_bottom(edge, other->fTop, activeEdges, c); | |
| 804 } else { | |
| 805 edge->fWinding += other->fWinding; | |
| 806 erase_edge_if_zero_winding(edge, activeEdges); | |
| 807 set_bottom(other, edge->fTop, activeEdges, c); | |
| 808 } | |
| 809 } | |
| 810 | |
| 811 void merge_edges_below(Edge* edge, Edge* other, EdgeList* activeEdges, Comparato
r& c) { | |
| 812 if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) { | |
| 813 LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n", | |
| 814 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, | |
| 815 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); | |
| 816 other->fWinding += edge->fWinding; | |
| 817 erase_edge_if_zero_winding(other, activeEdges); | |
| 818 edge->fWinding = 0; | |
| 819 erase_edge_if_zero_winding(edge, activeEdges); | |
| 820 } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) { | |
| 821 edge->fWinding += other->fWinding; | |
| 822 erase_edge_if_zero_winding(edge, activeEdges); | |
| 823 set_top(other, edge->fBottom, activeEdges, c); | |
| 824 } else { | |
| 825 other->fWinding += edge->fWinding; | |
| 826 erase_edge_if_zero_winding(other, activeEdges); | |
| 827 set_top(edge, other->fBottom, activeEdges, c); | |
| 828 } | |
| 829 } | |
| 830 | |
| 831 void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) { | |
| 832 if (edge->fPrevEdgeAbove && (edge->fTop == edge->fPrevEdgeAbove->fTop || | |
| 833 !edge->fPrevEdgeAbove->isLeftOf(edge->fTop))) { | |
| 834 merge_edges_above(edge, edge->fPrevEdgeAbove, activeEdges, c); | |
| 835 } else if (edge->fNextEdgeAbove && (edge->fTop == edge->fNextEdgeAbove->fTop
|| | |
| 836 !edge->isLeftOf(edge->fNextEdgeAbove->fT
op))) { | |
| 837 merge_edges_above(edge, edge->fNextEdgeAbove, activeEdges, c); | |
| 838 } | |
| 839 if (edge->fPrevEdgeBelow && (edge->fBottom == edge->fPrevEdgeBelow->fBottom
|| | |
| 840 !edge->fPrevEdgeBelow->isLeftOf(edge->fBottom))
) { | |
| 841 merge_edges_below(edge, edge->fPrevEdgeBelow, activeEdges, c); | |
| 842 } else if (edge->fNextEdgeBelow && (edge->fBottom == edge->fNextEdgeBelow->f
Bottom || | |
| 843 !edge->isLeftOf(edge->fNextEdgeBelow->fB
ottom))) { | |
| 844 merge_edges_below(edge, edge->fNextEdgeBelow, activeEdges, c); | |
| 845 } | |
| 846 } | |
| 847 | |
| 848 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkC
hunkAlloc& alloc); | |
| 849 | |
| 850 void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkCh
unkAlloc& alloc) { | |
| 851 Vertex* top = edge->fTop; | |
| 852 Vertex* bottom = edge->fBottom; | |
| 853 if (edge->fLeft) { | |
| 854 Vertex* leftTop = edge->fLeft->fTop; | |
| 855 Vertex* leftBottom = edge->fLeft->fBottom; | |
| 856 if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(t
op)) { | |
| 857 split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc); | |
| 858 } else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(
leftTop)) { | |
| 859 split_edge(edge, leftTop, activeEdges, c, alloc); | |
| 860 } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) && | |
| 861 !edge->fLeft->isLeftOf(bottom)) { | |
| 862 split_edge(edge->fLeft, bottom, activeEdges, c, alloc); | |
| 863 } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRi
ghtOf(leftBottom)) { | |
| 864 split_edge(edge, leftBottom, activeEdges, c, alloc); | |
| 865 } | |
| 866 } | |
| 867 if (edge->fRight) { | |
| 868 Vertex* rightTop = edge->fRight->fTop; | |
