OLD | NEW |
| (Empty) |
1 /* $Id: tif_getimage.c,v 1.82 2012-06-06 00:17:49 fwarmerdam Exp $ */ | |
2 | |
3 /* | |
4 * Copyright (c) 1991-1997 Sam Leffler | |
5 * Copyright (c) 1991-1997 Silicon Graphics, Inc. | |
6 * | |
7 * Permission to use, copy, modify, distribute, and sell this software and | |
8 * its documentation for any purpose is hereby granted without fee, provided | |
9 * that (i) the above copyright notices and this permission notice appear in | |
10 * all copies of the software and related documentation, and (ii) the names of | |
11 * Sam Leffler and Silicon Graphics may not be used in any advertising or | |
12 * publicity relating to the software without the specific, prior written | |
13 * permission of Sam Leffler and Silicon Graphics. | |
14 * | |
15 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
16 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
17 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
18 * | |
19 * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR | |
20 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, | |
21 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, | |
22 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF | |
23 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE | |
24 * OF THIS SOFTWARE. | |
25 */ | |
26 | |
27 /* | |
28 * TIFF Library | |
29 * | |
30 * Read and return a packed RGBA image. | |
31 */ | |
32 #include "tiffiop.h" | |
33 #include <stdio.h> | |
34 | |
35 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32); | |
36 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | |
37 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32); | |
38 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | |
39 static int PickContigCase(TIFFRGBAImage*); | |
40 static int PickSeparateCase(TIFFRGBAImage*); | |
41 | |
42 static int BuildMapUaToAa(TIFFRGBAImage* img); | |
43 static int BuildMapBitdepth16To8(TIFFRGBAImage* img); | |
44 | |
45 static const char photoTag[] = "PhotometricInterpretation"; | |
46 | |
47 /* | |
48 * Helper constants used in Orientation tag handling | |
49 */ | |
50 #define FLIP_VERTICALLY 0x01 | |
51 #define FLIP_HORIZONTALLY 0x02 | |
52 | |
53 /* | |
54 * Color conversion constants. We will define display types here. | |
55 */ | |
56 | |
57 static const TIFFDisplay display_sRGB = { | |
58 { /* XYZ -> luminance matrix */ | |
59 { 3.2410F, -1.5374F, -0.4986F }, | |
60 { -0.9692F, 1.8760F, 0.0416F }, | |
61 { 0.0556F, -0.2040F, 1.0570F } | |
62 }, | |
63 100.0F, 100.0F, 100.0F, /* Light o/p for reference white */ | |
64 255, 255, 255, /* Pixel values for ref. white */ | |
65 1.0F, 1.0F, 1.0F, /* Residual light o/p for black pixel */ | |
66 2.4F, 2.4F, 2.4F, /* Gamma values for the three guns */ | |
67 }; | |
68 | |
69 /* | |
70 * Check the image to see if TIFFReadRGBAImage can deal with it. | |
71 * 1/0 is returned according to whether or not the image can | |
72 * be handled. If 0 is returned, emsg contains the reason | |
73 * why it is being rejected. | |
74 */ | |
75 int | |
76 TIFFRGBAImageOK(TIFF* tif, char emsg[1024]) | |
77 { | |
78 TIFFDirectory* td = &tif->tif_dir; | |
79 uint16 photometric; | |
80 int colorchannels; | |
81 | |
82 if (!tif->tif_decodestatus) { | |
83 sprintf(emsg, "Sorry, requested compression method is not config
ured"); | |
84 return (0); | |
85 } | |
86 switch (td->td_bitspersample) { | |
87 case 1: | |
88 case 2: | |
89 case 4: | |
90 case 8: | |
91 case 16: | |
92 break; | |
93 default: | |
94 sprintf(emsg, "Sorry, can not handle images with %d-bit
samples", | |
95 td->td_bitspersample); | |
96 return (0); | |
97 } | |
98 colorchannels = td->td_samplesperpixel - td->td_extrasamples; | |
99 if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) { | |
100 switch (colorchannels) { | |
101 case 1: | |
102 photometric = PHOTOMETRIC_MINISBLACK; | |
103 break; | |
104 case 3: | |
105 photometric = PHOTOMETRIC_RGB; | |
106 break; | |
107 default: | |
108 sprintf(emsg, "Missing needed %s tag", photoTag)
; | |
109 return (0); | |
110 } | |
111 } | |
112 switch (photometric) { | |
113 case PHOTOMETRIC_MINISWHITE: | |
114 case PHOTOMETRIC_MINISBLACK: | |
115 case PHOTOMETRIC_PALETTE: | |
116 if (td->td_planarconfig == PLANARCONFIG_CONTIG | |
117 && td->td_samplesperpixel != 1 | |
118 && td->td_bitspersample < 8 ) { | |
119 sprintf(emsg, | |
120 "Sorry, can not handle contiguous data with
%s=%d, " | |
121 "and %s=%d and Bits/Sample=%d", | |
122 photoTag, photometric, | |
123 "Samples/pixel", td->td_samplesperpixel, | |
124 td->td_bitspersample); | |
125 return (0); | |
126 } | |
127 /* | |
128 * We should likely validate that any extra samples are
either | |
129 * to be ignored, or are alpha, and if alpha we should t
ry to use | |
130 * them. But for now we won't bother with this. | |
131 */ | |
132 break; | |
133 case PHOTOMETRIC_YCBCR: | |
134 /* | |
135 * TODO: if at all meaningful and useful, make more comp
lete | |
136 * support check here, or better still, refactor to let
supporting | |
137 * code decide whether there is support and what meaning
full | |
138 * error to return | |
139 */ | |
140 break; | |
141 case PHOTOMETRIC_RGB: | |
142 if (colorchannels < 3) { | |
143 sprintf(emsg, "Sorry, can not handle RGB image w
ith %s=%d", | |
144 "Color channels", colorchannels); | |
145 return (0); | |
146 } | |
147 break; | |
148 case PHOTOMETRIC_SEPARATED: | |
149 { | |
150 uint16 inkset; | |
151 TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inks
et); | |
152 if (inkset != INKSET_CMYK) { | |
153 sprintf(emsg, | |
154 "Sorry, can not handle separated ima
ge with %s=%d", | |
155 "InkSet", inkset); | |
156 return 0; | |
157 } | |
158 if (td->td_samplesperpixel < 4) { | |
159 sprintf(emsg, | |
160 "Sorry, can not handle separated ima
ge with %s=%d", | |
161 "Samples/pixel", td->td_samplesperpi
xel); | |
162 return 0; | |
163 } | |
164 break; | |
165 } | |
166 case PHOTOMETRIC_LOGL: | |
167 if (td->td_compression != COMPRESSION_SGILOG) { | |
168 sprintf(emsg, "Sorry, LogL data must have %s=%d"
, | |
169 "Compression", COMPRESSION_SGILOG); | |
170 return (0); | |
171 } | |
172 break; | |
173 case PHOTOMETRIC_LOGLUV: | |
174 if (td->td_compression != COMPRESSION_SGILOG && | |
175 td->td_compression != COMPRESSION_SGILOG24) { | |
176 sprintf(emsg, "Sorry, LogLuv data must have %s=%
d or %d", | |
177 "Compression", COMPRESSION_SGILOG, COMPRESSI
ON_SGILOG24); | |
178 return (0); | |
179 } | |
180 if (td->td_planarconfig != PLANARCONFIG_CONTIG) { | |
181 sprintf(emsg, "Sorry, can not handle LogLuv imag
es with %s=%d", | |
182 "Planarconfiguration", td->td_planarconfig); | |
183 return (0); | |
184 } | |
185 break; | |
186 case PHOTOMETRIC_CIELAB: | |
187 break; | |
188 default: | |
189 sprintf(emsg, "Sorry, can not handle image with %s=%d", | |
190 photoTag, photometric); | |
191 return (0); | |
192 } | |
193 return (1); | |
194 } | |
195 | |
196 void | |
197 TIFFRGBAImageEnd(TIFFRGBAImage* img) | |
198 { | |
199 if (img->Map) | |
200 _TIFFfree(img->Map), img->Map = NULL; | |
201 if (img->BWmap) | |
202 _TIFFfree(img->BWmap), img->BWmap = NULL; | |
203 if (img->PALmap) | |
204 _TIFFfree(img->PALmap), img->PALmap = NULL; | |
205 if (img->ycbcr) | |
206 _TIFFfree(img->ycbcr), img->ycbcr = NULL; | |
207 if (img->cielab) | |
208 _TIFFfree(img->cielab), img->cielab = NULL; | |
209 if (img->UaToAa) | |
210 _TIFFfree(img->UaToAa), img->UaToAa = NULL; | |
211 if (img->Bitdepth16To8) | |
212 _TIFFfree(img->Bitdepth16To8), img->Bitdepth16To8 = NULL; | |
213 | |
214 if( img->redcmap ) { | |
215 _TIFFfree( img->redcmap ); | |
216 _TIFFfree( img->greencmap ); | |
217 _TIFFfree( img->bluecmap ); | |
218 img->redcmap = img->greencmap = img->bluecmap = NULL; | |
219 } | |
220 } | |
221 | |
222 static int | |
223 isCCITTCompression(TIFF* tif) | |
224 { | |
225 uint16 compress; | |
226 TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress); | |
227 return (compress == COMPRESSION_CCITTFAX3 || | |
228 compress == COMPRESSION_CCITTFAX4 || | |
229 compress == COMPRESSION_CCITTRLE || | |
230 compress == COMPRESSION_CCITTRLEW); | |
231 } | |
232 | |
233 int | |
234 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024]) | |
235 { | |
236 uint16* sampleinfo; | |
237 uint16 extrasamples; | |
238 uint16 planarconfig; | |
239 uint16 compress; | |
240 int colorchannels; | |
241 uint16 *red_orig, *green_orig, *blue_orig; | |
242 int n_color; | |
243 | |
244 /* Initialize to normal values */ | |
245 img->row_offset = 0; | |
246 img->col_offset = 0; | |
247 img->redcmap = NULL; | |
248 img->greencmap = NULL; | |
249 img->bluecmap = NULL; | |
250 img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */ | |
251 | |
252 img->tif = tif; | |
253 img->stoponerr = stop; | |
254 TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample); | |
255 switch (img->bitspersample) { | |
256 case 1: | |
257 case 2: | |
258 case 4: | |
259 case 8: | |
260 case 16: | |
261 break; | |
262 default: | |
263 sprintf(emsg, "Sorry, can not handle images with %d-bit
samples", | |
264 img->bitspersample); | |
265 goto fail_return; | |
266 } | |
267 img->alpha = 0; | |
268 TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixe
l); | |
269 TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES, | |
270 &extrasamples, &sampleinfo); | |
271 if (extrasamples >= 1) | |
272 { | |
273 switch (sampleinfo[0]) { | |
274 case EXTRASAMPLE_UNSPECIFIED: /* Workaround for
some images without */ | |
275 if (img->samplesperpixel > 3) /* correct info a
bout alpha channel */ | |
276 img->alpha = EXTRASAMPLE_ASSOCALPHA; | |
277 break; | |
278 case EXTRASAMPLE_ASSOCALPHA: /* data is pre-mu
ltiplied */ | |
279 case EXTRASAMPLE_UNASSALPHA: /* data is not pr
e-multiplied */ | |
280 img->alpha = sampleinfo[0]; | |
281 break; | |
282 } | |
283 } | |
284 | |
285 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA | |
286 if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) | |
287 img->photometric = PHOTOMETRIC_MINISWHITE; | |
288 | |
289 if( extrasamples == 0 | |
290 && img->samplesperpixel == 4 | |
291 && img->photometric == PHOTOMETRIC_RGB ) | |
292 { | |
293 img->alpha = EXTRASAMPLE_ASSOCALPHA; | |
294 extrasamples = 1; | |
295 } | |
296 #endif | |
297 | |
298 colorchannels = img->samplesperpixel - extrasamples; | |
299 TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress); | |
300 TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig); | |
301 if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) { | |
302 switch (colorchannels) { | |
303 case 1: | |
304 if (isCCITTCompression(tif)) | |
305 img->photometric = PHOTOMETRIC_MINISWHIT
E; | |
306 else | |
307 img->photometric = PHOTOMETRIC_MINISBLAC
K; | |
308 break; | |
309 case 3: | |
310 img->photometric = PHOTOMETRIC_RGB; | |
311 break; | |
312 default: | |
313 sprintf(emsg, "Missing needed %s tag", photoTag)
; | |
314 goto fail_return; | |
315 } | |
316 } | |
317 switch (img->photometric) { | |
318 case PHOTOMETRIC_PALETTE: | |
319 if (!TIFFGetField(tif, TIFFTAG_COLORMAP, | |
320 &red_orig, &green_orig, &blue_orig)) { | |
321 sprintf(emsg, "Missing required \"Colormap\" tag
"); | |
322 goto fail_return; | |
323 } | |
324 | |
325 /* copy the colormaps so we can modify them */ | |
326 n_color = (1L << img->bitspersample); | |
327 img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_c
olor); | |
