| OLD | NEW |
| (Empty) |
| 1 /* $Id: tif_getimage.c,v 1.82 2012-06-06 00:17:49 fwarmerdam Exp $ */ | |
| 2 | |
| 3 /* | |
| 4 * Copyright (c) 1991-1997 Sam Leffler | |
| 5 * Copyright (c) 1991-1997 Silicon Graphics, Inc. | |
| 6 * | |
| 7 * Permission to use, copy, modify, distribute, and sell this software and | |
| 8 * its documentation for any purpose is hereby granted without fee, provided | |
| 9 * that (i) the above copyright notices and this permission notice appear in | |
| 10 * all copies of the software and related documentation, and (ii) the names of | |
| 11 * Sam Leffler and Silicon Graphics may not be used in any advertising or | |
| 12 * publicity relating to the software without the specific, prior written | |
| 13 * permission of Sam Leffler and Silicon Graphics. | |
| 14 * | |
| 15 * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
| 16 * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
| 17 * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
| 18 * | |
| 19 * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR | |
| 20 * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, | |
| 21 * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, | |
| 22 * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF | |
| 23 * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE | |
| 24 * OF THIS SOFTWARE. | |
| 25 */ | |
| 26 | |
| 27 /* | |
| 28 * TIFF Library | |
| 29 * | |
| 30 * Read and return a packed RGBA image. | |
| 31 */ | |
| 32 #include "tiffiop.h" | |
| 33 #include <stdio.h> | |
| 34 | |
| 35 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32); | |
| 36 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | |
| 37 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32); | |
| 38 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | |
| 39 static int PickContigCase(TIFFRGBAImage*); | |
| 40 static int PickSeparateCase(TIFFRGBAImage*); | |
| 41 | |
| 42 static int BuildMapUaToAa(TIFFRGBAImage* img); | |
| 43 static int BuildMapBitdepth16To8(TIFFRGBAImage* img); | |
| 44 | |
| 45 static const char photoTag[] = "PhotometricInterpretation"; | |
| 46 | |
| 47 /* | |
| 48 * Helper constants used in Orientation tag handling | |
| 49 */ | |
| 50 #define FLIP_VERTICALLY 0x01 | |
| 51 #define FLIP_HORIZONTALLY 0x02 | |
| 52 | |
| 53 /* | |
| 54 * Color conversion constants. We will define display types here. | |
| 55 */ | |
| 56 | |
| 57 static const TIFFDisplay display_sRGB = { | |
| 58 { /* XYZ -> luminance matrix */ | |
| 59 { 3.2410F, -1.5374F, -0.4986F }, | |
| 60 { -0.9692F, 1.8760F, 0.0416F }, | |
| 61 { 0.0556F, -0.2040F, 1.0570F } | |
| 62 }, | |
| 63 100.0F, 100.0F, 100.0F, /* Light o/p for reference white */ | |
| 64 255, 255, 255, /* Pixel values for ref. white */ | |
| 65 1.0F, 1.0F, 1.0F, /* Residual light o/p for black pixel */ | |
| 66 2.4F, 2.4F, 2.4F, /* Gamma values for the three guns */ | |
| 67 }; | |
| 68 | |
| 69 /* | |
| 70 * Check the image to see if TIFFReadRGBAImage can deal with it. | |
| 71 * 1/0 is returned according to whether or not the image can | |
| 72 * be handled. If 0 is returned, emsg contains the reason | |
| 73 * why it is being rejected. | |
| 74 */ | |
| 75 int | |
| 76 TIFFRGBAImageOK(TIFF* tif, char emsg[1024]) | |
| 77 { | |
| 78 TIFFDirectory* td = &tif->tif_dir; | |
| 79 uint16 photometric; | |
| 80 int colorchannels; | |
| 81 | |
| 82 if (!tif->tif_decodestatus) { | |
| 83 sprintf(emsg, "Sorry, requested compression method is not config
ured"); | |
| 84 return (0); | |
| 85 } | |
| 86 switch (td->td_bitspersample) { | |