| 869 Vertex* rightBottom = edge->fRight->fBottom; | |
| 870 if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightO
f(top)) { | |
| 871 split_edge(edge->fRight, top, activeEdges, c, alloc); | |
| 872 } else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(
rightTop)) { | |
| 873 split_edge(edge, rightTop, activeEdges, c, alloc); | |
| 874 } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) && | |
| 875 !edge->fRight->isRightOf(bottom)) { | |
| 876 split_edge(edge->fRight, bottom, activeEdges, c, alloc); | |
| 877 } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) && | |
| 878 !edge->isLeftOf(rightBottom)) { | |
| 879 split_edge(edge, rightBottom, activeEdges, c, alloc); | |
| 880 } | |
| 881 } | |
| 882 } | |
| 883 | |
| 884 void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkC
hunkAlloc& alloc) { | |
| 885 LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n", | |
| 886 edge->fTop->fID, edge->fBottom->fID, | |
| 887 v->fID, v->fPoint.fX, v->fPoint.fY); | |
| 888 if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) { | |
| 889 set_top(edge, v, activeEdges, c); | |
| 890 } else if (c.sweep_gt(v->fPoint, edge->fBottom->fPoint)) { | |
| 891 set_bottom(edge, v, activeEdges, c); | |
| 892 } else { | |
| 893 Edge* newEdge = ALLOC_NEW(Edge, (v, edge->fBottom, edge->fWinding), allo
c); | |
| 894 insert_edge_below(newEdge, v, c); | |
| 895 insert_edge_above(newEdge, edge->fBottom, c); | |
| 896 set_bottom(edge, v, activeEdges, c); | |
| 897 cleanup_active_edges(edge, activeEdges, c, alloc); | |
| 898 fix_active_state(newEdge, activeEdges, c); | |
| 899 merge_collinear_edges(newEdge, activeEdges, c); | |
| 900 } | |
| 901 } | |
| 902 | |
| 903 void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkCh
unkAlloc& alloc) { | |
| 904 LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX
, src->fPoint.fY, | |
| 905 src->fID, dst->fID); | |
| 906 for (Edge* edge = src->fFirstEdgeAbove; edge;) { | |
| 907 Edge* next = edge->fNextEdgeAbove; | |
| 908 set_bottom(edge, dst, nullptr, c); | |
| 909 edge = next; | |
| 910 } | |
| 911 for (Edge* edge = src->fFirstEdgeBelow; edge;) { | |
| 912 Edge* next = edge->fNextEdgeBelow; | |
| 913 set_top(edge, dst, nullptr, c); | |
| 914 edge = next; | |
| 915 } | |
| 916 remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, nullptr); | |
| 917 } | |
| 918 | |
| 919 Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, C
omparator& c, | |
| 920 SkChunkAlloc& alloc) { | |
| 921 SkPoint p; | |
| 922 if (!edge || !other) { | |
| 923 return nullptr; | |
| 924 } | |
| 925 if (edge->intersect(*other, &p)) { | |
| 926 Vertex* v; | |
| 927 LOG("found intersection, pt is %g, %g\n", p.fX, p.fY); | |
| 928 if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) { | |
| 929 split_edge(other, edge->fTop, activeEdges, c, alloc); | |
| 930 v = edge->fTop; | |
| 931 } else if (p == edge->fBottom->fPoint || c.sweep_gt(p, edge->fBottom->fP
oint)) { | |
| 932 split_edge(other, edge->fBottom, activeEdges, c, alloc); | |
| 933 v = edge->fBottom; | |
| 934 } else if (p == other->fTop->fPoint || c.sweep_lt(p, other->fTop->fPoint
)) { | |
| 935 split_edge(edge, other->fTop, activeEdges, c, alloc); | |
| 936 v = other->fTop; | |
| 937 } else if (p == other->fBottom->fPoint || c.sweep_gt(p, other->fBottom->
fPoint)) { | |