328 img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n
_color); | |
329 img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_
color); | |
330 if( !img->redcmap || !img->greencmap || !img->bluecmap )
{ | |
331 sprintf(emsg, "Out of memory for colormap copy")
; | |
332 goto fail_return; | |
333 } | |
334 | |
335 _TIFFmemcpy( img->redcmap, red_orig, n_color * 2 ); | |
336 _TIFFmemcpy( img->greencmap, green_orig, n_color * 2 ); | |
337 _TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 ); | |
338 | |
339 /* fall thru... */ | |
340 case PHOTOMETRIC_MINISWHITE: | |
341 case PHOTOMETRIC_MINISBLACK: | |
342 if (planarconfig == PLANARCONFIG_CONTIG | |
343 && img->samplesperpixel != 1 | |
344 && img->bitspersample < 8 ) { | |
345 sprintf(emsg, | |
346 "Sorry, can not handle contiguous data with
%s=%d, " | |
347 "and %s=%d and Bits/Sample=%d", | |
348 photoTag, img->photometric, | |
349 "Samples/pixel", img->samplesperpixel, | |
350 img->bitspersample); | |
351 goto fail_return; | |
352 } | |
353 break; | |
354 case PHOTOMETRIC_YCBCR: | |
355 /* It would probably be nice to have a reality check her
e. */ | |
356 if (planarconfig == PLANARCONFIG_CONTIG) | |
357 /* can rely on libjpeg to convert to RGB */ | |
358 /* XXX should restore current state on exit */ | |
359 switch (compress) { | |
360 case COMPRESSION_JPEG: | |
361 /* | |
362 * TODO: when complete tests ver
ify complete desubsampling | |
363 * and YCbCr handling, remove us
e of TIFFTAG_JPEGCOLORMODE in | |
364 * favor of tif_getimage.c nativ
e handling | |
365 */ | |
366 TIFFSetField(tif, TIFFTAG_JPEGCO
LORMODE, JPEGCOLORMODE_RGB); | |
367 img->photometric = PHOTOMETRIC_R
GB; | |
368 break; | |
369 default: | |
370 /* do nothing */; | |
371 break; | |
372 } | |
373 /* | |
374 * TODO: if at all meaningful and useful, make more comp
lete | |
375 * support check here, or better still, refactor to let
supporting | |
376 * code decide whether there is support and what meaning
full | |
377 * error to return | |
378 */ | |
379 break; | |
380 case PHOTOMETRIC_RGB: | |
381 if (colorchannels < 3) { | |
382 sprintf(emsg, "Sorry, can not handle RGB image w
ith %s=%d", | |
383 "Color channels", colorchannels); | |
384 goto fail_return; | |
385 } | |
386 break; | |
387 case PHOTOMETRIC_SEPARATED: | |
388 { | |
389 uint16 inkset; | |
390 TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inks
et); | |
391 if (inkset != INKSET_CMYK) { | |
392 sprintf(emsg, "Sorry, can not handle sep
arated image with %s=%d", | |
393 "InkSet", inkset); | |
394 goto fail_return; | |
395 } | |
396 if (img->samplesperpixel < 4) { | |
397 sprintf(emsg, "Sorry, can not handle sep
arated image with %s=%d", | |
398 "Samples/pixel", img->samplesperpixe
l); | |
399 goto fail_return; | |
400 } | |
401 } | |
402 break; | |
403 case PHOTOMETRIC_LOGL: | |
404 if (compress != COMPRESSION_SGILOG) { | |
405 sprintf(emsg, "Sorry, LogL data must have %s=%d"
, | |
406 "Compression", COMPRESSION_SGILOG); | |
407 goto fail_return; | |
408 } | |
409 TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8
BIT); | |
410 img->photometric = PHOTOMETRIC_MINISBLACK; /* littl
e white lie */ | |
411 img->bitspersample = 8; | |
412 break; | |
413 case PHOTOMETRIC_LOGLUV: | |
414 if (compress != COMPRESSION_SGILOG && compress != COMPRE
SSION_SGILOG24) { | |
415 sprintf(emsg, "Sorry, LogLuv data must have %s=%
d or %d", | |
416 "Compression", COMPRESSION_SGILOG, COMPRESSI
ON_SGILOG24); | |
417 goto fail_return; | |
418 } | |
419 if (planarconfig != PLANARCONFIG_CONTIG) { | |
420 sprintf(emsg, "Sorry, can not handle LogLuv imag
es with %s=%d", | |
421 "Planarconfiguration", planarconfig); | |
422 return (0); | |
423 } | |
424 TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8
BIT); | |
425 img->photometric = PHOTOMETRIC_RGB; /* littl
e white lie */ | |
426 img->bitspersample = 8; | |
427 break; | |
428 case PHOTOMETRIC_CIELAB: | |
429 break; | |
430 default: | |
431 sprintf(emsg, "Sorry, can not handle image with %s=%d", | |
432 photoTag, img->photometric); | |
433 goto fail_return; | |
434 } | |
435 img->Map = NULL; | |
436 img->BWmap = NULL; | |
437 img->PALmap = NULL; | |
438 img->ycbcr = NULL; | |
439 img->cielab = NULL; | |
440 img->UaToAa = NULL; | |
441 img->Bitdepth16To8 = NULL; | |
442 TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width); | |
443 TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height); | |
444 TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation); | |
445 img->isContig = | |
446 !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1)
; | |
447 if (img->isContig) { | |
448 if (!PickContigCase(img)) { | |
449 sprintf(emsg, "Sorry, can not handle image"); | |
450 goto fail_return; | |
451 } | |
452 } else { | |
453 if (!PickSeparateCase(img)) { | |
454 sprintf(emsg, "Sorry, can not handle image"); | |
455 goto fail_return; | |
456 } | |
457 } | |
458 return 1; | |
459 | |
460 fail_return: | |
461 _TIFFfree( img->redcmap ); | |
462 _TIFFfree( img->greencmap ); | |
463 _TIFFfree( img->bluecmap ); | |
464 img->redcmap = img->greencmap = img->bluecmap = NULL; | |
465 return 0; | |
466 } | |
467 | |
468 int | |
469 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
470 { | |
471 if (img->get == NULL) { | |
472 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "
No \"get\" routine setup"); | |
473 return (0); | |
474 } | |
475 if (img->put.any == NULL) { | |
476 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), | |
477 "No \"put\" routine setupl; probably can not handle image format
"); | |
478 return (0); | |
479 } | |
480 return (*img->get)(img, raster, w, h); | |
481 } | |
482 | |
483 /* | |
484 * Read the specified image into an ABGR-format rastertaking in account | |
485 * specified orientation. | |
486 */ | |
487 int | |
488 TIFFReadRGBAImageOriented(TIFF* tif, | |
489 uint32 rwidth, uint32 rheight, uint32* raster, | |
490 int orientation, int stop) | |
491 { | |
492 char emsg[1024] = ""; | |
493 TIFFRGBAImage img; | |
494 int ok; | |
495 | |
496 if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, em
sg)) { | |
497 img.req_orientation = orientation; | |
498 /* XXX verify rwidth and rheight against width and height */ | |
499 ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth, | |
500 rwidth, img.height); | |
501 TIFFRGBAImageEnd(&img); | |
502 } else { | |
503 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg)
; | |
504 ok = 0; | |
505 } | |
506 return (ok); | |
507 } | |
508 | |
509 /* | |
510 * Read the specified image into an ABGR-format raster. Use bottom left | |
511 * origin for raster by default. | |
512 */ | |
513 int | |
514 TIFFReadRGBAImage(TIFF* tif, | |
515 uint32 rwidth, uint32 rheight, uint32* raster, int stop) | |
516 { | |
517 return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster, | |
518 ORIENTATION_BOTLEFT, stop); | |
519 } | |
520 | |
521 static int | |
522 setorientation(TIFFRGBAImage* img) | |
523 { | |
524 switch (img->orientation) { | |
525 case ORIENTATION_TOPLEFT: | |
526 case ORIENTATION_LEFTTOP: | |
527 if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
528 img->req_orientation == ORIENTATION_RIGHTTOP) | |
529 return FLIP_HORIZONTALLY; | |
530 else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
531 img->req_orientation == ORIENTATION_RIGHTBOT) | |
532 return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
533 else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
534 img->req_orientation == ORIENTATION_LEFTBOT) | |
535 return FLIP_VERTICALLY; | |
536 else | |
537 return 0; | |
538 case ORIENTATION_TOPRIGHT: | |
539 case ORIENTATION_RIGHTTOP: | |
540 if (img->req_orientation == ORIENTATION_TOPLEFT || | |
541 img->req_orientation == ORIENTATION_LEFTTOP) | |
542 return FLIP_HORIZONTALLY; | |
543 else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
544 img->req_orientation == ORIENTATION_RIGHTBOT) | |
545 return FLIP_VERTICALLY; | |
546 else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
547 img->req_orientation == ORIENTATION_LEFTBOT) | |
548 return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
549 else | |
550 return 0; | |
551 case ORIENTATION_BOTRIGHT: | |
552 case ORIENTATION_RIGHTBOT: | |
553 if (img->req_orientation == ORIENTATION_TOPLEFT || | |
554 img->req_orientation == ORIENTATION_LEFTTOP) | |
555 return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
556 else if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
557 img->req_orientation == ORIENTATION_RIGHTTOP) | |
558 return FLIP_VERTICALLY; | |
559 else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
560 img->req_orientation == ORIENTATION_LEFTBOT) | |
561 return FLIP_HORIZONTALLY; | |
562 else | |
563 return 0; | |
564 case ORIENTATION_BOTLEFT: | |
565 case ORIENTATION_LEFTBOT: | |
566 if (img->req_orientation == ORIENTATION_TOPLEFT || | |
567 img->req_orientation == ORIENTATION_LEFTTOP) | |
568 return FLIP_VERTICALLY; | |
569 else if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
570 img->req_orientation == ORIENTATION_RIGHTTOP) | |
571 return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
572 else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
573 img->req_orientation == ORIENTATION_RIGHTBOT) | |
574 return FLIP_HORIZONTALLY; | |
575 else | |
576 return 0; | |
577 default: /* NOTREACHED */ | |
578 return 0; | |
579 } | |
580 } | |
581 | |
582 /* | |
583 * Get an tile-organized image that has | |
584 * PlanarConfiguration contiguous if SamplesPerPixel > 1 | |
585 * or | |
586 * SamplesPerPixel == 1 | |
587 */ | |
588 static int | |
589 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
590 { | |
591 TIFF* tif = img->tif; | |
592 tileContigRoutine put = img->put.contig; | |
593 uint32 col, row, y, rowstoread; | |
594 tmsize_t pos; | |
595 uint32 tw, th; | |
596 unsigned char* buf; | |
597 int32 fromskew, toskew; | |
598 uint32 nrow; | |
599 int ret = 1, flip; | |
600 | |
601 buf = (unsigned char*) _TIFFmalloc(TIFFTileSize(tif)); | |
602 if (buf == 0) { | |
603 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No s
pace for tile buffer"); | |
604 return (0); | |
605 } | |
606 _TIFFmemset(buf, 0, TIFFTileSize(tif)); | |
607 TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | |
608 TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | |
609 | |
610 flip = setorientation(img); | |
611 if (flip & FLIP_VERTICALLY) { | |
612 y = h - 1; | |
613 toskew = -(int32)(tw + w); | |
614 } | |
615 else { | |
616 y = 0; | |
617 toskew = -(int32)(tw - w); | |
618 } | |
619 | |
620 for (row = 0; row < h; row += nrow) | |
621 { | |
622 rowstoread = th - (row + img->row_offset) % th; | |
623 nrow = (row + rowstoread > h ? h - row : rowstoread); | |
624 for (col = 0; col < w; col += tw) | |
625 { | |
626 if (TIFFReadTile(tif, buf, col+img->col_offset, | |
627 row+img->row_offset, 0, 0)==(tmsize_t)(-1) && img->
stoponerr) | |
628 { | |
629 ret = 0; | |
630 break; | |
631 } | |
632 | |
633 pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif); | |
634 | |
635 if (col + tw > w) | |
636 { | |
637 /* | |
638 * Tile is clipped horizontally. Calculate | |
639 * visible portion and skewing factors. | |
640 */ | |
641 uint32 npix = w - col; | |
642 fromskew = tw - npix; | |
643 (*put)(img, raster+y*w+col, col, y, | |
644 npix, nrow, fromskew, toskew + fromskew, buf + pos); | |
645 } | |
646 else | |
647 { | |