| 87 case 1: | |
| 88 case 2: | |
| 89 case 4: | |
| 90 case 8: | |
| 91 case 16: | |
| 92 break; | |
| 93 default: | |
| 94 sprintf(emsg, "Sorry, can not handle images with %d-bit
samples", | |
| 95 td->td_bitspersample); | |
| 96 return (0); | |
| 97 } | |
| 98 colorchannels = td->td_samplesperpixel - td->td_extrasamples; | |
| 99 if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) { | |
| 100 switch (colorchannels) { | |
| 101 case 1: | |
| 102 photometric = PHOTOMETRIC_MINISBLACK; | |
| 103 break; | |
| 104 case 3: | |
| 105 photometric = PHOTOMETRIC_RGB; | |
| 106 break; | |
| 107 default: | |
| 108 sprintf(emsg, "Missing needed %s tag", photoTag)
; | |
| 109 return (0); | |
| 110 } | |
| 111 } | |
| 112 switch (photometric) { | |
| 113 case PHOTOMETRIC_MINISWHITE: | |
| 114 case PHOTOMETRIC_MINISBLACK: | |
| 115 case PHOTOMETRIC_PALETTE: | |
| 116 if (td->td_planarconfig == PLANARCONFIG_CONTIG | |
| 117 && td->td_samplesperpixel != 1 | |
| 118 && td->td_bitspersample < 8 ) { | |
| 119 sprintf(emsg, | |
| 120 "Sorry, can not handle contiguous data with
%s=%d, " | |
| 121 "and %s=%d and Bits/Sample=%d", | |
| 122 photoTag, photometric, | |
| 123 "Samples/pixel", td->td_samplesperpixel, | |
| 124 td->td_bitspersample); | |
| 125 return (0); | |
| 126 } | |
| 127 /* | |
| 128 * We should likely validate that any extra samples are
either | |
| 129 * to be ignored, or are alpha, and if alpha we should t
ry to use | |
| 130 * them. But for now we won't bother with this. | |
| 131 */ | |
| 132 break; | |
| 133 case PHOTOMETRIC_YCBCR: | |
| 134 /* | |
| 135 * TODO: if at all meaningful and useful, make more comp
lete | |
| 136 * support check here, or better still, refactor to let
supporting | |
| 137 * code decide whether there is support and what meaning
full | |
| 138 * error to return | |
| 139 */ | |
| 140 break; | |
| 141 case PHOTOMETRIC_RGB: | |
| 142 if (colorchannels < 3) { | |
| 143 sprintf(emsg, "Sorry, can not handle RGB image w
ith %s=%d", | |
| 144 "Color channels", colorchannels); | |
| 145 return (0); | |
| 146 } | |
| 147 break; | |
| 148 case PHOTOMETRIC_SEPARATED: | |
| 149 { | |
| 150 uint16 inkset; | |
| 151 TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inks
et); | |
| 152 if (inkset != INKSET_CMYK) { | |
| 153 sprintf(emsg, | |
| 154 "Sorry, can not handle separated ima
ge with %s=%d", | |
| 155 "InkSet", inkset); | |
| 156 return 0; | |
| 157 } | |
| 158 if (td->td_samplesperpixel < 4) { | |
| 159 sprintf(emsg, | |
| 160 "Sorry, can not handle separated ima
ge with %s=%d", | |
| 161 "Samples/pixel", td->td_samplesperpi
xel); | |
| 162 return 0; | |
| 163 } | |
| 164 break; | |
| 165 } | |
| 166 case PHOTOMETRIC_LOGL: | |
| 167 if (td->td_compression != COMPRESSION_SGILOG) { | |
| 168 sprintf(emsg, "Sorry, LogL data must have %s=%d"
, | |
| 169 "Compression", COMPRESSION_SGILOG); | |
| 170 return (0); | |
| 171 } | |
| 172 break; | |
| 173 case PHOTOMETRIC_LOGLUV: | |
| 174 if (td->td_compression != COMPRESSION_SGILOG && | |
| 175 td->td_compression != COMPRESSION_SGILOG24) { | |
| 176 sprintf(emsg, "Sorry, LogLuv data must have %s=%
d or %d", | |
| 177 "Compression", COMPRESSION_SGILOG, COMPRESSI
ON_SGILOG24); | |
| 178 return (0); | |
| 179 } | |
| 180 if (td->td_planarconfig != PLANARCONFIG_CONTIG) { | |
| 181 sprintf(emsg, "Sorry, can not handle LogLuv imag
es with %s=%d", | |
| 182 "Planarconfiguration", td->td_planarconfig); | |
| 183 return (0); | |
| 184 } | |
| 185 break; | |
| 186 case PHOTOMETRIC_CIELAB: | |
| 187 break; | |
| 188 default: | |