| 938 split_edge(edge, other->fBottom, activeEdges, c, alloc); | |
| 939 v = other->fBottom; | |
| 940 } else { | |
| 941 Vertex* nextV = edge->fTop; | |
| 942 while (c.sweep_lt(p, nextV->fPoint)) { | |
| 943 nextV = nextV->fPrev; | |
| 944 } | |
| 945 while (c.sweep_lt(nextV->fPoint, p)) { | |
| 946 nextV = nextV->fNext; | |
| 947 } | |
| 948 Vertex* prevV = nextV->fPrev; | |
| 949 if (coincident(prevV->fPoint, p)) { | |
| 950 v = prevV; | |
| 951 } else if (coincident(nextV->fPoint, p)) { | |
| 952 v = nextV; | |
| 953 } else { | |
| 954 v = ALLOC_NEW(Vertex, (p), alloc); | |
| 955 LOG("inserting between %g (%g, %g) and %g (%g, %g)\n", | |
| 956 prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY, | |
| 957 nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY); | |
| 958 #if LOGGING_ENABLED | |
| 959 v->fID = (nextV->fID + prevV->fID) * 0.5f; | |
| 960 #endif | |
| 961 v->fPrev = prevV; | |
| 962 v->fNext = nextV; | |
| 963 prevV->fNext = v; | |
| 964 nextV->fPrev = v; | |
| 965 } | |
| 966 split_edge(edge, v, activeEdges, c, alloc); | |
| 967 split_edge(other, v, activeEdges, c, alloc); | |
| 968 } | |
| 969 return v; | |
| 970 } | |
| 971 return nullptr; | |
| 972 } | |
| 973 | |
| 974 void sanitize_contours(Vertex** contours, int contourCnt) { | |
| 975 for (int i = 0; i < contourCnt; ++i) { | |
| 976 SkASSERT(contours[i]); | |
| 977 for (Vertex* v = contours[i];;) { | |
| 978 if (coincident(v->fPrev->fPoint, v->fPoint)) { | |
| 979 LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoi
nt.fY); | |
| 980 if (v->fPrev == v) { | |
| 981 contours[i] = nullptr; | |
| 982 break; | |
| 983 } | |
| 984 v->fPrev->fNext = v->fNext; | |
| 985 v->fNext->fPrev = v->fPrev; | |
| 986 if (contours[i] == v) { | |
| 987 contours[i] = v->fNext; | |
| 988 } | |
| 989 v = v->fPrev; | |
| 990 } else { | |
| 991 v = v->fNext; | |
| 992 if (v == contours[i]) break; | |
| 993 } | |
| 994 } | |
| 995 } | |
| 996 } | |
| 997 | |
| 998 void merge_coincident_vertices(Vertex** vertices, Comparator& c, SkChunkAlloc& a
lloc) { | |
| 999 for (Vertex* v = (*vertices)->fNext; v != nullptr; v = v->fNext) { | |
| 1000 if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) { | |
| 1001 v->fPoint = v->fPrev->fPoint; | |
| 1002 } | |
| 1003 if (coincident(v->fPrev->fPoint, v->fPoint)) { | |
| 1004 merge_vertices(v->fPrev, v, vertices, c, alloc); | |
| 1005 } | |
| 1006 } | |
| 1007 } | |
| 1008 | |
| 1009 // Stage 2: convert the contours to a mesh of edges connecting the vertices. | |
| 1010 | |
| 1011 Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAll
oc& alloc) { | |
| 1012 Vertex* vertices = nullptr; | |
| 1013 Vertex* prev = nullptr; | |
| 1014 for (int i = 0; i < contourCnt; ++i) { | |
| 1015 for (Vertex* v = contours[i]; v != nullptr;) { | |
| 1016 Vertex* vNext = v->fNext; | |
| 1017 Edge* edge = new_edge(v->fPrev, v, alloc, c); | |
| 1018 if (edge->fWinding > 0) { | |
| 1019 insert_edge_below(edge, v->fPrev, c); | |
| 1020 insert_edge_above(edge, v, c); | |
| 1021 } else { | |
| 1022 insert_edge_below(edge, v, c); | |
| 1023 insert_edge_above(edge, v->fPrev, c); | |
| 1024 } | |
| 1025 merge_collinear_edges(edge, nullptr, c); | |
| 1026 if (prev) { | |
| 1027 prev->fNext = v; | |
| 1028 v->fPrev = prev; | |
| 1029 } else { | |
| 1030 vertices = v; | |
| 1031 } | |
| 1032 prev = v; | |
| 1033 v = vNext; | |