648 (*put)(img, raster+y*w+col, col, y, tw, nrow, 0, toskew, buf + p
os); | |
649 } | |
650 } | |
651 | |
652 y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
653 } | |
654 _TIFFfree(buf); | |
655 | |
656 if (flip & FLIP_HORIZONTALLY) { | |
657 uint32 line; | |
658 | |
659 for (line = 0; line < h; line++) { | |
660 uint32 *left = raster + (line * w); | |
661 uint32 *right = left + w - 1; | |
662 | |
663 while ( left < right ) { | |
664 uint32 temp = *left; | |
665 *left = *right; | |
666 *right = temp; | |
667 left++, right--; | |
668 } | |
669 } | |
670 } | |
671 | |
672 return (ret); | |
673 } | |
674 | |
675 /* | |
676 * Get an tile-organized image that has | |
677 * SamplesPerPixel > 1 | |
678 * PlanarConfiguration separated | |
679 * We assume that all such images are RGB. | |
680 */ | |
681 static int | |
682 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
683 { | |
684 TIFF* tif = img->tif; | |
685 tileSeparateRoutine put = img->put.separate; | |
686 uint32 col, row, y, rowstoread; | |
687 tmsize_t pos; | |
688 uint32 tw, th; | |
689 unsigned char* buf; | |
690 unsigned char* p0; | |
691 unsigned char* p1; | |
692 unsigned char* p2; | |
693 unsigned char* pa; | |
694 tmsize_t tilesize; | |
695 tmsize_t bufsize; | |
696 int32 fromskew, toskew; | |
697 int alpha = img->alpha; | |
698 uint32 nrow; | |
699 int ret = 1, flip; | |
700 int colorchannels; | |
701 | |
702 tilesize = TIFFTileSize(tif); | |
703 bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize); | |
704 if (bufsize == 0) { | |
705 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer ov
erflow in %s", "gtTileSeparate"); | |
706 return (0); | |
707 } | |
708 buf = (unsigned char*) _TIFFmalloc(bufsize); | |
709 if (buf == 0) { | |
710 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No s
pace for tile buffer"); | |
711 return (0); | |
712 } | |
713 _TIFFmemset(buf, 0, bufsize); | |
714 p0 = buf; | |
715 p1 = p0 + tilesize; | |
716 p2 = p1 + tilesize; | |
717 pa = (alpha?(p2+tilesize):NULL); | |
718 TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | |
719 TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | |
720 | |
721 flip = setorientation(img); | |
722 if (flip & FLIP_VERTICALLY) { | |
723 y = h - 1; | |
724 toskew = -(int32)(tw + w); | |
725 } | |
726 else { | |
727 y = 0; | |
728 toskew = -(int32)(tw - w); | |
729 } | |
730 | |
731 switch( img->photometric ) | |
732 { | |
733 case PHOTOMETRIC_MINISWHITE: | |
734 case PHOTOMETRIC_MINISBLACK: | |
735 case PHOTOMETRIC_PALETTE: | |
736 colorchannels = 1; | |
737 p2 = p1 = p0; | |
738 break; | |
739 | |
740 default: | |
741 colorchannels = 3; | |
742 break; | |
743 } | |
744 | |
745 for (row = 0; row < h; row += nrow) | |
746 { | |
747 rowstoread = th - (row + img->row_offset) % th; | |
748 nrow = (row + rowstoread > h ? h - row : rowstoread); | |
749 for (col = 0; col < w; col += tw) | |
750 { | |
751 if (TIFFReadTile(tif, p0, col+img->col_offset, | |
752 row+img->row_offset,0,0)==(tmsize_t)(-1) && img->sto
ponerr) | |
753 { | |
754 ret = 0; | |
755 break; | |
756 } | |
757 if (colorchannels > 1 | |
758 && TIFFReadTile(tif, p1, col+img->col_offset, | |
759 row+img->row_offset,0,1) == (tmsize_
t)(-1) | |
760 && img->stoponerr) | |
761 { | |
762 ret = 0; | |
763 break; | |
764 } | |
765 if (colorchannels > 1 | |
766 && TIFFReadTile(tif, p2, col+img->col_offset, | |
767 row+img->row_offset,0,2) == (tmsize_
t)(-1) | |
768 && img->stoponerr) | |
769 { | |
770 ret = 0; | |
771 break; | |
772 } | |
773 if (alpha | |
774 && TIFFReadTile(tif,pa,col+img->col_offset, | |
775 row+img->row_offset,0,colorchannels)
== (tmsize_t)(-1) | |
776 && img->stoponerr) | |
777 { | |
778 ret = 0; | |
779 break; | |
780 } | |
781 | |
782 pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif
); | |
783 | |
784 if (col + tw > w) | |
785 { | |
786 /* | |
787 * Tile is clipped horizontally. Calculate | |
788 * visible portion and skewing factors. | |
789 */ | |
790 uint32 npix = w - col; | |
791 fromskew = tw - npix; | |
792 (*put)(img, raster+y*w+col, col, y, | |
793 npix, nrow, fromskew, toskew + fromskew, | |
794 p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos
):NULL)); | |
795 } else { | |
796 (*put)(img, raster+y*w+col, col, y, | |
797 tw, nrow, 0, toskew, p0 + pos, p1 + pos, p2
+ pos, (alpha?(pa+pos):NULL)); | |
798 } | |
799 } | |
800 | |
801 y += (flip & FLIP_VERTICALLY ?-(int32) nrow : (int32) nrow); | |
802 } | |
803 | |
804 if (flip & FLIP_HORIZONTALLY) { | |
805 uint32 line; | |
806 | |
807 for (line = 0; line < h; line++) { | |
808 uint32 *left = raster + (line * w); | |
809 uint32 *right = left + w - 1; | |
810 | |
811 while ( left < right ) { | |
812 uint32 temp = *left; | |
813 *left = *right; | |
814 *right = temp; | |
815 left++, right--; | |
816 } | |
817 } | |
818 } | |
819 | |
820 _TIFFfree(buf); | |
821 return (ret); | |
822 } | |
823 | |
824 /* | |
825 * Get a strip-organized image that has | |
826 * PlanarConfiguration contiguous if SamplesPerPixel > 1 | |
827 * or | |
828 * SamplesPerPixel == 1 | |
829 */ | |
830 static int | |
831 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
832 { | |
833 TIFF* tif = img->tif; | |
834 tileContigRoutine put = img->put.contig; | |
835 uint32 row, y, nrow, nrowsub, rowstoread; | |
836 tmsize_t pos; | |
837 unsigned char* buf; | |
838 uint32 rowsperstrip; | |
839 uint16 subsamplinghor,subsamplingver; | |
840 uint32 imagewidth = img->width; | |
841 tmsize_t scanline; | |
842 int32 fromskew, toskew; | |
843 int ret = 1, flip; | |
844 | |
845 buf = (unsigned char*) _TIFFmalloc(TIFFStripSize(tif)); | |
846 if (buf == 0) { | |
847 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space f
or strip buffer"); | |
848 return (0); | |
849 } | |
850 _TIFFmemset(buf, 0, TIFFStripSize(tif)); | |
851 | |
852 flip = setorientation(img); | |
853 if (flip & FLIP_VERTICALLY) { | |
854 y = h - 1; | |
855 toskew = -(int32)(w + w); | |
856 } else { | |
857 y = 0; | |
858 toskew = -(int32)(w - w); | |
859 } | |
860 | |
861 TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
862 TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &s
ubsamplingver); | |
863 scanline = TIFFScanlineSize(tif); | |
864 fromskew = (w < imagewidth ? imagewidth - w : 0); | |
865 for (row = 0; row < h; row += nrow) | |
866 { | |
867 rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstr
ip; | |
868 nrow = (row + rowstoread > h ? h - row : rowstoread); | |
869 nrowsub = nrow; | |
870 if ((nrowsub%subsamplingver)!=0) | |
871 nrowsub+=subsamplingver-nrowsub%subsamplingver; | |
872 if (TIFFReadEncodedStrip(tif, | |
873 TIFFComputeStrip(tif,row+img->row_offset, 0), | |
874 buf, | |
875 ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)
==(tmsize_t)(-1) | |
876 && img->stoponerr) | |
877 { | |
878 ret = 0; | |
879 break; | |
880 } | |
881 | |
882 pos = ((row + img->row_offset) % rowsperstrip) * scanline; | |
883 (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + p
os); | |
884 y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
885 } | |
886 | |
887 if (flip & FLIP_HORIZONTALLY) { | |
888 uint32 line; | |
889 | |
890 for (line = 0; line < h; line++) { | |
891 uint32 *left = raster + (line * w); | |
892 uint32 *right = left + w - 1; | |
893 | |
894 while ( left < right ) { | |
895 uint32 temp = *left; | |
896 *left = *right; | |
897 *right = temp; | |
898 left++, right--; | |
899 } | |
900 } | |
901 } | |
902 | |
903 _TIFFfree(buf); | |
904 return (ret); | |
905 } | |
906 | |
907 /* | |
908 * Get a strip-organized image with | |
909 * SamplesPerPixel > 1 | |
910 * PlanarConfiguration separated | |
911 * We assume that all such images are RGB. | |
912 */ | |
913 static int | |
914 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
915 { | |
916 TIFF* tif = img->tif; | |
917 tileSeparateRoutine put = img->put.separate; | |
918 unsigned char *buf; | |
919 unsigned char *p0, *p1, *p2, *pa; | |
920 uint32 row, y, nrow, rowstoread; | |
921 tmsize_t pos; | |
922 tmsize_t scanline; | |
923 uint32 rowsperstrip, offset_row; | |
924 uint32 imagewidth = img->width; | |
925 tmsize_t stripsize; | |
926 tmsize_t bufsize; | |
927 int32 fromskew, toskew; | |
928 int alpha = img->alpha; | |
929 int ret = 1, flip, colorchannels; | |
930 | |
931 stripsize = TIFFStripSize(tif); | |
932 bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize); | |
933 if (bufsize == 0) { | |
934 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer ov
erflow in %s", "gtStripSeparate"); | |
935 return (0); | |
936 } | |
937 p0 = buf = (unsigned char *)_TIFFmalloc(bufsize); | |
938 if (buf == 0) { | |
939 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space f
or tile buffer"); | |
940 return (0); | |
941 } | |
942 _TIFFmemset(buf, 0, bufsize); | |
943 p1 = p0 + stripsize; | |
944 p2 = p1 + stripsize; | |
945 pa = (alpha?(p2+stripsize):NULL); | |
946 | |
947 flip = setorientation(img); | |
948 if (flip & FLIP_VERTICALLY) { | |
949 y = h - 1; | |
950 toskew = -(int32)(w + w); | |
951 } | |
952 else { | |
953 y = 0; | |
954 toskew = -(int32)(w - w); | |
955 } | |
956 | |
957 switch( img->photometric ) | |
958 { | |
959 case PHOTOMETRIC_MINISWHITE: | |
960 case PHOTOMETRIC_MINISBLACK: | |
961 case PHOTOMETRIC_PALETTE: | |
962 colorchannels = 1; | |
963 p2 = p1 = p0; | |
964 break; | |
965 | |
966 default: | |
967 colorchannels = 3; | |
968 break; | |
969 } | |
970 | |
971 TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
972 scanline = TIFFScanlineSize(tif); | |
973 fromskew = (w < imagewidth ? imagewidth - w : 0); | |
974 for (row = 0; row < h; row += nrow) | |
975 { | |
976 rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstr
ip; | |
977 nrow = (row + rowstoread > h ? h - row : rowstoread); | |
978 offset_row = row + img->row_offset; | |
979 if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row,
0), | |
980 p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline
)==(tmsize_t)(-1) | |
981 && img->stoponerr) | |
982 { | |
983 ret = 0; | |
984 break; | |
985 } | |
986 if (colorchannels > 1 | |
987 && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_ro
w, 1), | |
988 p1, ((row + img->row_offset)%rowsper
strip + nrow) * scanline) == (tmsize_t)(-1) | |
989 && img->stoponerr) | |
990 { | |
991 ret = 0; | |
992 break; | |
993 } | |
994 if (colorchannels > 1 | |
995 && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_ro
w, 2), | |
996 p2, ((row + img->row_offset)%rowsper
strip + nrow) * scanline) == (tmsize_t)(-1) | |
997 && img->stoponerr) | |
998 { | |
999 ret = 0; | |
1000 break; | |
1001 } | |
1002 if (alpha) | |
1003 { | |
1004 if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offs
et_row, colorchannels), | |
1005 pa, ((row + img->row_offset)%rowsperstrip + nrow) *
scanline)==(tmsize_t)(-1) | |
1006 && img->stoponerr) | |
1007 { | |
1008 ret = 0; | |
1009 break; | |
1010 } | |
1011 } | |
1012 | |
1013 pos = ((row + img->row_offset) % rowsperstrip) * scanline; | |
1014 (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + po
s, p1 + pos, | |
1015 p2 + pos, (alpha?(pa+pos):NULL)); | |
1016 y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
1017 } | |
1018 | |
1019 if (flip & FLIP_HORIZONTALLY) { | |
1020 uint32 line; | |
1021 | |
1022 for (line = 0; line < h; line++) { | |
1023 uint32 *left = raster + (line * w); | |
1024 uint32 *right = left + w - 1; | |
1025 | |
1026 while ( left < right ) { | |