| 189 sprintf(emsg, "Sorry, can not handle image with %s=%d", | |
| 190 photoTag, photometric); | |
| 191 return (0); | |
| 192 } | |
| 193 return (1); | |
| 194 } | |
| 195 | |
| 196 void | |
| 197 TIFFRGBAImageEnd(TIFFRGBAImage* img) | |
| 198 { | |
| 199 if (img->Map) | |
| 200 _TIFFfree(img->Map), img->Map = NULL; | |
| 201 if (img->BWmap) | |
| 202 _TIFFfree(img->BWmap), img->BWmap = NULL; | |
| 203 if (img->PALmap) | |
| 204 _TIFFfree(img->PALmap), img->PALmap = NULL; | |
| 205 if (img->ycbcr) | |
| 206 _TIFFfree(img->ycbcr), img->ycbcr = NULL; | |
| 207 if (img->cielab) | |
| 208 _TIFFfree(img->cielab), img->cielab = NULL; | |
| 209 if (img->UaToAa) | |
| 210 _TIFFfree(img->UaToAa), img->UaToAa = NULL; | |
| 211 if (img->Bitdepth16To8) | |
| 212 _TIFFfree(img->Bitdepth16To8), img->Bitdepth16To8 = NULL; | |
| 213 | |
| 214 if( img->redcmap ) { | |
| 215 _TIFFfree( img->redcmap ); | |
| 216 _TIFFfree( img->greencmap ); | |
| 217 _TIFFfree( img->bluecmap ); | |
| 218 img->redcmap = img->greencmap = img->bluecmap = NULL; | |
| 219 } | |
| 220 } | |
| 221 | |
| 222 static int | |
| 223 isCCITTCompression(TIFF* tif) | |
| 224 { | |
| 225 uint16 compress; | |
| 226 TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress); | |
| 227 return (compress == COMPRESSION_CCITTFAX3 || | |
| 228 compress == COMPRESSION_CCITTFAX4 || | |
| 229 compress == COMPRESSION_CCITTRLE || | |
| 230 compress == COMPRESSION_CCITTRLEW); | |
| 231 } | |
| 232 | |
| 233 int | |
| 234 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024]) | |
| 235 { | |
| 236 uint16* sampleinfo; | |
| 237 uint16 extrasamples; | |
| 238 uint16 planarconfig; | |
| 239 uint16 compress; | |
| 240 int colorchannels; | |
| 241 uint16 *red_orig, *green_orig, *blue_orig; | |
| 242 int n_color; | |
| 243 | |
| 244 /* Initialize to normal values */ | |
| 245 img->row_offset = 0; | |
| 246 img->col_offset = 0; | |
| 247 img->redcmap = NULL; | |
| 248 img->greencmap = NULL; | |
| 249 img->bluecmap = NULL; | |
| 250 img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */ | |
| 251 | |
| 252 img->tif = tif; | |
| 253 img->stoponerr = stop; | |
| 254 TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample); | |
| 255 switch (img->bitspersample) { | |
| 256 case 1: | |
| 257 case 2: | |
| 258 case 4: | |
| 259 case 8: | |
| 260 case 16: | |
| 261 break; | |
| 262 default: | |
| 263 sprintf(emsg, "Sorry, can not handle images with %d-bit
samples", | |
| 264 img->bitspersample); | |
| 265 goto fail_return; | |
| 266 } | |
| 267 img->alpha = 0; | |
| 268 TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixe
l); | |
| 269 TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES, | |
| 270 &extrasamples, &sampleinfo); | |
| 271 if (extrasamples >= 1) | |
| 272 { | |
| 273 switch (sampleinfo[0]) { | |
| 274 case EXTRASAMPLE_UNSPECIFIED: /* Workaround for
some images without */ | |
| 275 if (img->samplesperpixel > 3) /* correct info a
bout alpha channel */ | |
| 276 img->alpha = EXTRASAMPLE_ASSOCALPHA; | |
| 277 break; | |
| 278 case EXTRASAMPLE_ASSOCALPHA: /* data is pre-mu
ltiplied */ | |
| 279 case EXTRASAMPLE_UNASSALPHA: /* data is not pr
e-multiplied */ | |
| 280 img->alpha = sampleinfo[0]; | |
| 281 break; | |
| 282 } | |
| 283 } | |
| 284 | |
| 285 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA | |
| 286 if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) | |
| 287 img->photometric = PHOTOMETRIC_MINISWHITE; | |
| 288 | |
| 289 if( extrasamples == 0 | |
| 290 && img->samplesperpixel == 4 | |
| 291 && img->photometric == PHOTOMETRIC_RGB ) | |