| 1034 if (v == contours[i]) break; | |
| 1035 } | |
| 1036 } | |
| 1037 if (prev) { | |
| 1038 prev->fNext = vertices->fPrev = nullptr; | |
| 1039 } | |
| 1040 return vertices; | |
| 1041 } | |
| 1042 | |
| 1043 // Stage 3: sort the vertices by increasing sweep direction. | |
| 1044 | |
| 1045 Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c); | |
| 1046 | |
| 1047 void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) { | |
| 1048 Vertex* fast; | |
| 1049 Vertex* slow; | |
| 1050 if (!v || !v->fNext) { | |
| 1051 *pFront = v; | |
| 1052 *pBack = nullptr; | |
| 1053 } else { | |
| 1054 slow = v; | |
| 1055 fast = v->fNext; | |
| 1056 | |
| 1057 while (fast != nullptr) { | |
| 1058 fast = fast->fNext; | |
| 1059 if (fast != nullptr) { | |
| 1060 slow = slow->fNext; | |
| 1061 fast = fast->fNext; | |
| 1062 } | |
| 1063 } | |
| 1064 | |
| 1065 *pFront = v; | |
| 1066 *pBack = slow->fNext; | |
| 1067 slow->fNext->fPrev = nullptr; | |
| 1068 slow->fNext = nullptr; | |
| 1069 } | |
| 1070 } | |
| 1071 | |
| 1072 void merge_sort(Vertex** head, Comparator& c) { | |
| 1073 if (!*head || !(*head)->fNext) { | |
| 1074 return; | |
| 1075 } | |
| 1076 | |
| 1077 Vertex* a; | |
| 1078 Vertex* b; | |
| 1079 front_back_split(*head, &a, &b); | |
| 1080 | |
| 1081 merge_sort(&a, c); | |
| 1082 merge_sort(&b, c); | |
| 1083 | |
| 1084 *head = sorted_merge(a, b, c); | |
| 1085 } | |
| 1086 | |
| 1087 inline void append_vertex(Vertex* v, Vertex** head, Vertex** tail) { | |
| 1088 insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, nullptr, head, tail
); | |
| 1089 } | |
| 1090 | |
| 1091 inline void append_vertex_list(Vertex* v, Vertex** head, Vertex** tail) { | |
| 1092 insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, v->fNext, head, tai
l); | |
| 1093 } | |
| 1094 | |
| 1095 Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c) { | |
| 1096 Vertex* head = nullptr; | |
| 1097 Vertex* tail = nullptr; | |
| 1098 | |
| 1099 while (a && b) { | |
| 1100 if (c.sweep_lt(a->fPoint, b->fPoint)) { | |
| 1101 Vertex* next = a->fNext; | |
| 1102 append_vertex(a, &head, &tail); | |
| 1103 a = next; | |
| 1104 } else { | |
| 1105 Vertex* next = b->fNext; | |
| 1106 append_vertex(b, &head, &tail); | |
| 1107 b = next; | |
| 1108 } | |
| 1109 } | |
| 1110 if (a) { | |
| 1111 append_vertex_list(a, &head, &tail); | |
| 1112 } | |
| 1113 if (b) { | |
| 1114 append_vertex_list(b, &head, &tail); | |
| 1115 } | |
| 1116 return head; | |
| 1117 } | |
| 1118 | |
| 1119 // Stage 4: Simplify the mesh by inserting new vertices at intersecting edges. | |
| 1120 | |
| 1121 void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) { | |
| 1122 LOG("simplifying complex polygons\n"); | |
| 1123 EdgeList activeEdges; | |
| 1124 for (Vertex* v = vertices; v != nullptr; v = v->fNext) { | |
| 1125 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { | |
| 1126 continue; | |
| 1127 } | |
| 1128 #if LOGGING_ENABLED | |
| 1129 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); | |
| 1130 #endif | |
| 1131 Edge* leftEnclosingEdge = nullptr; | |
| 1132 Edge* rightEnclosingEdge = nullptr; | |
| 1133 bool restartChecks; | |
| 1134 do { | |
| 1135 restartChecks = false; | |
| 1136 find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEncl
osingEdge); | |
| 1137 if (v->fFirstEdgeBelow) { | |
| 1138 for (Edge* edge = v->fFirstEdgeBelow; edge != nullptr; edge = ed