1027 uint32 temp = *left; | |
1028 *left = *right; | |
1029 *right = temp; | |
1030 left++, right--; | |
1031 } | |
1032 } | |
1033 } | |
1034 | |
1035 _TIFFfree(buf); | |
1036 return (ret); | |
1037 } | |
1038 | |
1039 /* | |
1040 * The following routines move decoded data returned | |
1041 * from the TIFF library into rasters filled with packed | |
1042 * ABGR pixels (i.e. suitable for passing to lrecwrite.) | |
1043 * | |
1044 * The routines have been created according to the most | |
1045 * important cases and optimized. PickContigCase and | |
1046 * PickSeparateCase analyze the parameters and select | |
1047 * the appropriate "get" and "put" routine to use. | |
1048 */ | |
1049 #define REPEAT8(op) REPEAT4(op); REPEAT4(op) | |
1050 #define REPEAT4(op) REPEAT2(op); REPEAT2(op) | |
1051 #define REPEAT2(op) op; op | |
1052 #define CASE8(x,op) \ | |
1053 switch (x) { \ | |
1054 case 7: op; case 6: op; case 5: op; \ | |
1055 case 4: op; case 3: op; case 2: op; \ | |
1056 case 1: op; \ | |
1057 } | |
1058 #define CASE4(x,op) switch (x) { case 3: op; case 2: op; case 1: op; } | |
1059 #define NOP | |
1060 | |
1061 #define UNROLL8(w, op1, op2) { \ | |
1062 uint32 _x; \ | |
1063 for (_x = w; _x >= 8; _x -= 8) { \ | |
1064 op1; \ | |
1065 REPEAT8(op2); \ | |
1066 } \ | |
1067 if (_x > 0) { \ | |
1068 op1; \ | |
1069 CASE8(_x,op2); \ | |
1070 } \ | |
1071 } | |
1072 #define UNROLL4(w, op1, op2) { \ | |
1073 uint32 _x; \ | |
1074 for (_x = w; _x >= 4; _x -= 4) { \ | |
1075 op1; \ | |
1076 REPEAT4(op2); \ | |
1077 } \ | |
1078 if (_x > 0) { \ | |
1079 op1; \ | |
1080 CASE4(_x,op2); \ | |
1081 } \ | |
1082 } | |
1083 #define UNROLL2(w, op1, op2) { \ | |
1084 uint32 _x; \ | |
1085 for (_x = w; _x >= 2; _x -= 2) { \ | |
1086 op1; \ | |
1087 REPEAT2(op2); \ | |
1088 } \ | |
1089 if (_x) { \ | |
1090 op1; \ | |
1091 op2; \ | |
1092 } \ | |
1093 } | |
1094 | |
1095 #define SKEW(r,g,b,skew) { r += skew; g += skew; b += skew; } | |
1096 #define SKEW4(r,g,b,a,skew) { r += skew; g += skew; b += skew; a+= skew; } | |
1097 | |
1098 #define A1 (((uint32)0xffL)<<24) | |
1099 #define PACK(r,g,b) \ | |
1100 ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1) | |
1101 #define PACK4(r,g,b,a) \ | |
1102 ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24)) | |
1103 #define W2B(v) (((v)>>8)&0xff) | |
1104 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */ | |
1105 #define PACKW(r,g,b) \ | |
1106 ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1) | |
1107 #define PACKW4(r,g,b,a) \ | |
1108 ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)
<<24)) | |
1109 | |
1110 #define DECLAREContigPutFunc(name) \ | |
1111 static void name(\ | |
1112 TIFFRGBAImage* img, \ | |
1113 uint32* cp, \ | |
1114 uint32 x, uint32 y, \ | |
1115 uint32 w, uint32 h, \ | |
1116 int32 fromskew, int32 toskew, \ | |
1117 unsigned char* pp \ | |
1118 ) | |
1119 | |
1120 /* | |
1121 * 8-bit palette => colormap/RGB | |
1122 */ | |
1123 DECLAREContigPutFunc(put8bitcmaptile) | |
1124 { | |
1125 uint32** PALmap = img->PALmap; | |
1126 int samplesperpixel = img->samplesperpixel; | |
1127 | |
1128 (void) y; | |
1129 while (h-- > 0) { | |
1130 for (x = w; x-- > 0;) | |
1131 { | |
1132 *cp++ = PALmap[*pp][0]; | |
1133 pp += samplesperpixel; | |
1134 } | |
1135 cp += toskew; | |
1136 pp += fromskew; | |
1137 } | |
1138 } | |
1139 | |
1140 /* | |
1141 * 4-bit palette => colormap/RGB | |
1142 */ | |
1143 DECLAREContigPutFunc(put4bitcmaptile) | |
1144 { | |
1145 uint32** PALmap = img->PALmap; | |
1146 | |
1147 (void) x; (void) y; | |
1148 fromskew /= 2; | |
1149 while (h-- > 0) { | |
1150 uint32* bw; | |
1151 UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
1152 cp += toskew; | |
1153 pp += fromskew; | |
1154 } | |
1155 } | |
1156 | |
1157 /* | |
1158 * 2-bit palette => colormap/RGB | |
1159 */ | |
1160 DECLAREContigPutFunc(put2bitcmaptile) | |
1161 { | |
1162 uint32** PALmap = img->PALmap; | |
1163 | |
1164 (void) x; (void) y; | |
1165 fromskew /= 4; | |
1166 while (h-- > 0) { | |
1167 uint32* bw; | |
1168 UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
1169 cp += toskew; | |
1170 pp += fromskew; | |
1171 } | |
1172 } | |
1173 | |
1174 /* | |
1175 * 1-bit palette => colormap/RGB | |
1176 */ | |
1177 DECLAREContigPutFunc(put1bitcmaptile) | |
1178 { | |
1179 uint32** PALmap = img->PALmap; | |
1180 | |
1181 (void) x; (void) y; | |
1182 fromskew /= 8; | |
1183 while (h-- > 0) { | |
1184 uint32* bw; | |
1185 UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
1186 cp += toskew; | |
1187 pp += fromskew; | |
1188 } | |
1189 } | |
1190 | |
1191 /* | |
1192 * 8-bit greyscale => colormap/RGB | |
1193 */ | |
1194 DECLAREContigPutFunc(putgreytile) | |
1195 { | |
1196 int samplesperpixel = img->samplesperpixel; | |
1197 uint32** BWmap = img->BWmap; | |
1198 | |
1199 (void) y; | |
1200 while (h-- > 0) { | |
1201 for (x = w; x-- > 0;) | |
1202 { | |
1203 *cp++ = BWmap[*pp][0]; | |
1204 pp += samplesperpixel; | |
1205 } | |
1206 cp += toskew; | |
1207 pp += fromskew; | |
1208 } | |
1209 } | |
1210 | |
1211 /* | |
1212 * 8-bit greyscale with associated alpha => colormap/RGBA | |
1213 */ | |
1214 DECLAREContigPutFunc(putagreytile) | |
1215 { | |
1216 int samplesperpixel = img->samplesperpixel; | |
1217 uint32** BWmap = img->BWmap; | |
1218 | |
1219 (void) y; | |
1220 while (h-- > 0) { | |
1221 for (x = w; x-- > 0;) | |
1222 { | |
1223 *cp++ = BWmap[*pp][0] & (*(pp+1) << 24 | ~A1); | |
1224 pp += samplesperpixel; | |
1225 } | |
1226 cp += toskew; | |
1227 pp += fromskew; | |
1228 } | |
1229 } | |
1230 | |
1231 /* | |
1232 * 16-bit greyscale => colormap/RGB | |
1233 */ | |
1234 DECLAREContigPutFunc(put16bitbwtile) | |
1235 { | |
1236 int samplesperpixel = img->samplesperpixel; | |
1237 uint32** BWmap = img->BWmap; | |
1238 | |
1239 (void) y; | |
1240 while (h-- > 0) { | |
1241 uint16 *wp = (uint16 *) pp; | |
1242 | |
1243 for (x = w; x-- > 0;) | |
1244 { | |
1245 /* use high order byte of 16bit value */ | |
1246 | |
1247 *cp++ = BWmap[*wp >> 8][0]; | |
1248 pp += 2 * samplesperpixel; | |
1249 wp += samplesperpixel; | |
1250 } | |
1251 cp += toskew; | |
1252 pp += fromskew; | |
1253 } | |
1254 } | |
1255 | |
1256 /* | |
1257 * 1-bit bilevel => colormap/RGB | |
1258 */ | |
1259 DECLAREContigPutFunc(put1bitbwtile) | |
1260 { | |
1261 uint32** BWmap = img->BWmap; | |
1262 | |
1263 (void) x; (void) y; | |
1264 fromskew /= 8; | |
1265 while (h-- > 0) { | |
1266 uint32* bw; | |
1267 UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
1268 cp += toskew; | |
1269 pp += fromskew; | |
1270 } | |
1271 } | |
1272 | |
1273 /* | |
1274 * 2-bit greyscale => colormap/RGB | |
1275 */ | |
1276 DECLAREContigPutFunc(put2bitbwtile) | |
1277 { | |
1278 uint32** BWmap = img->BWmap; | |
1279 | |
1280 (void) x; (void) y; | |
1281 fromskew /= 4; | |
1282 while (h-- > 0) { | |
1283 uint32* bw; | |
1284 UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
1285 cp += toskew; | |
1286 pp += fromskew; | |
1287 } | |
1288 } | |
1289 | |
1290 /* | |
1291 * 4-bit greyscale => colormap/RGB | |
1292 */ | |
1293 DECLAREContigPutFunc(put4bitbwtile) | |
1294 { | |
1295 uint32** BWmap = img->BWmap; | |
1296 | |
1297 (void) x; (void) y; | |
1298 fromskew /= 2; | |
1299 while (h-- > 0) { | |
1300 uint32* bw; | |
1301 UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
1302 cp += toskew; | |
1303 pp += fromskew; | |
1304 } | |
1305 } | |
1306 | |
1307 /* | |
1308 * 8-bit packed samples, no Map => RGB | |
1309 */ | |
1310 DECLAREContigPutFunc(putRGBcontig8bittile) | |
1311 { | |
1312 int samplesperpixel = img->samplesperpixel; | |
1313 | |
1314 (void) x; (void) y; | |
1315 fromskew *= samplesperpixel; | |
1316 while (h-- > 0) { | |
1317 UNROLL8(w, NOP, | |
1318 *cp++ = PACK(pp[0], pp[1], pp[2]); | |
1319 pp += samplesperpixel); | |
1320 cp += toskew; | |
1321 pp += fromskew; | |
1322 } | |
1323 } | |
1324 | |
1325 /* | |
1326 * 8-bit packed samples => RGBA w/ associated alpha | |
1327 * (known to have Map == NULL) | |
1328 */ | |
1329 DECLAREContigPutFunc(putRGBAAcontig8bittile) | |
1330 { | |
1331 int samplesperpixel = img->samplesperpixel; | |
1332 | |
1333 (void) x; (void) y; | |
1334 fromskew *= samplesperpixel; | |
1335 while (h-- > 0) { | |
1336 UNROLL8(w, NOP, | |
1337 *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]); | |
1338 pp += samplesperpixel); | |
1339 cp += toskew; | |
1340 pp += fromskew; | |
1341 } | |
1342 } | |
1343 | |
1344 /* | |
1345 * 8-bit packed samples => RGBA w/ unassociated alpha | |
1346 * (known to have Map == NULL) | |
1347 */ | |
1348 DECLAREContigPutFunc(putRGBUAcontig8bittile) | |
1349 { | |
1350 int samplesperpixel = img->samplesperpixel; | |
1351 (void) y; | |
1352 fromskew *= samplesperpixel; | |
1353 while (h-- > 0) { | |
1354 uint32 r, g, b, a; | |
1355 uint8* m; | |
1356 for (x = w; x-- > 0;) { | |
1357 a = pp[3]; | |
1358 m = img->UaToAa+(a<<8); | |
1359 r = m[pp[0]]; | |
1360 g = m[pp[1]]; | |
1361 b = m[pp[2]]; | |
1362 *cp++ = PACK4(r,g,b,a); | |
1363 pp += samplesperpixel; | |
1364 } | |
1365 cp += toskew; | |
1366 pp += fromskew; | |
1367 } | |
1368 } | |
1369 | |
1370 /* | |
1371 * 16-bit packed samples => RGB | |
1372 */ | |
1373 DECLAREContigPutFunc(putRGBcontig16bittile) | |
1374 { | |
1375 int samplesperpixel = img->samplesperpixel; | |
1376 uint16 *wp = (uint16 *)pp; | |
1377 (void) y; | |
1378 fromskew *= samplesperpixel; | |
1379 while (h-- > 0) { | |
1380 for (x = w; x-- > 0;) { | |
1381 *cp++ = PACK(img->Bitdepth16To8[wp[0]], | |
1382 img->Bitdepth16To8[wp[1]], | |
1383 img->Bitdepth16To8[wp[2]]); | |
1384 wp += samplesperpixel; | |
1385 } | |
1386 cp += toskew; | |
1387 wp += fromskew; | |
1388 } | |
1389 } | |
1390 | |
1391 /* | |
1392 * 16-bit packed samples => RGBA w/ associated alpha | |
1393 * (known to have Map == NULL) | |
1394 */ | |
1395 DECLAREContigPutFunc(putRGBAAcontig16bittile) | |
1396 { | |
1397 int samplesperpixel = img->samplesperpixel; | |
1398 uint16 *wp = (uint16 *)pp; | |
1399 (void) y; | |
1400 fromskew *= samplesperpixel; | |
1401 while (h-- > 0) { | |
1402 for (x = w; x-- > 0;) { | |
1403 *cp++ = PACK4(img->Bitdepth16To8[wp[0]], | |
1404 img->Bitdepth16To8[wp[1]], | |
1405 img->Bitdepth16To8[wp[2]], | |
1406 img->Bitdepth16To8[wp[3]]); | |
1407 wp += samplesperpixel; | |
1408 } | |
1409 cp += toskew; | |
1410 wp += fromskew; | |
1411 } | |
1412 } | |
1413 | |
1414 /* | |
1415 * 16-bit packed samples => RGBA w/ unassociated alpha | |
1416 * (known to have Map == NULL) | |
1417 */ | |
1418 DECLAREContigPutFunc(putRGBUAcontig16bittile) | |
1419 { | |
1420 int samplesperpixel = img->samplesperpixel; | |
1421 uint16 *wp = (uint16 *)pp; | |
1422 (void) y; | |
1423 fromskew *= samplesperpixel; | |
1424 while (h-- > 0) { | |
1425 uint32 r,g,b,a; | |
1426 uint8* m; | |
1427 for (x = w; x-- > 0;) { | |
1428 a = img->Bitdepth16To8[wp[3]]; | |
1429 m = img->UaToAa+(a<<8); | |
1430 r = m[img->Bitdepth16To8[wp[0]]]; | |
1431 g = m[img->Bitdepth16To8[wp[1]]]; | |
1432 b = m[img->Bitdepth16To8[wp[2]]]; | |
1433 *cp++ = PACK4(r,g,b,a); | |
1434 wp += samplesperpixel; | |
1435 } | |
1436 cp += toskew; | |
1437 wp += fromskew; | |
1438 } | |
1439 } | |
1440 | |
1441 /* | |
1442 * 8-bit packed CMYK samples w/o Map => RGB | |
1443 * | |
1444 * NB: The conversion of CMYK->RGB is *very* crude. | |
1445 */ | |
1446 /*DECLAREContigPutFunc(putRGBcontig8bitCMYKtile) | |
