| Index: src/core/SkRRect.cpp
|
| diff --git a/src/core/SkRRect.cpp b/src/core/SkRRect.cpp
|
| index c8b3a6ba4c39ac536c909bfb2334c41a83982057..ad62e5bbae82947d337c977ba218e0e9ece53348 100644
|
| --- a/src/core/SkRRect.cpp
|
| +++ b/src/core/SkRRect.cpp
|
| @@ -5,7 +5,6 @@
|
| * found in the LICENSE file.
|
| */
|
|
|
| -#include <cmath>
|
| #include "SkRRect.h"
|
| #include "SkMatrix.h"
|
|
|
| @@ -110,6 +109,28 @@
|
| SkDEBUGCODE(this->validate();)
|
| }
|
|
|
| +/*
|
| + * TODO: clean this guy up and possibly add to SkScalar.h
|
| + */
|
| +static inline SkScalar SkScalarDecULP(SkScalar value) {
|
| +#if SK_SCALAR_IS_FLOAT
|
| + return SkBits2Float(SkFloat2Bits(value) - 1);
|
| +#else
|
| + #error "need impl for doubles"
|
| +#endif
|
| +}
|
| +
|
| + /**
|
| + * We need all combinations of predicates to be true to have a "safe" radius value.
|
| + */
|
| +static SkScalar clamp_radius_check_predicates(SkScalar rad, SkScalar min, SkScalar max) {
|
| + SkASSERT(min < max);
|
| + if (rad > max - min || min + rad > max || max - rad < min) {
|
| + rad = SkScalarDecULP(rad);
|
| + }
|
| + return rad;
|
| +}
|
| +
|
| // These parameters intentionally double. Apropos crbug.com/463920, if one of the
|
| // radii is huge while the other is small, single precision math can completely
|
| // miss the fact that a scale is required.
|
| @@ -118,48 +139,6 @@
|
| return SkTMin(curMin, limit / (rad1 + rad2));
|
| }
|
| return curMin;
|
| -}
|
| -
|
| -// This code assumes that a and b fit in in a float, and therefore the resulting smaller value of
|
| -// a and b will fit in a float. The side of the rectangle may be larger than a float.
|
| -// Scale must be less than or equal to the ratio limit / (*a + *b).
|
| -static void adjust_radii(double limit, double scale, float* a, float* b) {
|
| - SkASSERT(scale < 1.0 && scale > 0.0);
|
| - // This check is conservative. (double)*a + (double)*b >= (double)(*a + *b)
|
| - if ((double)*a + (double)*b > limit) {
|
| - float* minRadius = a;
|
| - float* maxRadius = b;
|
| - // Force minRadius to be the smaller of the two.
|
| - if (*minRadius > *maxRadius) {
|
| - SkTSwap(minRadius, maxRadius);
|
| - }
|
| - // newMinRadius must be float in order to give the actual value of the radius.
|
| - // The newMinRadius will always be smaller than limit. The largest that minRadius can be
|
| - // is 1/2 the ratio of minRadius : (minRadius + maxRadius), therefore in the resulting
|
| - // division, minRadius can be no larger than 1/2 limit + ULP.
|
| - float newMinRadius = *minRadius * scale;
|
| - *minRadius = newMinRadius;
|
| - // Because newMaxRadius is the result of a double to float conversion, it can be larger
|
| - // than limit, but only by one ULP.
|
| - float newMaxRadius = (float)(limit - newMinRadius);
|
| - // If newMaxRadius is larger than the same value as a double, then it needs to be
|
| - // reduced by one ULP to be less than limit - newMinRadius.
|
| - // Note: nexttowardf is a c99 call and should be std::nexttoward, but this is not
|
| - // implemented in the ARM compiler.
|
| - if (newMaxRadius > limit - newMinRadius) {
|
| - newMaxRadius = nexttowardf(newMaxRadius, limit - newMinRadius);
|
| - }
|
| - // This handles the case where both sets of radii are larger than a side by differing
|
| - // scale factors. The one that needs the larger scale factor (the radii with less
|
| - // overlap) will produce radii that are short enough just using the smaller scale factor
|
| - // from the side where the radii overlap is larger.
|
| - *maxRadius = SkMinScalar(scale * *maxRadius, newMaxRadius);
|
| - } else {
|
| - *a *= scale;
|
| - *b *= scale;
|
| - }
|
| - SkASSERT(*a >= 0.0f && *b >= 0.0f);
|
| - SkASSERT((*a + *b) <= limit);
|
| }
|
|
|
| void SkRRect::setRectRadii(const SkRect& rect, const SkVector radii[4]) {
|
| @@ -211,21 +190,29 @@
|
| // If f < 1, then all corner radii are reduced by multiplying them by f."
|
| double scale = 1.0;
|
|
|
| - // The sides of the rectangle may be larger than a float.
|
| - double width = (double)fRect.fRight - (double)fRect.fLeft;
|
| - double height = (double)fRect.fBottom - (double)fRect.fTop;
|
| - scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, width, scale);
|
| - scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, height, scale);
|
| - scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, width, scale);
|
| - scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, height, scale);
|
| + scale = compute_min_scale(fRadii[0].fX, fRadii[1].fX, fRect.width(), scale);
|
| + scale = compute_min_scale(fRadii[1].fY, fRadii[2].fY, fRect.height(), scale);
|
| + scale = compute_min_scale(fRadii[2].fX, fRadii[3].fX, fRect.width(), scale);
|
| + scale = compute_min_scale(fRadii[3].fY, fRadii[0].fY, fRect.height(), scale);
|
|
|
| if (scale < 1.0) {
|
| - adjust_radii(width, scale, &fRadii[0].fX, &fRadii[1].fX);
|
| - adjust_radii(height, scale, &fRadii[1].fY, &fRadii[2].fY);
|
| - adjust_radii(width, scale, &fRadii[2].fX, &fRadii[3].fX);
|
| - adjust_radii(height, scale, &fRadii[3].fY, &fRadii[0].fY);
|
| - }
|
| -
|
| + for (int i = 0; i < 4; ++i) {
|
| + fRadii[i].fX *= scale;
|
| + fRadii[i].fY *= scale;
|
| + }
|
| + }
|
| +
|
| + // https://bug.skia.org/3239 -- its possible that we can hit the following inconsistency:
|
| + // rad == bounds.bottom - bounds.top
|
| + // bounds.bottom - radius < bounds.top
|
| + // YIKES
|
| + // We need to detect and "fix" this now, otherwise we can have the following wackiness:
|
| + // path.addRRect(rrect);
|
| + // rrect.rect() != path.getBounds()
|
| + for (int i = 0; i < 4; ++i) {
|
| + fRadii[i].fX = clamp_radius_check_predicates(fRadii[i].fX, fRect.fLeft, fRect.fRight);
|
| + fRadii[i].fY = clamp_radius_check_predicates(fRadii[i].fY, fRect.fTop, fRect.fBottom);
|
| + }
|
| // At this point we're either oval, simple, or complex (not empty or rect).
|
| this->computeType();
|
|
|
|
|