ge->fNextEdgeBelow) { | |
| 1139 if (check_for_intersection(edge, leftEnclosingEdge, &activeE
dges, c, alloc)) { | |
| 1140 restartChecks = true; | |
| 1141 break; | |
| 1142 } | |
| 1143 if (check_for_intersection(edge, rightEnclosingEdge, &active
Edges, c, alloc)) { | |
| 1144 restartChecks = true; | |
| 1145 break; | |
| 1146 } | |
| 1147 } | |
| 1148 } else { | |
| 1149 if (Vertex* pv = check_for_intersection(leftEnclosingEdge, right
EnclosingEdge, | |
| 1150 &activeEdges, c, alloc))
{ | |
| 1151 if (c.sweep_lt(pv->fPoint, v->fPoint)) { | |
| 1152 v = pv; | |
| 1153 } | |
| 1154 restartChecks = true; | |
| 1155 } | |
| 1156 | |
| 1157 } | |
| 1158 } while (restartChecks); | |
| 1159 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { | |
| 1160 remove_edge(e, &activeEdges); | |
| 1161 } | |
| 1162 Edge* leftEdge = leftEnclosingEdge; | |
| 1163 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { | |
| 1164 insert_edge(e, leftEdge, &activeEdges); | |
| 1165 leftEdge = e; | |
| 1166 } | |
| 1167 v->fProcessed = true; | |
| 1168 } | |
| 1169 } | |
| 1170 | |
| 1171 // Stage 5: Tessellate the simplified mesh into monotone polygons. | |
| 1172 | |
| 1173 Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) { | |
| 1174 LOG("tessellating simple polygons\n"); | |
| 1175 EdgeList activeEdges; | |
| 1176 Poly* polys = nullptr; | |
| 1177 for (Vertex* v = vertices; v != nullptr; v = v->fNext) { | |
| 1178 if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) { | |
| 1179 continue; | |
| 1180 } | |
| 1181 #if LOGGING_ENABLED | |
| 1182 LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY); | |
| 1183 #endif | |
| 1184 Edge* leftEnclosingEdge = nullptr; | |
| 1185 Edge* rightEnclosingEdge = nullptr; | |
| 1186 find_enclosing_edges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosin
gEdge); | |
| 1187 Poly* leftPoly = nullptr; | |
| 1188 Poly* rightPoly = nullptr; | |
| 1189 if (v->fFirstEdgeAbove) { | |
| 1190 leftPoly = v->fFirstEdgeAbove->fLeftPoly; | |
| 1191 rightPoly = v->fLastEdgeAbove->fRightPoly; | |
| 1192 } else { | |
| 1193 leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullp
tr; | |
| 1194 rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nul
lptr; | |
| 1195 } | |
| 1196 #if LOGGING_ENABLED | |
| 1197 LOG("edges above:\n"); | |
| 1198 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { | |
| 1199 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, | |
| 1200 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRight
Poly->fID : -1); | |
| 1201 } | |
| 1202 LOG("edges below:\n"); | |
| 1203 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { | |
| 1204 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, | |
| 1205 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRight
Poly->fID : -1); | |
| 1206 } | |
| 1207 #endif | |
| 1208 if (v->fFirstEdgeAbove) { | |
| 1209 if (leftPoly) { | |
| 1210 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, alloc); | |
| 1211 } | |
| 1212 if (rightPoly) { | |
| 1213 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, alloc); | |
| 1214 } | |
| 1215 for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fN
extEdgeAbove) { | |
| 1216 Edge* leftEdge = e; | |
| 1217 Edge* rightEdge = e->fNextEdgeAbove; | |
| 1218 SkASSERT(rightEdge->isRightOf(leftEdge->fTop)); | |
| 1219 remove_edge(leftEdge, &activeEdges); | |