1447 { | |
1448 int samplesperpixel = img->samplesperpixel; | |
1449 uint16 r, g, b, k; | |
1450 | |
1451 (void) x; (void) y; | |
1452 fromskew *= samplesperpixel; | |
1453 while (h-- > 0) { | |
1454 UNROLL8(w, NOP, | |
1455 k = 255 - pp[3]; | |
1456 r = (k*(255-pp[0]))/255; | |
1457 g = (k*(255-pp[1]))/255; | |
1458 b = (k*(255-pp[2]))/255; | |
1459 *cp++ = PACK(r, g, b); | |
1460 pp += samplesperpixel); | |
1461 cp += toskew; | |
1462 pp += fromskew; | |
1463 }*/ | |
1464 /* Modify in 20090723 by Sunliang.Liu */ | |
1465 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile) | |
1466 { | |
1467 int samplesperpixel = img->samplesperpixel; | |
1468 uint8 r, g, b, k; | |
1469 | |
1470 (void) x; (void) y; | |
1471 fromskew *= samplesperpixel; | |
1472 while (h-- > 0) { | |
1473 UNROLL8(w, NOP, | |
1474 if(!TIFFCmyk2Rgb(img->tif->tif_clientdata,pp[0],pp[1],pp
[2],pp[3], | |
1475 &r,&g,&b)){ | |
1476 k = 255 - pp[3]; | |
1477 r = (k*(255-pp[0]))/255; | |
1478 g = (k*(255-pp[1]))/255; | |
1479 b = (k*(255-pp[2]))/255; | |
1480 } | |
1481 | |
1482 *cp++ = PACK(r, g, b); | |
1483 pp += samplesperpixel); | |
1484 cp += toskew; | |
1485 pp += fromskew; | |
1486 } | |
1487 } | |
1488 | |
1489 /* | |
1490 * 16-bit packed CMYK samples w/o Map => RGB(8-bit) | |
1491 * | |
1492 * NB: The conversion of CMYK->RGB is *very* crude. | |
1493 */ | |
1494 DECLAREContigPutFunc(putRGBcontig16bitCMYKtile) | |
1495 { | |
1496 int samplesperpixel = img->samplesperpixel; | |
1497 uint16* wp = (uint16*)pp; | |
1498 uint8 C, M, Y, K; | |
1499 uint8 r, g, b; | |
1500 | |
1501 (void) x; (void) y; | |
1502 fromskew *= samplesperpixel; | |
1503 while (h-- > 0) { | |
1504 UNROLL8(w, NOP, | |
1505 C = wp[0]>>8;M = wp[1]>>8;Y = wp[2]>>8;K = wp[3]>>8; | |
1506 if(!TIFFCmyk2Rgb(img->tif->tif_clientdata,C,M,Y,K, | |
1507 &r,&g,&b)){ | |
1508 K = 255 - K; | |
1509 r = (K*(255-C))/255; | |
1510 g = (K*(255-M))/255; | |
1511 b = (K*(255-Y))/255; | |
1512 } | |
1513 | |
1514 *cp++ = PACK(r, g, b); | |
1515 wp += samplesperpixel); | |
1516 cp += toskew; | |
1517 wp += fromskew; | |
1518 } | |
1519 } | |
1520 | |
1521 /* | |
1522 * 8-bit packed CMYK samples w/Map => RGB | |
1523 * | |
1524 * NB: The conversion of CMYK->RGB is *very* crude. | |
1525 */ | |
1526 /* | |
1527 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile) | |
1528 { | |
1529 int samplesperpixel = img->samplesperpixel; | |
1530 TIFFRGBValue* Map = img->Map; | |
1531 uint16 r, g, b, k; | |
1532 | |
1533 (void) y; | |
1534 fromskew *= samplesperpixel; | |
1535 while (h-- > 0) { | |
1536 for (x = w; x-- > 0;) { | |
1537 k = 255 - pp[3]; | |
1538 r = (k*(255-pp[0]))/255; | |
1539 g = (k*(255-pp[1]))/255; | |
1540 b = (k*(255-pp[2]))/255; | |
1541 *cp++ = PACK(Map[r], Map[g], Map[b]); | |
1542 pp += samplesperpixel; | |
1543 } | |
1544 pp += fromskew; | |
1545 cp += toskew; | |
1546 } | |
1547 }*/ | |
1548 /* Modify in 20090723 by Sunliang.Liu */ | |
1549 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile) | |
1550 { | |
1551 int samplesperpixel = img->samplesperpixel; | |
1552 TIFFRGBValue* Map = img->Map; | |
1553 uint8 r, g, b, k; | |
1554 | |
1555 (void) y; | |
1556 fromskew *= samplesperpixel; | |
1557 while (h-- > 0) { | |
1558 for (x = w; x-- > 0;) { | |
1559 if(!TIFFCmyk2Rgb(img->tif->tif_clientdata,pp[0],pp[1],pp
[2],pp[3], | |
1560 &r,&g,&b)){ | |
1561 k = 255 - pp[3]; | |
1562 r = (k*(255-pp[0]))/255; | |
1563 g = (k*(255-pp[1]))/255; | |
1564 b = (k*(255-pp[2]))/255; | |
1565 } | |
1566 *cp++ = PACK(Map[r], Map[g], Map[b]); | |
1567 pp += samplesperpixel; | |
1568 } | |
1569 pp += fromskew; | |
1570 cp += toskew; | |
1571 } | |
1572 } | |
1573 | |
1574 /* | |
1575 * 16-bit packed CMYK samples w/Map => RGB(8-bit) | |
1576 * | |
1577 * NB: The conversion of CMYK->RGB is *very* crude. | |
1578 */ | |
1579 DECLAREContigPutFunc(putRGBcontig16bitCMYKMaptile) | |
1580 { | |
1581 int samplesperpixel = img->samplesperpixel; | |
1582 TIFFRGBValue* Map = img->Map; | |
1583 uint16* wp = (uint16*)pp; | |
1584 uint8 C, M, Y, K; | |
1585 uint8 r, g, b; | |
1586 | |
1587 (void) y; | |
1588 fromskew *= samplesperpixel; | |
1589 while (h-- > 0) { | |
1590 for (x = w; x-- > 0;) { | |
1591 C = wp[0]>>8;M = wp[1]>>8;Y = wp[2]>>8;K = wp[3]>>8; | |
1592 if(!TIFFCmyk2Rgb(img->tif->tif_clientdata,C,M,Y,K, | |
1593 &r,&g,&b)){ | |
1594 K = 255 - K; | |
1595 r = (K*(255-C))/255; | |
1596 g = (K*(255-M))/255; | |
1597 b = (K*(255-Y))/255; | |
1598 } | |
1599 *cp++ = PACK(Map[r], Map[g], Map[b]); | |
1600 wp += samplesperpixel; | |
1601 } | |
1602 wp += fromskew; | |
1603 cp += toskew; | |
1604 } | |
1605 } | |
1606 | |
1607 #define DECLARESepPutFunc(name) \ | |
1608 static void name(\ | |
1609 TIFFRGBAImage* img,\ | |
1610 uint32* cp,\ | |
1611 uint32 x, uint32 y, \ | |
1612 uint32 w, uint32 h,\ | |
1613 int32 fromskew, int32 toskew,\ | |
1614 unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\ | |
1615 ) | |
1616 | |
1617 /* | |
1618 * 8-bit unpacked samples => RGB | |
1619 */ | |
1620 DECLARESepPutFunc(putRGBseparate8bittile) | |
1621 { | |
1622 (void) img; (void) x; (void) y; (void) a; | |
1623 while (h-- > 0) { | |
1624 UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++)); | |
1625 SKEW(r, g, b, fromskew); | |
1626 cp += toskew; | |
1627 } | |
1628 } | |
1629 | |
1630 /* | |
1631 * 8-bit unpacked samples => RGBA w/ associated alpha | |
1632 */ | |
1633 DECLARESepPutFunc(putRGBAAseparate8bittile) | |
1634 { | |
1635 (void) img; (void) x; (void) y; | |
1636 while (h-- > 0) { | |
1637 UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++)); | |
1638 SKEW4(r, g, b, a, fromskew); | |
1639 cp += toskew; | |
1640 } | |
1641 } | |
1642 | |
1643 /* | |
1644 * 8-bit unpacked CMYK samples => RGBA | |
1645 */ | |
1646 DECLARESepPutFunc(putCMYKseparate8bittile) | |
1647 { | |
1648 (void) img; (void) y; | |
1649 while (h-- > 0) { | |
1650 uint32 rv, gv, bv, kv; | |
1651 for (x = w; x-- > 0;) { | |
1652 kv = 255 - *a++; | |
1653 rv = (kv*(255-*r++))/255; | |
1654 gv = (kv*(255-*g++))/255; | |
1655 bv = (kv*(255-*b++))/255; | |
1656 *cp++ = PACK4(rv,gv,bv,255); | |
1657 } | |
1658 SKEW4(r, g, b, a, fromskew); | |
1659 cp += toskew; | |
1660 } | |
1661 } | |
1662 | |
1663 /* | |
1664 * 8-bit unpacked samples => RGBA w/ unassociated alpha | |
1665 */ | |
1666 DECLARESepPutFunc(putRGBUAseparate8bittile) | |
1667 { | |
1668 (void) img; (void) y; | |
1669 while (h-- > 0) { | |
1670 uint32 rv, gv, bv, av; | |
1671 uint8* m; | |
1672 for (x = w; x-- > 0;) { | |
1673 av = *a++; | |
1674 m = img->UaToAa+(av<<8); | |
1675 rv = m[*r++]; | |
1676 gv = m[*g++]; | |
1677 bv = m[*b++]; | |
1678 *cp++ = PACK4(rv,gv,bv,av); | |
1679 } | |
1680 SKEW4(r, g, b, a, fromskew); | |
1681 cp += toskew; | |
1682 } | |
1683 } | |
1684 | |
1685 /* | |
1686 * 16-bit unpacked samples => RGB | |
1687 */ | |
1688 DECLARESepPutFunc(putRGBseparate16bittile) | |
1689 { | |
1690 uint16 *wr = (uint16*) r; | |
1691 uint16 *wg = (uint16*) g; | |
1692 uint16 *wb = (uint16*) b; | |
1693 (void) img; (void) y; (void) a; | |
1694 while (h-- > 0) { | |
1695 for (x = 0; x < w; x++) | |
1696 *cp++ = PACK(img->Bitdepth16To8[*wr++], | |
1697 img->Bitdepth16To8[*wg++], | |
1698 img->Bitdepth16To8[*wb++]); | |
1699 SKEW(wr, wg, wb, fromskew); | |
1700 cp += toskew; | |
1701 } | |
1702 } | |
1703 | |
1704 /* | |
1705 * 16-bit unpacked samples => RGBA w/ associated alpha | |
1706 */ | |
1707 DECLARESepPutFunc(putRGBAAseparate16bittile) | |
1708 { | |
1709 uint16 *wr = (uint16*) r; | |
1710 uint16 *wg = (uint16*) g; | |
1711 uint16 *wb = (uint16*) b; | |
1712 uint16 *wa = (uint16*) a; | |
1713 (void) img; (void) y; | |
1714 while (h-- > 0) { | |
1715 for (x = 0; x < w; x++) | |
1716 *cp++ = PACK4(img->Bitdepth16To8[*wr++], | |
1717 img->Bitdepth16To8[*wg++], | |
1718 img->Bitdepth16To8[*wb++], | |
1719 img->Bitdepth16To8[*wa++]); | |
1720 SKEW4(wr, wg, wb, wa, fromskew); | |
1721 cp += toskew; | |
1722 } | |
1723 } | |
1724 | |
1725 /* | |
1726 * 16-bit unpacked samples => RGBA w/ unassociated alpha | |
1727 */ | |
1728 DECLARESepPutFunc(putRGBUAseparate16bittile) | |
1729 { | |
1730 uint16 *wr = (uint16*) r; | |
1731 uint16 *wg = (uint16*) g; | |
1732 uint16 *wb = (uint16*) b; | |
1733 uint16 *wa = (uint16*) a; | |
1734 (void) img; (void) y; | |
1735 while (h-- > 0) { | |
1736 uint32 r,g,b,a; | |
1737 uint8* m; | |
1738 for (x = w; x-- > 0;) { | |
1739 a = img->Bitdepth16To8[*wa++]; | |
1740 m = img->UaToAa+(a<<8); | |
1741 r = m[img->Bitdepth16To8[*wr++]]; | |
1742 g = m[img->Bitdepth16To8[*wg++]]; | |
1743 b = m[img->Bitdepth16To8[*wb++]]; | |
1744 *cp++ = PACK4(r,g,b,a); | |
1745 } | |
1746 SKEW4(wr, wg, wb, wa, fromskew); | |
1747 cp += toskew; | |
1748 } | |
1749 } | |
1750 | |
1751 /* | |
1752 * 8-bit packed CIE L*a*b 1976 samples => RGB | |
1753 */ | |
1754 DECLAREContigPutFunc(putcontig8bitCIELab) | |
1755 { | |
1756 float X, Y, Z; | |
1757 uint32 r, g, b; | |
1758 (void) y; | |
1759 fromskew *= 3; | |
1760 while (h-- > 0) { | |
1761 for (x = w; x-- > 0;) { | |
1762 TIFFCIELabToXYZ(img->cielab, | |
1763 (unsigned char)pp[0], | |
1764 (signed char)pp[1], | |
1765 (signed char)pp[2], | |
1766 &X, &Y, &Z); | |
1767 TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b); | |
1768 *cp++ = PACK(r, g, b); | |
1769 pp += 3; | |
1770 } | |
1771 cp += toskew; | |
1772 pp += fromskew; | |
1773 } | |
1774 } | |
1775 | |
1776 /* | |
1777 * YCbCr -> RGB conversion and packing routines. | |
1778 */ | |
1779 | |
1780 #define YCbCrtoRGB(dst, Y) { \ | |
1781 uint32 r, g, b; \ | |
1782 TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b); \ | |
1783 dst = PACK(r, g, b); \ | |
1784 } | |
1785 | |
1786 /* | |
1787 * 8-bit packed YCbCr samples => RGB | |
1788 * This function is generic for different sampling sizes, | |
1789 * and can handle blocks sizes that aren't multiples of the | |
1790 * sampling size. However, it is substantially less optimized | |
1791 * than the specific sampling cases. It is used as a fallback | |
1792 * for difficult blocks. | |
1793 */ | |
1794 #ifdef notdef | |
1795 static void putcontig8bitYCbCrGenericTile( | |
1796 TIFFRGBAImage* img, | |
1797 uint32* cp, | |
1798 uint32 x, uint32 y, | |
1799 uint32 w, uint32 h, | |
1800 int32 fromskew, int32 toskew, | |
1801 unsigned char* pp, | |
1802 int h_group, | |
1803 int v_group ) | |
1804 | |
1805 { | |
1806 uint32* cp1 = cp+w+toskew; | |
1807 uint32* cp2 = cp1+w+toskew; | |
1808 uint32* cp3 = cp2+w+toskew; | |
1809 int32 incr = 3*w+4*toskew; | |
1810 int32 Cb, Cr; | |
1811 int group_size = v_group * h_group + 2; | |
1812 | |
1813 (void) y; | |
1814 fromskew = (fromskew * group_size) / h_group; | |
1815 | |
1816 for( yy = 0; yy < h; yy++ ) | |
1817 { | |
1818 unsigned char *pp_line; | |
1819 int y_line_group = yy / v_group; | |
1820 int y_remainder = yy - y_line_group * v_group; | |
1821 | |
1822 pp_line = pp + v_line_group * | |
1823 | |
1824 | |
1825 for( xx = 0; xx < w; xx++ ) | |
1826 { | |
1827 Cb = pp | |
1828 } | |
1829 } | |
1830 for (; h >= 4; h -= 4) { | |
1831 x = w>>2; | |
1832 do { | |
1833 Cb = pp[16]; | |
1834 Cr = pp[17]; | |
1835 | |
1836 YCbCrtoRGB(cp [0], pp[ 0]); | |
1837 YCbCrtoRGB(cp [1], pp[ 1]); | |
1838 YCbCrtoRGB(cp [2], pp[ 2]); | |
1839 YCbCrtoRGB(cp [3], pp[ 3]); | |
1840 YCbCrtoRGB(cp1[0], pp[ 4]); | |
1841 YCbCrtoRGB(cp1[1], pp[ 5]); | |
1842 YCbCrtoRGB(cp1[2], pp[ 6]); | |