| 292 { | |
| 293 img->alpha = EXTRASAMPLE_ASSOCALPHA; | |
| 294 extrasamples = 1; | |
| 295 } | |
| 296 #endif | |
| 297 | |
| 298 colorchannels = img->samplesperpixel - extrasamples; | |
| 299 TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress); | |
| 300 TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig); | |
| 301 if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) { | |
| 302 switch (colorchannels) { | |
| 303 case 1: | |
| 304 if (isCCITTCompression(tif)) | |
| 305 img->photometric = PHOTOMETRIC_MINISWHIT
E; | |
| 306 else | |
| 307 img->photometric = PHOTOMETRIC_MINISBLAC
K; | |
| 308 break; | |
| 309 case 3: | |
| 310 img->photometric = PHOTOMETRIC_RGB; | |
| 311 break; | |
| 312 default: | |
| 313 sprintf(emsg, "Missing needed %s tag", photoTag)
; | |
| 314 goto fail_return; | |
| 315 } | |
| 316 } | |
| 317 switch (img->photometric) { | |
| 318 case PHOTOMETRIC_PALETTE: | |
| 319 if (!TIFFGetField(tif, TIFFTAG_COLORMAP, | |
| 320 &red_orig, &green_orig, &blue_orig)) { | |
| 321 sprintf(emsg, "Missing required \"Colormap\" tag
"); | |
| 322 goto fail_return; | |
| 323 } | |
| 324 | |
| 325 /* copy the colormaps so we can modify them */ | |
| 326 n_color = (1L << img->bitspersample); | |
| 327 img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_c
olor); | |
| 328 img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n
_color); | |
| 329 img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_
color); | |
| 330 if( !img->redcmap || !img->greencmap || !img->bluecmap )
{ | |
| 331 sprintf(emsg, "Out of memory for colormap copy")
; | |
| 332 goto fail_return; | |
| 333 } | |
| 334 | |
| 335 _TIFFmemcpy( img->redcmap, red_orig, n_color * 2 ); | |
| 336 _TIFFmemcpy( img->greencmap, green_orig, n_color * 2 ); | |
| 337 _TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 ); | |
| 338 | |
| 339 /* fall thru... */ | |
| 340 case PHOTOMETRIC_MINISWHITE: | |
| 341 case PHOTOMETRIC_MINISBLACK: | |
| 342 if (planarconfig == PLANARCONFIG_CONTIG | |
| 343 && img->samplesperpixel != 1 | |
| 344 && img->bitspersample < 8 ) { | |
| 345 sprintf(emsg, | |
| 346 "Sorry, can not handle contiguous data with
%s=%d, " | |
| 347 "and %s=%d and Bits/Sample=%d", | |
| 348 photoTag, img->photometric, | |
| 349 "Samples/pixel", img->samplesperpixel, | |
| 350 img->bitspersample); | |
| 351 goto fail_return; | |
| 352 } | |
| 353 break; | |
| 354 case PHOTOMETRIC_YCBCR: | |
| 355 /* It would probably be nice to have a reality check her
e. */ | |
| 356 if (planarconfig == PLANARCONFIG_CONTIG) | |
| 357 /* can rely on libjpeg to convert to RGB */ | |
| 358 /* XXX should restore current state on exit */ | |
| 359 switch (compress) { | |
| 360 case COMPRESSION_JPEG: | |
| 361 /* | |
| 362 * TODO: when complete tests ver
ify complete desubsampling | |
| 363 * and YCbCr handling, remove us
e of TIFFTAG_JPEGCOLORMODE in | |
| 364 * favor of tif_getimage.c nativ
e handling | |
| 365 */ | |
| 366 TIFFSetField(tif, TIFFTAG_JPEGCO
LORMODE, JPEGCOLORMODE_RGB); | |
| 367 img->photometric = PHOTOMETRIC_R
GB; | |
| 368 break; | |
| 369 default: | |
| 370 /* do nothing */; | |
| 371 break; | |
| 372 } | |
| 373 /* | |
| 374 * TODO: if at all meaningful and useful, make more comp
lete | |
| 375 * support check here, or better still, refactor to let
supporting | |
| 376 * code decide whether there is support and what meaning
full | |
| 377 * error to return | |
| 378 */ | |
| 379 break; | |
| 380 case PHOTOMETRIC_RGB: | |
| 381 if (colorchannels < 3) { | |