| 1220 if (leftEdge->fRightPoly) { | |
| 1221 leftEdge->fRightPoly->end(v, alloc); | |
| 1222 } | |
| 1223 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != leftEdge->fR
ightPoly) { | |
| 1224 rightEdge->fLeftPoly->end(v, alloc); | |
| 1225 } | |
| 1226 } | |
| 1227 remove_edge(v->fLastEdgeAbove, &activeEdges); | |
| 1228 if (!v->fFirstEdgeBelow) { | |
| 1229 if (leftPoly && rightPoly && leftPoly != rightPoly) { | |
| 1230 SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartne
r == nullptr); | |
| 1231 rightPoly->fPartner = leftPoly; | |
| 1232 leftPoly->fPartner = rightPoly; | |
| 1233 } | |
| 1234 } | |
| 1235 } | |
| 1236 if (v->fFirstEdgeBelow) { | |
| 1237 if (!v->fFirstEdgeAbove) { | |
| 1238 if (leftPoly && leftPoly == rightPoly) { | |
| 1239 // Split the poly. | |
| 1240 if (leftPoly->fActive->fSide == Poly::kLeft_Side) { | |
| 1241 leftPoly = new_poly(&polys, leftEnclosingEdge->fTop, lef
tPoly->fWinding, | |
| 1242 alloc); | |
| 1243 leftPoly->addVertex(v, Poly::kRight_Side, alloc); | |
| 1244 rightPoly->addVertex(v, Poly::kLeft_Side, alloc); | |
| 1245 leftEnclosingEdge->fRightPoly = leftPoly; | |
| 1246 } else { | |
| 1247 rightPoly = new_poly(&polys, rightEnclosingEdge->fTop, r
ightPoly->fWinding, | |
| 1248 alloc); | |
| 1249 rightPoly->addVertex(v, Poly::kLeft_Side, alloc); | |
| 1250 leftPoly->addVertex(v, Poly::kRight_Side, alloc); | |
| 1251 rightEnclosingEdge->fLeftPoly = rightPoly; | |
| 1252 } | |
| 1253 } else { | |
| 1254 if (leftPoly) { | |
| 1255 leftPoly = leftPoly->addVertex(v, Poly::kRight_Side, all
oc); | |
| 1256 } | |
| 1257 if (rightPoly) { | |
| 1258 rightPoly = rightPoly->addVertex(v, Poly::kLeft_Side, al
loc); | |
| 1259 } | |
| 1260 } | |
| 1261 } | |
| 1262 Edge* leftEdge = v->fFirstEdgeBelow; | |
| 1263 leftEdge->fLeftPoly = leftPoly; | |
| 1264 insert_edge(leftEdge, leftEnclosingEdge, &activeEdges); | |
| 1265 for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge; | |
| 1266 rightEdge = rightEdge->fNextEdgeBelow) { | |
| 1267 insert_edge(rightEdge, leftEdge, &activeEdges); | |
| 1268 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWindin
g : 0; | |
| 1269 winding += leftEdge->fWinding; | |
| 1270 if (winding != 0) { | |
| 1271 Poly* poly = new_poly(&polys, v, winding, alloc); | |
| 1272 leftEdge->fRightPoly = rightEdge->fLeftPoly = poly; | |
| 1273 } | |
| 1274 leftEdge = rightEdge; | |
| 1275 } | |
| 1276 v->fLastEdgeBelow->fRightPoly = rightPoly; | |
| 1277 } | |
| 1278 #if LOGGING_ENABLED | |
| 1279 LOG("\nactive edges:\n"); | |
| 1280 for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) { | |
| 1281 LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID, | |
| 1282 e->fLeftPoly ? e->fLeftPoly->fID : -1, e->fRightPoly ? e->fRight
Poly->fID : -1); | |
| 1283 } | |
| 1284 #endif | |
| 1285 } | |
| 1286 return polys; | |
| 1287 } | |
| 1288 | |
| 1289 // This is a driver function which calls stages 2-5 in turn. | |
| 1290 | |
| 1291 Poly* contours_to_polys(Vertex** contours, int contourCnt, const SkRect& pathBou
nds, | |
| 1292 SkChunkAlloc& alloc) { | |
| 1293 Comparator c; | |
| 1294 if (pathBounds.width() > pathBounds.height()) { | |
| 1295 c.sweep_lt = sweep_lt_horiz; | |
| 1296 c.sweep_gt = sweep_gt_horiz; | |
| 1297 } else { | |
| 1298 c.sweep_lt = sweep_lt_vert; | |
| 1299 c.sweep_gt = sweep_gt_vert; | |