1843 YCbCrtoRGB(cp1[3], pp[ 7]); | |
1844 YCbCrtoRGB(cp2[0], pp[ 8]); | |
1845 YCbCrtoRGB(cp2[1], pp[ 9]); | |
1846 YCbCrtoRGB(cp2[2], pp[10]); | |
1847 YCbCrtoRGB(cp2[3], pp[11]); | |
1848 YCbCrtoRGB(cp3[0], pp[12]); | |
1849 YCbCrtoRGB(cp3[1], pp[13]); | |
1850 YCbCrtoRGB(cp3[2], pp[14]); | |
1851 YCbCrtoRGB(cp3[3], pp[15]); | |
1852 | |
1853 cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; | |
1854 pp += 18; | |
1855 } while (--x); | |
1856 cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
1857 pp += fromskew; | |
1858 } | |
1859 } | |
1860 #endif | |
1861 | |
1862 /* | |
1863 * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB | |
1864 */ | |
1865 DECLAREContigPutFunc(putcontig8bitYCbCr44tile) | |
1866 { | |
1867 uint32* cp1 = cp+w+toskew; | |
1868 uint32* cp2 = cp1+w+toskew; | |
1869 uint32* cp3 = cp2+w+toskew; | |
1870 int32 incr = 3*w+4*toskew; | |
1871 | |
1872 (void) y; | |
1873 /* adjust fromskew */ | |
1874 fromskew = (fromskew * 18) / 4; | |
1875 if ((h & 3) == 0 && (w & 3) == 0) { | |
1876 for (; h >= 4; h -= 4) { | |
1877 x = w>>2; | |
1878 do { | |
1879 int32 Cb = pp[16]; | |
1880 int32 Cr = pp[17]; | |
1881 | |
1882 YCbCrtoRGB(cp [0], pp[ 0]); | |
1883 YCbCrtoRGB(cp [1], pp[ 1]); | |
1884 YCbCrtoRGB(cp [2], pp[ 2]); | |
1885 YCbCrtoRGB(cp [3], pp[ 3]); | |
1886 YCbCrtoRGB(cp1[0], pp[ 4]); | |
1887 YCbCrtoRGB(cp1[1], pp[ 5]); | |
1888 YCbCrtoRGB(cp1[2], pp[ 6]); | |
1889 YCbCrtoRGB(cp1[3], pp[ 7]); | |
1890 YCbCrtoRGB(cp2[0], pp[ 8]); | |
1891 YCbCrtoRGB(cp2[1], pp[ 9]); | |
1892 YCbCrtoRGB(cp2[2], pp[10]); | |
1893 YCbCrtoRGB(cp2[3], pp[11]); | |
1894 YCbCrtoRGB(cp3[0], pp[12]); | |
1895 YCbCrtoRGB(cp3[1], pp[13]); | |
1896 YCbCrtoRGB(cp3[2], pp[14]); | |
1897 YCbCrtoRGB(cp3[3], pp[15]); | |
1898 | |
1899 cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; | |
1900 pp += 18; | |
1901 } while (--x); | |
1902 cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
1903 pp += fromskew; | |
1904 } | |
1905 } else { | |
1906 while (h > 0) { | |
1907 for (x = w; x > 0;) { | |
1908 int32 Cb = pp[16]; | |
1909 int32 Cr = pp[17]; | |
1910 switch (x) { | |
1911 default: | |
1912 switch (h) { | |
1913 default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */ | |
1914 case 3: YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */ | |
1915 case 2: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ | |
1916 case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ | |
1917 } /* FALLTHROUGH */ | |
1918 case 3: | |
1919 switch (h) { | |
1920 default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */ | |
1921 case 3: YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */ | |
1922 case 2: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ | |
1923 case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ | |
1924 } /* FALLTHROUGH */ | |
1925 case 2: | |
1926 switch (h) { | |
1927 default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */ | |
1928 case 3: YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */ | |
1929 case 2: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ | |
1930 case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | |
1931 } /* FALLTHROUGH */ | |
1932 case 1: | |
1933 switch (h) { | |
1934 default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */ | |
1935 case 3: YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */ | |
1936 case 2: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ | |
1937 case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | |
1938 } /* FALLTHROUGH */ | |
1939 } | |
1940 if (x < 4) { | |
1941 cp += x; cp1 += x; cp2 += x; cp3 += x; | |
1942 x = 0; | |
1943 } | |
1944 else { | |
1945 cp += 4; cp1 += 4; cp2 += 4; cp3 += 4; | |
1946 x -= 4; | |
1947 } | |
1948 pp += 18; | |
1949 } | |
1950 if (h <= 4) | |
1951 break; | |
1952 h -= 4; | |
1953 cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
1954 pp += fromskew; | |
1955 } | |
1956 } | |
1957 } | |
1958 | |
1959 /* | |
1960 * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB | |
1961 */ | |
1962 DECLAREContigPutFunc(putcontig8bitYCbCr42tile) | |
1963 { | |
1964 uint32* cp1 = cp+w+toskew; | |
1965 int32 incr = 2*toskew+w; | |
1966 | |
1967 (void) y; | |
1968 fromskew = (fromskew * 10) / 4; | |
1969 if ((h & 3) == 0 && (w & 1) == 0) { | |
1970 for (; h >= 2; h -= 2) { | |
1971 x = w>>2; | |
1972 do { | |
1973 int32 Cb = pp[8]; | |
1974 int32 Cr = pp[9]; | |
1975 | |
1976 YCbCrtoRGB(cp [0], pp[0]); | |
1977 YCbCrtoRGB(cp [1], pp[1]); | |
1978 YCbCrtoRGB(cp [2], pp[2]); | |
1979 YCbCrtoRGB(cp [3], pp[3]); | |
1980 YCbCrtoRGB(cp1[0], pp[4]); | |
1981 YCbCrtoRGB(cp1[1], pp[5]); | |
1982 YCbCrtoRGB(cp1[2], pp[6]); | |
1983 YCbCrtoRGB(cp1[3], pp[7]); | |
1984 | |
1985 cp += 4, cp1 += 4; | |
1986 pp += 10; | |
1987 } while (--x); | |
1988 cp += incr, cp1 += incr; | |
1989 pp += fromskew; | |
1990 } | |
1991 } else { | |
1992 while (h > 0) { | |
1993 for (x = w; x > 0;) { | |
1994 int32 Cb = pp[8]; | |
1995 int32 Cr = pp[9]; | |
1996 switch (x) { | |
1997 default: | |
1998 switch (h) { | |
1999 default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ | |
2000 case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ | |
2001 } /* FALLTHROUGH */ | |
2002 case 3: | |
2003 switch (h) { | |
2004 default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ | |
2005 case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ | |
2006 } /* FALLTHROUGH */ | |
2007 case 2: | |
2008 switch (h) { | |
2009 default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ | |
2010 case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | |
2011 } /* FALLTHROUGH */ | |
2012 case 1: | |
2013 switch (h) { | |
2014 default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ | |
2015 case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | |
2016 } /* FALLTHROUGH */ | |
2017 } | |
2018 if (x < 4) { | |
2019 cp += x; cp1 += x; | |
2020 x = 0; | |
2021 } | |
2022 else { | |
2023 cp += 4; cp1 += 4; | |
2024 x -= 4; | |
2025 } | |
2026 pp += 10; | |
2027 } | |
2028 if (h <= 2) | |
2029 break; | |
2030 h -= 2; | |
2031 cp += incr, cp1 += incr; | |
2032 pp += fromskew; | |
2033 } | |
2034 } | |
2035 } | |
2036 | |
2037 /* | |
2038 * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB | |
2039 */ | |
2040 DECLAREContigPutFunc(putcontig8bitYCbCr41tile) | |
2041 { | |
2042 (void) y; | |
2043 /* XXX adjust fromskew */ | |
2044 do { | |
2045 x = w>>2; | |
2046 do { | |
2047 int32 Cb = pp[4]; | |
2048 int32 Cr = pp[5]; | |
2049 | |
2050 YCbCrtoRGB(cp [0], pp[0]); | |
2051 YCbCrtoRGB(cp [1], pp[1]); | |
2052 YCbCrtoRGB(cp [2], pp[2]); | |
2053 YCbCrtoRGB(cp [3], pp[3]); | |
2054 | |
2055 cp += 4; | |
2056 pp += 6; | |
2057 } while (--x); | |
2058 | |
2059 if( (w&3) != 0 ) | |
2060 { | |
2061 int32 Cb = pp[4]; | |
2062 int32 Cr = pp[5]; | |
2063 | |
2064 switch( (w&3) ) { | |
2065 case 3: YCbCrtoRGB(cp [2], pp[2]); | |
2066 case 2: YCbCrtoRGB(cp [1], pp[1]); | |
2067 case 1: YCbCrtoRGB(cp [0], pp[0]); | |
2068 case 0: break; | |
2069 } | |
2070 | |
2071 cp += (w&3); | |
2072 pp += 6; | |
2073 } | |
2074 | |
2075 cp += toskew; | |
2076 pp += fromskew; | |
2077 } while (--h); | |
2078 | |
2079 } | |
2080 | |
2081 /* | |
2082 * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB | |
2083 */ | |
2084 DECLAREContigPutFunc(putcontig8bitYCbCr22tile) | |
2085 { | |
2086 uint32* cp2; | |
2087 int32 incr = 2*toskew+w; | |
2088 (void) y; | |
2089 fromskew = (fromskew / 2) * 6; | |
2090 cp2 = cp+w+toskew; | |
2091 while (h>=2) { | |
2092 x = w; | |
2093 while (x>=2) { | |
2094 uint32 Cb = pp[4]; | |
2095 uint32 Cr = pp[5]; | |
2096 YCbCrtoRGB(cp[0], pp[0]); | |
2097 YCbCrtoRGB(cp[1], pp[1]); | |
2098 YCbCrtoRGB(cp2[0], pp[2]); | |
2099 YCbCrtoRGB(cp2[1], pp[3]); | |
2100 cp += 2; | |
2101 cp2 += 2; | |
2102 pp += 6; | |
2103 x -= 2; | |
2104 } | |
2105 if (x==1) { | |
2106 uint32 Cb = pp[4]; | |
2107 uint32 Cr = pp[5]; | |
2108 YCbCrtoRGB(cp[0], pp[0]); | |
2109 YCbCrtoRGB(cp2[0], pp[2]); | |
2110 cp ++ ; | |
2111 cp2 ++ ; | |
2112 pp += 6; | |
2113 } | |
2114 cp += incr; | |
2115 cp2 += incr; | |
2116 pp += fromskew; | |
2117 h-=2; | |
2118 } | |
2119 if (h==1) { | |
2120 x = w; | |
2121 while (x>=2) { | |
2122 uint32 Cb = pp[4]; | |
2123 uint32 Cr = pp[5]; | |
2124 YCbCrtoRGB(cp[0], pp[0]); | |
2125 YCbCrtoRGB(cp[1], pp[1]); | |
2126 cp += 2; | |
2127 cp2 += 2; | |
2128 pp += 6; | |
2129 x -= 2; | |
2130 } | |
2131 if (x==1) { | |
2132 uint32 Cb = pp[4]; | |
2133 uint32 Cr = pp[5]; | |
2134 YCbCrtoRGB(cp[0], pp[0]); | |
2135 } | |
2136 } | |
2137 } | |
2138 | |
2139 /* | |
2140 * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB | |
2141 */ | |
2142 DECLAREContigPutFunc(putcontig8bitYCbCr21tile) | |
2143 { | |
2144 (void) y; | |
2145 fromskew = (fromskew * 4) / 2; | |
2146 do { | |
2147 x = w>>1; | |
2148 do { | |
2149 int32 Cb = pp[2]; | |
2150 int32 Cr = pp[3]; | |
2151 | |
2152 YCbCrtoRGB(cp[0], pp[0]); | |
2153 YCbCrtoRGB(cp[1], pp[1]); | |
2154 | |
2155 cp += 2; | |
2156 pp += 4; | |
2157 } while (--x); | |
2158 | |
2159 if( (w&1) != 0 ) | |
2160 { | |
2161 int32 Cb = pp[2]; | |
2162 int32 Cr = pp[3]; | |
2163 | |
2164 YCbCrtoRGB(cp[0], pp[0]); | |
2165 | |
2166 cp += 1; | |
2167 pp += 4; | |
2168 } | |
2169 | |
2170 cp += toskew; | |
2171 pp += fromskew; | |
2172 } while (--h); | |
2173 } | |
2174 | |
2175 /* | |
2176 * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB | |
2177 */ | |
2178 DECLAREContigPutFunc(putcontig8bitYCbCr12tile) | |
2179 { | |
2180 uint32* cp2; | |
2181 int32 incr = 2*toskew+w; | |
2182 (void) y; | |
2183 fromskew = (fromskew / 2) * 4; | |
2184 cp2 = cp+w+toskew; | |
2185 while (h>=2) { | |
2186 x = w; | |
2187 do { | |
2188 uint32 Cb = pp[2]; | |
2189 uint32 Cr = pp[3]; | |
2190 YCbCrtoRGB(cp[0], pp[0]); | |
2191 YCbCrtoRGB(cp2[0], pp[1]); | |
2192 cp ++; | |
2193 cp2 ++; | |
2194 pp += 4; | |
2195 } while (--x); | |
2196 cp += incr; | |
2197 cp2 += incr; | |
2198 pp += fromskew; | |
2199 h-=2; | |
2200 } | |
2201 if (h==1) { | |
2202 x = w; | |
2203 do { | |
2204 uint32 Cb = pp[2]; | |
2205 uint32 Cr = pp[3]; | |
2206 YCbCrtoRGB(cp[0], pp[0]); | |
2207 cp ++; | |
2208 pp += 4; | |
2209 } while (--x); | |
2210 } | |
2211 } | |
2212 | |
2213 /* | |
2214 * 8-bit packed YCbCr samples w/ no subsampling => RGB | |
2215 */ | |
2216 DECLAREContigPutFunc(putcontig8bitYCbCr11tile) | |
2217 { | |
2218 (void) y; | |
2219 fromskew *= 3; | |
2220 do { | |
2221 x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */ | |
2222 do { | |
2223 int32 Cb = pp[1]; | |
2224 int32 Cr = pp[2]; | |
2225 | |
2226 YCbCrtoRGB(*cp++, pp[0]); | |
2227 | |
2228 pp += 3; | |
2229 } while (--x); | |
2230 cp += toskew; | |
2231 pp += fromskew; | |
2232 } while (--h); | |
2233 } | |
2234 | |
2235 /* | |
2236 * 8-bit packed YCbCr samples w/ no subsampling => RGB | |
2237 */ | |
2238 DECLARESepPutFunc(putseparate8bitYCbCr11tile) | |
2239 { | |
2240 (void) y; | |
2241 (void) a; | |
2242 /* TODO: naming of input vars is still off, change obfuscating declarati
on inside define, or resolve obfuscation */ | |
2243 while (h-- > 0) { | |
2244 x = w; | |
2245 do { | |
2246 uint32 dr, dg, db; | |
2247 TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db); | |
2248 *cp++ = PACK(dr,dg,db); | |
2249 } while (--x); | |
2250 SKEW(r, g, b, fromskew); | |
2251 cp += toskew; | |
2252 } | |
2253 } | |
2254 #undef YCbCrtoRGB | |
2255 | |