| 382 sprintf(emsg, "Sorry, can not handle RGB image w
ith %s=%d", | |
| 383 "Color channels", colorchannels); | |
| 384 goto fail_return; | |
| 385 } | |
| 386 break; | |
| 387 case PHOTOMETRIC_SEPARATED: | |
| 388 { | |
| 389 uint16 inkset; | |
| 390 TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inks
et); | |
| 391 if (inkset != INKSET_CMYK) { | |
| 392 sprintf(emsg, "Sorry, can not handle sep
arated image with %s=%d", | |
| 393 "InkSet", inkset); | |
| 394 goto fail_return; | |
| 395 } | |
| 396 if (img->samplesperpixel < 4) { | |
| 397 sprintf(emsg, "Sorry, can not handle sep
arated image with %s=%d", | |
| 398 "Samples/pixel", img->samplesperpixe
l); | |
| 399 goto fail_return; | |
| 400 } | |
| 401 } | |
| 402 break; | |
| 403 case PHOTOMETRIC_LOGL: | |
| 404 if (compress != COMPRESSION_SGILOG) { | |
| 405 sprintf(emsg, "Sorry, LogL data must have %s=%d"
, | |
| 406 "Compression", COMPRESSION_SGILOG); | |
| 407 goto fail_return; | |
| 408 } | |
| 409 TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8
BIT); | |
| 410 img->photometric = PHOTOMETRIC_MINISBLACK; /* littl
e white lie */ | |
| 411 img->bitspersample = 8; | |
| 412 break; | |
| 413 case PHOTOMETRIC_LOGLUV: | |
| 414 if (compress != COMPRESSION_SGILOG && compress != COMPRE
SSION_SGILOG24) { | |
| 415 sprintf(emsg, "Sorry, LogLuv data must have %s=%
d or %d", | |
| 416 "Compression", COMPRESSION_SGILOG, COMPRESSI
ON_SGILOG24); | |
| 417 goto fail_return; | |
| 418 } | |
| 419 if (planarconfig != PLANARCONFIG_CONTIG) { | |
| 420 sprintf(emsg, "Sorry, can not handle LogLuv imag
es with %s=%d", | |
| 421 "Planarconfiguration", planarconfig); | |
| 422 return (0); | |
| 423 } | |
| 424 TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8
BIT); | |
| 425 img->photometric = PHOTOMETRIC_RGB; /* littl
e white lie */ | |
| 426 img->bitspersample = 8; | |
| 427 break; | |
| 428 case PHOTOMETRIC_CIELAB: | |
| 429 break; | |
| 430 default: | |
| 431 sprintf(emsg, "Sorry, can not handle image with %s=%d", | |
| 432 photoTag, img->photometric); | |
| 433 goto fail_return; | |
| 434 } | |
| 435 img->Map = NULL; | |
| 436 img->BWmap = NULL; | |
| 437 img->PALmap = NULL; | |
| 438 img->ycbcr = NULL; | |
| 439 img->cielab = NULL; | |
| 440 img->UaToAa = NULL; | |
| 441 img->Bitdepth16To8 = NULL; | |
| 442 TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width); | |
| 443 TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height); | |
| 444 TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation); | |
| 445 img->isContig = | |
| 446 !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1)
; | |
| 447 if (img->isContig) { | |
| 448 if (!PickContigCase(img)) { | |
| 449 sprintf(emsg, "Sorry, can not handle image"); | |
| 450 goto fail_return; | |
| 451 } | |
| 452 } else { | |
| 453 if (!PickSeparateCase(img)) { | |
| 454 sprintf(emsg, "Sorry, can not handle image"); | |
| 455 goto fail_return; | |
| 456 } | |
| 457 } | |
| 458 return 1; | |
| 459 | |
| 460 fail_return: | |
| 461 _TIFFfree( img->redcmap ); | |
| 462 _TIFFfree( img->greencmap ); | |
| 463 _TIFFfree( img->bluecmap ); | |
| 464 img->redcmap = img->greencmap = img->bluecmap = NULL; | |
| 465 return 0; | |
| 466 } | |
| 467 | |
| 468 int | |
| 469 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
| 470 { | |
| 471 if (img->get == NULL) { | |
| 472 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "
No \"get\" routine setup"); | |
| 473 return (0); | |
| 474 } | |
| 475 if (img->put.any == NULL) { | |
| 476 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), | |