| 1300 } | |
| 1301 #if LOGGING_ENABLED | |
| 1302 for (int i = 0; i < contourCnt; ++i) { | |
| 1303 Vertex* v = contours[i]; | |
| 1304 SkASSERT(v); | |
| 1305 LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); | |
| 1306 for (v = v->fNext; v != contours[i]; v = v->fNext) { | |
| 1307 LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); | |
| 1308 } | |
| 1309 } | |
| 1310 #endif | |
| 1311 sanitize_contours(contours, contourCnt); | |
| 1312 Vertex* vertices = build_edges(contours, contourCnt, c, alloc); | |
| 1313 if (!vertices) { | |
| 1314 return nullptr; | |
| 1315 } | |
| 1316 | |
| 1317 // Sort vertices in Y (secondarily in X). | |
| 1318 merge_sort(&vertices, c); | |
| 1319 merge_coincident_vertices(&vertices, c, alloc); | |
| 1320 #if LOGGING_ENABLED | |
| 1321 for (Vertex* v = vertices; v != nullptr; v = v->fNext) { | |
| 1322 static float gID = 0.0f; | |
| 1323 v->fID = gID++; | |
| 1324 } | |
| 1325 #endif | |
| 1326 simplify(vertices, c, alloc); | |
| 1327 return tessellate(vertices, alloc); | |
| 1328 } | |
| 1329 | |
| 1330 Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBo
unds, | |
| 1331 int contourCnt, SkChunkAlloc& alloc, bool* isLinear) { | |
| 1332 SkPath::FillType fillType = path.getFillType(); | |
| 1333 if (SkPath::IsInverseFillType(fillType)) { | |
| 1334 contourCnt++; | |
| 1335 } | |
| 1336 SkAutoTDeleteArray<Vertex*> contours(new Vertex* [contourCnt]); | |
| 1337 | |
| 1338 path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinea
r); | |
| 1339 return contours_to_polys(contours.get(), contourCnt, path.getBounds(), alloc
); | |
| 1340 } | |
| 1341 | |
| 1342 void get_contour_count_and_size_estimate(const SkPath& path, SkScalar tolerance,
int* contourCnt, | |
| 1343 int* sizeEstimate) { | |
| 1344 int maxPts = GrPathUtils::worstCasePointCount(path, contourCnt, tolerance); | |
| 1345 if (maxPts <= 0) { | |
| 1346 *contourCnt = 0; | |
| 1347 return; | |
| 1348 } | |
| 1349 if (maxPts > ((int)SK_MaxU16 + 1)) { | |
| 1350 SkDebugf("Path not rendered, too many verts (%d)\n", maxPts); | |
| 1351 *contourCnt = 0; | |
| 1352 return; | |
| 1353 } | |
| 1354 // For the initial size of the chunk allocator, estimate based on the point
count: | |
| 1355 // one vertex per point for the initial passes, plus two for the vertices in
the | |
| 1356 // resulting Polys, since the same point may end up in two Polys. Assume mi
nimal | |
| 1357 // connectivity of one Edge per Vertex (will grow for intersections). | |
| 1358 *sizeEstimate = maxPts * (3 * sizeof(Vertex) + sizeof(Edge)); | |
| 1359 } | |
| 1360 | |
| 1361 int count_points(Poly* polys, SkPath::FillType fillType) { | |
| 1362 int count = 0; | |
| 1363 for (Poly* poly = polys; poly; poly = poly->fNext) { | |
| 1364 if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) { | |
| 1365 count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3); | |
| 1366 } | |
| 1367 } | |
| 1368 return count; | |
| 1369 } | |
| 1370 | |
| 1371 } // namespace | |
| 1372 | |
| 1373 namespace GrTessellator { | |
| 1374 | |
| 1375 // Stage 6: Triangulate the monotone polygons into a vertex buffer. | |
| 1376 | |
| 1377 int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBo
unds, | |
| 1378 GrResourceProvider* resourceProvider, | |
| 1379 SkAutoTUnref<GrVertexBuffer>& vertexBuffer, bool canMapVB, b
ool* isLinear) { | |