2256 static int | |
2257 initYCbCrConversion(TIFFRGBAImage* img) | |
2258 { | |
2259 static const char module[] = "initYCbCrConversion"; | |
2260 | |
2261 float *luma, *refBlackWhite; | |
2262 | |
2263 if (img->ycbcr == NULL) { | |
2264 img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc( | |
2265 TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long)) | |
2266 + 4*256*sizeof (TIFFRGBValue) | |
2267 + 2*256*sizeof (int) | |
2268 + 3*256*sizeof (int32) | |
2269 ); | |
2270 if (img->ycbcr == NULL) { | |
2271 TIFFErrorExt(img->tif->tif_clientdata, module, | |
2272 "No space for YCbCr->RGB conversion state"); | |
2273 return (0); | |
2274 } | |
2275 } | |
2276 | |
2277 TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma); | |
2278 TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE, | |
2279 &refBlackWhite); | |
2280 if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0) | |
2281 return(0); | |
2282 return (1); | |
2283 } | |
2284 | |
2285 static tileContigRoutine | |
2286 initCIELabConversion(TIFFRGBAImage* img) | |
2287 { | |
2288 static const char module[] = "initCIELabConversion"; | |
2289 | |
2290 float *whitePoint; | |
2291 float refWhite[3]; | |
2292 | |
2293 if (!img->cielab) { | |
2294 img->cielab = (TIFFCIELabToRGB *) | |
2295 _TIFFmalloc(sizeof(TIFFCIELabToRGB)); | |
2296 if (!img->cielab) { | |
2297 TIFFErrorExt(img->tif->tif_clientdata, module, | |
2298 "No space for CIE L*a*b*->RGB conversion state."); | |
2299 return NULL; | |
2300 } | |
2301 } | |
2302 | |
2303 TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint); | |
2304 refWhite[1] = 100.0F; | |
2305 refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1]; | |
2306 refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1]) | |
2307 / whitePoint[1] * refWhite[1]; | |
2308 if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) { | |
2309 TIFFErrorExt(img->tif->tif_clientdata, module, | |
2310 "Failed to initialize CIE L*a*b*->RGB conversion state."); | |
2311 _TIFFfree(img->cielab); | |
2312 return NULL; | |
2313 } | |
2314 | |
2315 return (tileContigRoutine)putcontig8bitCIELab; | |
2316 } | |
2317 | |
2318 /* | |
2319 * Greyscale images with less than 8 bits/sample are handled | |
2320 * with a table to avoid lots of shifts and masks. The table | |
2321 * is setup so that put*bwtile (below) can retrieve 8/bitspersample | |
2322 * pixel values simply by indexing into the table with one | |
2323 * number. | |
2324 */ | |
2325 static int | |
2326 makebwmap(TIFFRGBAImage* img) | |
2327 { | |
2328 TIFFRGBValue* Map = img->Map; | |
2329 int bitspersample = img->bitspersample; | |
2330 int nsamples = 8 / bitspersample; | |
2331 int i; | |
2332 uint32* p; | |
2333 | |
2334 if( nsamples == 0 ) | |
2335 nsamples = 1; | |
2336 | |
2337 img->BWmap = (uint32**) _TIFFmalloc( | |
2338 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | |
2339 if (img->BWmap == NULL) { | |
2340 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "
No space for B&W mapping table"); | |
2341 return (0); | |
2342 } | |
2343 p = (uint32*)(img->BWmap + 256); | |
2344 for (i = 0; i < 256; i++) { | |
2345 TIFFRGBValue c; | |
2346 img->BWmap[i] = p; | |
2347 switch (bitspersample) { | |
2348 #define GREY(x) c = Map[x]; *p++ = PACK(c,c,c); | |
2349 case 1: | |
2350 GREY(i>>7); | |
2351 GREY((i>>6)&1); | |
2352 GREY((i>>5)&1); | |
2353 GREY((i>>4)&1); | |
2354 GREY((i>>3)&1); | |
2355 GREY((i>>2)&1); | |
2356 GREY((i>>1)&1); | |
2357 GREY(i&1); | |
2358 break; | |
2359 case 2: | |
2360 GREY(i>>6); | |
2361 GREY((i>>4)&3); | |
2362 GREY((i>>2)&3); | |
2363 GREY(i&3); | |
2364 break; | |
2365 case 4: | |
2366 GREY(i>>4); | |
2367 GREY(i&0xf); | |
2368 break; | |
2369 case 8: | |
2370 case 16: | |
2371 GREY(i); | |
2372 break; | |
2373 } | |
2374 #undef GREY | |
2375 } | |
2376 return (1); | |
2377 } | |
2378 | |
2379 /* | |
2380 * Construct a mapping table to convert from the range | |
2381 * of the data samples to [0,255] --for display. This | |
2382 * process also handles inverting B&W images when needed. | |
2383 */ | |
2384 static int | |
2385 setupMap(TIFFRGBAImage* img) | |
2386 { | |
2387 int32 x, range; | |
2388 | |
2389 range = (int32)((1L<<img->bitspersample)-1); | |
2390 | |
2391 /* treat 16 bit the same as eight bit */ | |
2392 if( img->bitspersample == 16 ) | |
2393 range = (int32) 255; | |
2394 | |
2395 img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue)); | |
2396 if (img->Map == NULL) { | |
2397 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), | |
2398 "No space for photometric conversion table"); | |
2399 return (0); | |
2400 } | |
2401 if (img->photometric == PHOTOMETRIC_MINISWHITE) { | |
2402 for (x = 0; x <= range; x++) | |
2403 img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range); | |
2404 } else { | |
2405 for (x = 0; x <= range; x++) | |
2406 img->Map[x] = (TIFFRGBValue) ((x * 255) / range); | |
2407 } | |
2408 if (img->bitspersample <= 16 && | |
2409 (img->photometric == PHOTOMETRIC_MINISBLACK || | |
2410 img->photometric == PHOTOMETRIC_MINISWHITE)) { | |
2411 /* | |
2412 * Use photometric mapping table to construct | |
2413 * unpacking tables for samples <= 8 bits. | |
2414 */ | |
2415 if (!makebwmap(img)) | |
2416 return (0); | |
2417 /* no longer need Map, free it */ | |
2418 _TIFFfree(img->Map), img->Map = NULL; | |
2419 } | |
2420 return (1); | |
2421 } | |
2422 | |
2423 static int | |
2424 checkcmap(TIFFRGBAImage* img) | |
2425 { | |
2426 uint16* r = img->redcmap; | |
2427 uint16* g = img->greencmap; | |
2428 uint16* b = img->bluecmap; | |
2429 long n = 1L<<img->bitspersample; | |
2430 | |
2431 while (n-- > 0) | |
2432 if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256) | |
2433 return (16); | |
2434 return (8); | |
2435 } | |
2436 | |
2437 static void | |
2438 cvtcmap(TIFFRGBAImage* img) | |
2439 { | |
2440 uint16* r = img->redcmap; | |
2441 uint16* g = img->greencmap; | |
2442 uint16* b = img->bluecmap; | |
2443 long i; | |
2444 | |
2445 for (i = (1L<<img->bitspersample)-1; i >= 0; i--) { | |
2446 #define CVT(x) ((uint16)((x)>>8)) | |
2447 r[i] = CVT(r[i]); | |
2448 g[i] = CVT(g[i]); | |
2449 b[i] = CVT(b[i]); | |
2450 #undef CVT | |
2451 } | |
2452 } | |
2453 | |
2454 /* | |
2455 * Palette images with <= 8 bits/sample are handled | |
2456 * with a table to avoid lots of shifts and masks. The table | |
2457 * is setup so that put*cmaptile (below) can retrieve 8/bitspersample | |
2458 * pixel values simply by indexing into the table with one | |
2459 * number. | |
2460 */ | |
2461 static int | |
2462 makecmap(TIFFRGBAImage* img) | |
2463 { | |
2464 int bitspersample = img->bitspersample; | |
2465 int nsamples = 8 / bitspersample; | |
2466 uint16* r = img->redcmap; | |
2467 uint16* g = img->greencmap; | |
2468 uint16* b = img->bluecmap; | |
2469 uint32 *p; | |
2470 int i; | |
2471 | |
2472 img->PALmap = (uint32**) _TIFFmalloc( | |
2473 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | |
2474 if (img->PALmap == NULL) { | |
2475 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "
No space for Palette mapping table"); | |
2476 return (0); | |
2477 } | |
2478 p = (uint32*)(img->PALmap + 256); | |
2479 for (i = 0; i < 256; i++) { | |
2480 TIFFRGBValue c; | |
2481 img->PALmap[i] = p; | |
2482 #define CMAP(x) c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xf
f); | |
2483 switch (bitspersample) { | |
2484 case 1: | |
2485 CMAP(i>>7); | |
2486 CMAP((i>>6)&1); | |
2487 CMAP((i>>5)&1); | |
2488 CMAP((i>>4)&1); | |
2489 CMAP((i>>3)&1); | |
2490 CMAP((i>>2)&1); | |
2491 CMAP((i>>1)&1); | |
2492 CMAP(i&1); | |
2493 break; | |
2494 case 2: | |
2495 CMAP(i>>6); | |
2496 CMAP((i>>4)&3); | |
2497 CMAP((i>>2)&3); | |
2498 CMAP(i&3); | |
2499 break; | |
2500 case 4: | |
2501 CMAP(i>>4); | |
2502 CMAP(i&0xf); | |
2503 break; | |
2504 case 8: | |
2505 CMAP(i); | |
2506 break; | |
2507 } | |
2508 #undef CMAP | |
2509 } | |
2510 return (1); | |
2511 } | |
2512 | |
2513 /* | |
2514 * Construct any mapping table used | |
2515 * by the associated put routine. | |
2516 */ | |
2517 static int | |
2518 buildMap(TIFFRGBAImage* img) | |
2519 { | |
2520 switch (img->photometric) { | |
2521 case PHOTOMETRIC_RGB: | |
2522 case PHOTOMETRIC_YCBCR: | |
2523 case PHOTOMETRIC_SEPARATED: | |
2524 if (img->bitspersample == 8) | |
2525 break; | |
2526 /* fall thru... */ | |
2527 case PHOTOMETRIC_MINISBLACK: | |
2528 case PHOTOMETRIC_MINISWHITE: | |
2529 if (!setupMap(img)) | |
2530 return (0); | |
2531 break; | |
2532 case PHOTOMETRIC_PALETTE: | |
2533 /* | |
2534 * Convert 16-bit colormap to 8-bit (unless it looks | |
2535 * like an old-style 8-bit colormap). | |
2536 */ | |
2537 if (checkcmap(img) == 16) | |
2538 cvtcmap(img); | |
2539 else | |
2540 TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "As
suming 8-bit colormap"); | |
2541 /* | |
2542 * Use mapping table and colormap to construct | |
2543 * unpacking tables for samples < 8 bits. | |
2544 */ | |
2545 if (img->bitspersample <= 8 && !makecmap(img)) | |
2546 return (0); | |
2547 break; | |
2548 } | |
2549 return (1); | |
2550 } | |
2551 | |
2552 /* | |
2553 * Select the appropriate conversion routine for packed data. | |
2554 */ | |
2555 static int | |
2556 PickContigCase(TIFFRGBAImage* img) | |
2557 { | |
2558 img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig; | |
2559 img->put.contig = NULL; | |
2560 switch (img->photometric) { | |
2561 case PHOTOMETRIC_RGB: | |
2562 switch (img->bitspersample) { | |
2563 case 8: | |
2564 if (img->alpha == EXTRASAMPLE_ASSOCALPHA
) | |
2565 img->put.contig = putRGBAAcontig
8bittile; | |
2566 else if (img->alpha == EXTRASAMPLE_UNASS
ALPHA) | |
2567 { | |
2568 if (BuildMapUaToAa(img)) | |
2569 img->put.contig = putRGB
UAcontig8bittile; | |
2570 } | |
2571 else | |
2572 img->put.contig = putRGBcontig8b
ittile; | |
2573 break; | |
2574 case 16: | |
2575 if (img->alpha == EXTRASAMPLE_ASSOCALPHA
) | |
2576 { | |
2577 if (BuildMapBitdepth16To8(img)) | |
2578 img->put.contig = putRGB
AAcontig16bittile; | |
2579 } | |
2580 else if (img->alpha == EXTRASAMPLE_UNASS
ALPHA) | |
2581 { | |
2582 if (BuildMapBitdepth16To8(img) &
& | |
2583 BuildMapUaToAa(img)) | |
2584 img->put.contig = putRGB
UAcontig16bittile; | |
2585 } | |
2586 else | |
2587 { | |
2588 if (BuildMapBitdepth16To8(img)) | |
2589 img->put.contig = putRGB
contig16bittile; | |
2590 } | |
2591 break; | |
2592 } | |
2593 break; | |
2594 case PHOTOMETRIC_SEPARATED: | |
2595 if (buildMap(img)) { | |
2596 if (img->bitspersample == 8) { | |
2597 if (!img->Map) | |
2598 img->put.contig = putRGBcontig8bitCMYKti
le; | |
2599 else | |
2600 img->put.contig = putRGBcontig8bitCMYKMa
ptile; | |
2601 } | |
2602 else if(img->bitspersample == 16) /*LiuSunliang added 16
bpp CMYK support.*/ | |
2603 { | |
2604 if (!img->Map) | |
2605 img->put.contig = putRGBcontig16bitCMYKt
ile; | |
2606 else | |
2607 img->put.contig = putRGBcontig16bitCMYKM
aptile; | |
2608 } | |
2609 } | |
2610 break; | |
2611 case PHOTOMETRIC_PALETTE: | |
2612 if (buildMap(img)) { | |
2613 switch (img->bitspersample) { | |
2614 case 8: | |
2615 img->put.contig = put8bitcmaptil
e; | |
2616 break; | |
2617 case 4: | |
2618 img->put.contig = put4bitcmaptil
e; | |
2619 break; | |
2620 case 2: | |
2621 img->put.contig = put2bitcmaptil
e; | |
2622 break; | |
2623 case 1: | |
2624 img->put.contig = put1bitcmaptil
e; | |
2625 break; | |
2626 } | |