| 477 "No \"put\" routine setupl; probably can not handle image format
"); | |
| 478 return (0); | |
| 479 } | |
| 480 return (*img->get)(img, raster, w, h); | |
| 481 } | |
| 482 | |
| 483 /* | |
| 484 * Read the specified image into an ABGR-format rastertaking in account | |
| 485 * specified orientation. | |
| 486 */ | |
| 487 int | |
| 488 TIFFReadRGBAImageOriented(TIFF* tif, | |
| 489 uint32 rwidth, uint32 rheight, uint32* raster, | |
| 490 int orientation, int stop) | |
| 491 { | |
| 492 char emsg[1024] = ""; | |
| 493 TIFFRGBAImage img; | |
| 494 int ok; | |
| 495 | |
| 496 if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, em
sg)) { | |
| 497 img.req_orientation = orientation; | |
| 498 /* XXX verify rwidth and rheight against width and height */ | |
| 499 ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth, | |
| 500 rwidth, img.height); | |
| 501 TIFFRGBAImageEnd(&img); | |
| 502 } else { | |
| 503 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg)
; | |
| 504 ok = 0; | |
| 505 } | |
| 506 return (ok); | |
| 507 } | |
| 508 | |
| 509 /* | |
| 510 * Read the specified image into an ABGR-format raster. Use bottom left | |
| 511 * origin for raster by default. | |
| 512 */ | |
| 513 int | |
| 514 TIFFReadRGBAImage(TIFF* tif, | |
| 515 uint32 rwidth, uint32 rheight, uint32* raster, int stop) | |
| 516 { | |
| 517 return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster, | |
| 518 ORIENTATION_BOTLEFT, stop); | |
| 519 } | |
| 520 | |
| 521 static int | |
| 522 setorientation(TIFFRGBAImage* img) | |
| 523 { | |
| 524 switch (img->orientation) { | |
| 525 case ORIENTATION_TOPLEFT: | |
| 526 case ORIENTATION_LEFTTOP: | |
| 527 if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
| 528 img->req_orientation == ORIENTATION_RIGHTTOP) | |
| 529 return FLIP_HORIZONTALLY; | |
| 530 else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
| 531 img->req_orientation == ORIENTATION_RIGHTBOT) | |
| 532 return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
| 533 else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
| 534 img->req_orientation == ORIENTATION_LEFTBOT) | |
| 535 return FLIP_VERTICALLY; | |
| 536 else | |
| 537 return 0; | |
| 538 case ORIENTATION_TOPRIGHT: | |
| 539 case ORIENTATION_RIGHTTOP: | |
| 540 if (img->req_orientation == ORIENTATION_TOPLEFT || | |
| 541 img->req_orientation == ORIENTATION_LEFTTOP) | |
| 542 return FLIP_HORIZONTALLY; | |
| 543 else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
| 544 img->req_orientation == ORIENTATION_RIGHTBOT) | |
| 545 return FLIP_VERTICALLY; | |
| 546 else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
| 547 img->req_orientation == ORIENTATION_LEFTBOT) | |
| 548 return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
| 549 else | |
| 550 return 0; | |
| 551 case ORIENTATION_BOTRIGHT: | |
| 552 case ORIENTATION_RIGHTBOT: | |
| 553 if (img->req_orientation == ORIENTATION_TOPLEFT || | |
| 554 img->req_orientation == ORIENTATION_LEFTTOP) | |
| 555 return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
| 556 else if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
| 557 img->req_orientation == ORIENTATION_RIGHTTOP) | |
| 558 return FLIP_VERTICALLY; | |
| 559 else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
| 560 img->req_orientation == ORIENTATION_LEFTBOT) | |
| 561 return FLIP_HORIZONTALLY; | |
| 562 else | |
| 563 return 0; | |
| 564 case ORIENTATION_BOTLEFT: | |
| 565 case ORIENTATION_LEFTBOT: | |
| 566 if (img->req_orientation == ORIENTATION_TOPLEFT || | |
| 567 img->req_orientation == ORIENTATION_LEFTTOP) | |