| 1380 int contourCnt; | |
| 1381 int sizeEstimate; | |
| 1382 get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstim
ate); | |
| 1383 if (contourCnt <= 0) { | |
| 1384 return 0; | |
| 1385 } | |
| 1386 SkChunkAlloc alloc(sizeEstimate); | |
| 1387 Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc,
isLinear); | |
| 1388 SkPath::FillType fillType = path.getFillType(); | |
| 1389 int count = count_points(polys, fillType); | |
| 1390 if (0 == count) { | |
| 1391 return 0; | |
| 1392 } | |
| 1393 | |
| 1394 size_t size = count * sizeof(SkPoint); | |
| 1395 if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) { | |
| 1396 vertexBuffer.reset(resourceProvider->createVertexBuffer( | |
| 1397 size, GrResourceProvider::kStatic_BufferUsage, 0)); | |
| 1398 } | |
| 1399 if (!vertexBuffer.get()) { | |
| 1400 SkDebugf("Could not allocate vertices\n"); | |
| 1401 return 0; | |
| 1402 } | |
| 1403 SkPoint* verts; | |
| 1404 if (canMapVB) { | |
| 1405 verts = static_cast<SkPoint*>(vertexBuffer->map()); | |
| 1406 } else { | |
| 1407 verts = new SkPoint[count]; | |
| 1408 } | |
| 1409 SkPoint* end = verts; | |
| 1410 for (Poly* poly = polys; poly; poly = poly->fNext) { | |
| 1411 if (apply_fill_type(fillType, poly->fWinding)) { | |
| 1412 end = poly->emit(end); | |
| 1413 } | |
| 1414 } | |
| 1415 int actualCount = static_cast<int>(end - verts); | |
| 1416 LOG("actual count: %d\n", actualCount); | |
| 1417 SkASSERT(actualCount <= count); | |
| 1418 if (canMapVB) { | |
| 1419 vertexBuffer->unmap(); | |
| 1420 } else { | |
| 1421 vertexBuffer->updateData(verts, actualCount * sizeof(SkPoint)); | |
| 1422 delete[] verts; | |
| 1423 } | |
| 1424 | |
| 1425 return actualCount; | |
| 1426 } | |
| 1427 | |
| 1428 int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBou
nds, | |
| 1429 GrTessellator::WindingVertex** verts) { | |
| 1430 int contourCnt; | |
| 1431 int sizeEstimate; | |
| 1432 get_contour_count_and_size_estimate(path, tolerance, &contourCnt, &sizeEstim
ate); | |
| 1433 if (contourCnt <= 0) { | |
| 1434 return 0; | |
| 1435 } | |
| 1436 SkChunkAlloc alloc(sizeEstimate); | |
| 1437 bool isLinear; | |
| 1438 Poly* polys = path_to_polys(path, tolerance, clipBounds, contourCnt, alloc,
&isLinear); | |
| 1439 SkPath::FillType fillType = path.getFillType(); | |
| 1440 int count = count_points(polys, fillType); | |
| 1441 if (0 == count) { | |
| 1442 *verts = nullptr; | |
| 1443 return 0; | |
| 1444 } | |
| 1445 | |
| 1446 *verts = new GrTessellator::WindingVertex[count]; | |
| 1447 GrTessellator::WindingVertex* vertsEnd = *verts; | |
| 1448 SkPoint* points = new SkPoint[count]; | |
| 1449 SkPoint* pointsEnd = points; | |
| 1450 for (Poly* poly = polys; poly; poly = poly->fNext) { | |
| 1451 if (apply_fill_type(fillType, poly->fWinding)) { | |
| 1452 SkPoint* start = pointsEnd; | |
| 1453 pointsEnd = poly->emit(pointsEnd); | |
| 1454 while (start != pointsEnd) { | |
| 1455 vertsEnd->fPos = *start; | |
| 1456 vertsEnd->fWinding = poly->fWinding; | |
| 1457 ++start; | |
| 1458 ++vertsEnd; | |
| 1459 } | |
| 1460 } | |
| 1461 } | |
| 1462 int actualCount = static_cast<int>(vertsEnd - *verts); | |
| 1463 SkASSERT(actualCount <= count); | |
| 1464 SkASSERT(pointsEnd - points == actualCount); | |
| 1465 delete[] points; | |
| 1466 return actualCount; | |
| 1467 } | |
| 1468 | |
| 1469 } // namespace | |
| OLD | NEW |