2627 } | |
2628 break; | |
2629 case PHOTOMETRIC_MINISWHITE: | |
2630 case PHOTOMETRIC_MINISBLACK: | |
2631 if (buildMap(img)) { | |
2632 switch (img->bitspersample) { | |
2633 case 16: | |
2634 img->put.contig = put16bitbwtile
; | |
2635 break; | |
2636 case 8: | |
2637 if (img->alpha && img->samplespe
rpixel == 2) | |
2638 img->put.contig = putagr
eytile; | |
2639 else | |
2640 img->put.contig = putgre
ytile; | |
2641 break; | |
2642 case 4: | |
2643 img->put.contig = put4bitbwtile; | |
2644 break; | |
2645 case 2: | |
2646 img->put.contig = put2bitbwtile; | |
2647 break; | |
2648 case 1: | |
2649 img->put.contig = put1bitbwtile; | |
2650 break; | |
2651 } | |
2652 } | |
2653 break; | |
2654 case PHOTOMETRIC_YCBCR: | |
2655 if ((img->bitspersample==8) && (img->samplesperpixel==3)
) | |
2656 { | |
2657 if (initYCbCrConversion(img)!=0) | |
2658 { | |
2659 /* | |
2660 * The 6.0 spec says that subsampling mu
st be | |
2661 * one of 1, 2, or 4, and that vertical
subsampling | |
2662 * must always be <= horizontal subsampl
ing; so | |
2663 * there are only a few possibilities an
d we just | |
2664 * enumerate the cases. | |
2665 * Joris: added support for the [1,2] ca
se, nonetheless, to accomodate | |
2666 * some OJPEG files | |
2667 */ | |
2668 uint16 SubsamplingHor; | |
2669 uint16 SubsamplingVer; | |
2670 TIFFGetFieldDefaulted(img->tif, TIFFTAG_
YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer); | |
2671 switch ((SubsamplingHor<<4)|SubsamplingV
er) { | |
2672 case 0x44: | |
2673 img->put.contig = putcon
tig8bitYCbCr44tile; | |
2674 break; | |
2675 case 0x42: | |
2676 img->put.contig = putcon
tig8bitYCbCr42tile; | |
2677 break; | |
2678 case 0x41: | |
2679 img->put.contig = putcon
tig8bitYCbCr41tile; | |
2680 break; | |
2681 case 0x22: | |
2682 img->put.contig = putcon
tig8bitYCbCr22tile; | |
2683 break; | |
2684 case 0x21: | |
2685 img->put.contig = putcon
tig8bitYCbCr21tile; | |
2686 break; | |
2687 case 0x12: | |
2688 img->put.contig = putcon
tig8bitYCbCr12tile; | |
2689 break; | |
2690 case 0x11: | |
2691 img->put.contig = putcon
tig8bitYCbCr11tile; | |
2692 break; | |
2693 } | |
2694 } | |
2695 } | |
2696 break; | |
2697 case PHOTOMETRIC_CIELAB: | |
2698 if (buildMap(img)) { | |
2699 if (img->bitspersample == 8) | |
2700 img->put.contig = initCIELabConversion(i
mg); | |
2701 break; | |
2702 } | |
2703 } | |
2704 return ((img->get!=NULL) && (img->put.contig!=NULL)); | |
2705 } | |
2706 | |
2707 /* | |
2708 * Select the appropriate conversion routine for unpacked data. | |
2709 * | |
2710 * NB: we assume that unpacked single channel data is directed | |
2711 * to the "packed routines. | |
2712 */ | |
2713 static int | |
2714 PickSeparateCase(TIFFRGBAImage* img) | |
2715 { | |
2716 img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate; | |
2717 img->put.separate = NULL; | |
2718 switch (img->photometric) { | |
2719 case PHOTOMETRIC_MINISWHITE: | |
2720 case PHOTOMETRIC_MINISBLACK: | |
2721 /* greyscale images processed pretty much as RGB by gtTileSepara
te */ | |
2722 case PHOTOMETRIC_RGB: | |
2723 switch (img->bitspersample) { | |
2724 case 8: | |
2725 if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2726 img->put.separate = putRGBAAseparate8bittile; | |
2727 else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2728 { | |
2729 if (BuildMapUaToAa(img)) | |
2730 img->put.separate = putRGBUAseparate8bit
tile; | |
2731 } | |
2732 else | |
2733 img->put.separate = putRGBseparate8bittile; | |
2734 break; | |
2735 case 16: | |
2736 if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2737 { | |
2738 if (BuildMapBitdepth16To8(img)) | |
2739 img->put.separate = putRGBAAseparate16bi
ttile; | |
2740 } | |
2741 else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2742 { | |
2743 if (BuildMapBitdepth16To8(img) && | |
2744 BuildMapUaToAa(img)) | |
2745 img->put.separate = putRGBUAseparate16bi
ttile; | |
2746 } | |
2747 else | |
2748 { | |
2749 if (BuildMapBitdepth16To8(img)) | |
2750 img->put.separate = putRGBseparate16bitt
ile; | |
2751 } | |
2752 break; | |
2753 } | |
2754 break; | |
2755 case PHOTOMETRIC_SEPARATED: | |
2756 if (img->bitspersample == 8 && img->samplesperpixel == 4) | |
2757 { | |
2758 img->alpha = 1; // Not alpha, but seems like the only wa
y to get 4th band | |
2759 img->put.separate = putCMYKseparate8bittile; | |
2760 } | |
2761 break; | |
2762 case PHOTOMETRIC_YCBCR: | |
2763 if ((img->bitspersample==8) && (img->samplesperpixel==3)) | |
2764 { | |
2765 if (initYCbCrConversion(img)!=0) | |
2766 { | |
2767 uint16 hs, vs; | |
2768 TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUB
SAMPLING, &hs, &vs); | |
2769 switch ((hs<<4)|vs) { | |
2770 case 0x11: | |
2771 img->put.separate = putseparate8bitYCbCr
11tile; | |
2772 break; | |
2773 /* TODO: add other cases here */ | |
2774 } | |
2775 } | |
2776 } | |
2777 break; | |
2778 } | |
2779 return ((img->get!=NULL) && (img->put.separate!=NULL)); | |
2780 } | |
2781 | |
2782 static int | |
2783 BuildMapUaToAa(TIFFRGBAImage* img) | |
2784 { | |
2785 static const char module[]="BuildMapUaToAa"; | |
2786 uint8* m; | |
2787 uint16 na,nv; | |
2788 assert(img->UaToAa==NULL); | |
2789 img->UaToAa=_TIFFmalloc(65536); | |
2790 if (img->UaToAa==NULL) | |
2791 { | |
2792 TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory"); | |
2793 return(0); | |
2794 } | |
2795 m=img->UaToAa; | |
2796 for (na=0; na<256; na++) | |
2797 { | |
2798 for (nv=0; nv<256; nv++) | |
2799 *m++=(nv*na+127)/255; | |
2800 } | |
2801 return(1); | |
2802 } | |
2803 | |
2804 static int | |
2805 BuildMapBitdepth16To8(TIFFRGBAImage* img) | |
2806 { | |
2807 static const char module[]="BuildMapBitdepth16To8"; | |
2808 uint8* m; | |
2809 uint32 n; | |
2810 assert(img->Bitdepth16To8==NULL); | |
2811 img->Bitdepth16To8=_TIFFmalloc(65536); | |
2812 if (img->Bitdepth16To8==NULL) | |
2813 { | |
2814 TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory"); | |
2815 return(0); | |
2816 } | |
2817 m=img->Bitdepth16To8; | |
2818 for (n=0; n<65536; n++) | |
2819 *m++=(n+128)/257; | |
2820 return(1); | |
2821 } | |
2822 | |
2823 | |
2824 /* | |
2825 * Read a whole strip off data from the file, and convert to RGBA form. | |
2826 * If this is the last strip, then it will only contain the portion of | |
2827 * the strip that is actually within the image space. The result is | |
2828 * organized in bottom to top form. | |
2829 */ | |
2830 | |
2831 | |
2832 int | |
2833 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster ) | |
2834 | |
2835 { | |
2836 char emsg[1024] = ""; | |
2837 TIFFRGBAImage img; | |
2838 int ok; | |
2839 uint32 rowsperstrip, rows_to_read; | |
2840 | |
2841 if( TIFFIsTiled( tif ) ) | |
2842 { | |
2843 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
2844 "Can't use TIFFReadRGBAStrip() with tiled file."); | |
2845 return (0); | |
2846 } | |
2847 | |
2848 TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
2849 if( (row % rowsperstrip) != 0 ) | |
2850 { | |
2851 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
2852 "Row passed to TIFFReadRGBAStrip() must be first
in a strip."); | |
2853 return (0); | |
2854 } | |
2855 | |
2856 if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, 0, emsg)) { | |
2857 | |
2858 img.row_offset = row; | |
2859 img.col_offset = 0; | |
2860 | |
2861 if( row + rowsperstrip > img.height ) | |
2862 rows_to_read = img.height - row; | |
2863 else | |
2864 rows_to_read = rowsperstrip; | |
2865 | |
2866 ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read ); | |
2867 | |
2868 TIFFRGBAImageEnd(&img); | |
2869 } else { | |
2870 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg)
; | |
2871 ok = 0; | |
2872 } | |
2873 | |
2874 return (ok); | |
2875 } | |
2876 | |
2877 /* | |
2878 * Read a whole tile off data from the file, and convert to RGBA form. | |
2879 * The returned RGBA data is organized from bottom to top of tile, | |
2880 * and may include zeroed areas if the tile extends off the image. | |
2881 */ | |
2882 | |
2883 int | |
2884 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster) | |
2885 | |
2886 { | |
2887 char emsg[1024] = ""; | |
2888 TIFFRGBAImage img; | |
2889 int ok; | |
2890 uint32 tile_xsize, tile_ysize; | |
2891 uint32 read_xsize, read_ysize; | |
2892 uint32 i_row; | |
2893 | |
2894 /* | |
2895 * Verify that our request is legal - on a tile file, and on a | |
2896 * tile boundary. | |
2897 */ | |
2898 | |
2899 if( !TIFFIsTiled( tif ) ) | |
2900 { | |
2901 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
2902 "Can't use TIFFReadRGBATile() with stripped fi
le."); | |
2903 return (0); | |
2904 } | |
2905 | |
2906 TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize); | |
2907 TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize); | |
2908 if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 ) | |
2909 { | |
2910 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
2911 "Row/col passed to TIFFReadRGBATile() must be top" | |
2912 "left corner of a tile."); | |
2913 return (0); | |
2914 } | |
2915 | |
2916 /* | |
2917 * Setup the RGBA reader. | |
2918 */ | |
2919 | |
2920 if (!TIFFRGBAImageOK(tif, emsg) | |
2921 || !TIFFRGBAImageBegin(&img, tif, 0, emsg)) { | |
2922 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); | |
2923 return( 0 ); | |
2924 } | |
2925 | |
2926 /* | |
2927 * The TIFFRGBAImageGet() function doesn't allow us to get off the | |
2928 * edge of the image, even to fill an otherwise valid tile. So we | |
2929 * figure out how much we can read, and fix up the tile buffer to | |
2930 * a full tile configuration afterwards. | |
2931 */ | |
2932 | |
2933 if( row + tile_ysize > img.height ) | |
2934 read_ysize = img.height - row; | |
2935 else | |
2936 read_ysize = tile_ysize; | |
2937 | |
2938 if( col + tile_xsize > img.width ) | |
2939 read_xsize = img.width - col; | |
2940 else | |
2941 read_xsize = tile_xsize; | |
2942 | |
2943 /* | |
2944 * Read the chunk of imagery. | |
2945 */ | |
2946 | |
2947 img.row_offset = row; | |
2948 img.col_offset = col; | |
2949 | |
2950 ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize ); | |
2951 | |
2952 TIFFRGBAImageEnd(&img); | |
2953 | |
2954 /* | |
2955 * If our read was incomplete we will need to fix up the tile by | |
2956 * shifting the data around as if a full tile of data is being returned. | |
2957 * | |
2958 * This is all the more complicated because the image is organized in | |
2959 * bottom to top format. | |
2960 */ | |
2961 | |
2962 if( read_xsize == tile_xsize && read_ysize == tile_ysize ) | |
2963 return( ok ); | |
2964 | |
2965 for( i_row = 0; i_row < read_ysize; i_row++ ) { | |
2966 memmove( raster + (tile_ysize - i_row - 1) * tile_xsize, | |
2967 raster + (read_ysize - i_row - 1) * read_xsize, | |
2968 read_xsize * sizeof(uint32) ); | |
2969 _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize, | |
2970 0, sizeof(uint32) * (tile_xsize - read_xsize) ); | |
2971 } | |
2972 | |
2973 for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) { | |
2974 _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize, | |
2975 0, sizeof(uint32) * tile_xsize ); | |
2976 } | |
2977 | |
2978 return (ok); | |
2979 } | |
2980 | |
2981 /* vim: set ts=8 sts=8 sw=8 noet: */ | |
2982 /* | |
2983 * Local Variables: | |
2984 * mode: c | |
2985 * c-basic-offset: 8 | |
2986 * fill-column: 78 | |
2987 * End: | |
2988 */ | |
2989 | |
OLD | NEW |