| 568 return FLIP_VERTICALLY; | |
| 569 else if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
| 570 img->req_orientation == ORIENTATION_RIGHTTOP) | |
| 571 return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
| 572 else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
| 573 img->req_orientation == ORIENTATION_RIGHTBOT) | |
| 574 return FLIP_HORIZONTALLY; | |
| 575 else | |
| 576 return 0; | |
| 577 default: /* NOTREACHED */ | |
| 578 return 0; | |
| 579 } | |
| 580 } | |
| 581 | |
| 582 /* | |
| 583 * Get an tile-organized image that has | |
| 584 * PlanarConfiguration contiguous if SamplesPerPixel > 1 | |
| 585 * or | |
| 586 * SamplesPerPixel == 1 | |
| 587 */ | |
| 588 static int | |
| 589 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
| 590 { | |
| 591 TIFF* tif = img->tif; | |
| 592 tileContigRoutine put = img->put.contig; | |
| 593 uint32 col, row, y, rowstoread; | |
| 594 tmsize_t pos; | |
| 595 uint32 tw, th; | |
| 596 unsigned char* buf; | |
| 597 int32 fromskew, toskew; | |
| 598 uint32 nrow; | |
| 599 int ret = 1, flip; | |
| 600 | |
| 601 buf = (unsigned char*) _TIFFmalloc(TIFFTileSize(tif)); | |
| 602 if (buf == 0) { | |
| 603 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No s
pace for tile buffer"); | |
| 604 return (0); | |
| 605 } | |
| 606 _TIFFmemset(buf, 0, TIFFTileSize(tif)); | |
| 607 TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | |
| 608 TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | |
| 609 | |
| 610 flip = setorientation(img); | |
| 611 if (flip & FLIP_VERTICALLY) { | |
| 612 y = h - 1; | |
| 613 toskew = -(int32)(tw + w); | |
| 614 } | |
| 615 else { | |
| 616 y = 0; | |
| 617 toskew = -(int32)(tw - w); | |
| 618 } | |
| 619 | |
| 620 for (row = 0; row < h; row += nrow) | |
| 621 { | |
| 622 rowstoread = th - (row + img->row_offset) % th; | |
| 623 nrow = (row + rowstoread > h ? h - row : rowstoread); | |
| 624 for (col = 0; col < w; col += tw) | |
| 625 { | |
| 626 if (TIFFReadTile(tif, buf, col+img->col_offset, | |
| 627 row+img->row_offset, 0, 0)==(tmsize_t)(-1) && img->
stoponerr) | |
| 628 { | |
| 629 ret = 0; | |
| 630 break; | |
| 631 } | |
| 632 | |
| 633 pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif); | |
| 634 | |
| 635 if (col + tw > w) | |
| 636 { | |
| 637 /* | |
| 638 * Tile is clipped horizontally. Calculate | |
| 639 * visible portion and skewing factors. | |
| 640 */ | |
| 641 uint32 npix = w - col; | |
| 642 fromskew = tw - npix; | |
| 643 (*put)(img, raster+y*w+col, col, y, | |
| 644 npix, nrow, fromskew, toskew + fromskew, buf + pos); | |
| 645 } | |
| 646 else | |
| 647 { | |
| 648 (*put)(img, raster+y*w+col, col, y, tw, nrow, 0, toskew, buf + p
os); | |
| 649 } | |
| 650 } | |
| 651 | |
| 652 y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
| 653 } | |
| 654 _TIFFfree(buf); | |
| 655 | |
| 656 if (flip & FLIP_HORIZONTALLY) { | |
| 657 uint32 line; | |
| 658 | |
| 659 for (line = 0; line < h; line++) { | |
| 660 uint32 *left = raster + (line * w); | |
| 661 uint32 *right = left + w - 1; | |
| 662 | |
| 663 while ( left < right ) { | |
| 664 uint32 temp = *left; | |
| 665 *left = *right; | |
| 666 *right = temp; | |
| 667 left++, right--; | |
| 668 } | |
| 669 } | |
| 670 } | |
| 671 | |
| 672 return (ret); | |
| 673 } | |
| 674 | |
| 675 /* | |
| 676 * Get an tile-organized image that has | |
| 677 * SamplesPerPixel > 1 | |
| 678 * PlanarConfiguration separated | |
| 679 * We assume that all such images are RGB. | |
| 680 */ | |
| 681 static int | |
| 682 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
| 683 { | |
| 684 TIFF* tif = img->tif; | |
| 685 tileSeparateRoutine put = img->put.separate; | |
| 686 uint32 col, row, y, rowstoread; | |
| 687 tmsize_t pos; | |
| 688 uint32 tw, th; | |
| 689 unsigned char* buf; | |
| 690 unsigned char* p0; | |
| 691 unsigned char* p1; | |
| 692 unsigned char* p2; | |
| 693 unsigned char* pa; | |
| 694 tmsize_t tilesize; | |
| 695 tmsize_t bufsize; | |
| 696 int32 fromskew, toskew; | |
| 697 int alpha = img->alpha; | |
| 698 uint32 nrow; | |
| 699 int ret = 1, flip; | |
| 700 int colorchannels; | |
| 701 | |
| 702 tilesize = TIFFTileSize(tif); | |
| 703 bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize); | |
| 704 if (bufsize == 0) { | |
| 705 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer ov
erflow in %s", "gtTileSeparate"); | |
| 706 return (0); | |
| 707 } | |
| 708 buf = (unsigned char*) _TIFFmalloc(bufsize); | |
| 709 if (buf == 0) { | |
| 710 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No s
pace for tile buffer"); | |
| 711 return (0); | |
| 712 } | |
| 713 _TIFFmemset(buf, 0, bufsize); | |
| 714 p0 = buf; | |
| 715 p1 = p0 + tilesize; | |
| 716 p2 = p1 + tilesize; | |
| 717 pa = (alpha?(p2+tilesize):NULL); | |
| 718 TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | |
| 719 TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | |
| 720 | |
| 721 flip = setorientation(img); | |
| 722 if (flip & FLIP_VERTICALLY) { | |
| 723 y = h - 1; | |
| 724 toskew = -(int32)(tw + w); | |
| 725 } | |
| 726 else { | |
| 727 y = 0; | |
| 728 toskew = -(int32)(tw - w); | |
| 729 } | |
| 730 | |
| 731 switch( img->photometric ) | |
| 732 { | |
| 733 case PHOTOMETRIC_MINISWHITE: | |
| 734 case PHOTOMETRIC_MINISBLACK: | |
| 735 case PHOTOMETRIC_PALETTE: | |
| 736 colorchannels = 1; | |
| 737 p2 = p1 = p0; | |
| 738 break; | |
| 739 | |
| 740 default: | |
| 741 colorchannels = 3; | |
| 742 break; | |
| 743 } | |
| 744 | |
| 745 for (row = 0; row < h; row += nrow) | |
| 746 { | |
| 747 rowstoread = th - (row + img->row_offset) % th; | |
| 748 nrow = (row + rowstoread > h ? h - row : rowstoread); | |
| 749 for (col = 0; col < w; col += tw) | |
| 750 { | |
| 751 if (TIFFReadTile(tif, p0, col+img->col_offset, | |
| 752 row+img->row_offset,0,0)==(tmsize_t)(-1) && img->sto
ponerr) | |
| 753 { | |
| 754 ret = 0; | |
| 755 break; | |
| 756 } | |
| 757 if (colorchannels > 1 | |
| 758 && TIFFReadTile(tif, p1, col+img->col_offset, | |
| 759 row+img->row_offset,0,1) == (tmsize_
t)(-1) | |
| 760 && img->stoponerr) | |
| 761 { | |
| 762 ret = 0; | |
| 763 break; | |
| 764 } | |
| 765 if (colorchannels > 1 | |
| 766 && TIFFReadTile(tif, p2, col+img->col_offset, | |
| 767 row+img->row_offset,0,2) == (tmsize_
t)(-1) | |
| 768 && img->stoponerr) | |
| 769 { | |
| 770 ret = 0; | |
| 771 break; | |
| 772 } | |
| 773 if (alpha | |
| 774 && TIFFReadTile(tif,pa,col+img->col_offset, | |
| 775 row+img->row_offset,0,colorchannels)
== (tmsize_t)(-1) | |
| 776 && img->stoponerr) | |
| 777 { | |
| 778 ret = 0; | |
| 779 break; | |
| 780 } | |
| 781 | |
| 782 pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif
); | |
| 783 | |
| 784 if (col + tw > w) | |
| 785 { | |
| 786 /* | |
| 787 * Tile is clipped horizontally. Calculate | |
| 788 * visible portion and skewing factors. | |
| 789 */ | |
| 790 uint32 npix = w - col; | |
| 791 fromskew = tw - npix; | |
| 792 (*put)(img, raster+y*w+col, col, y, | |
| 793 npix, nrow, fromskew, toskew + fromskew, | |
| 794 p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos
):NULL)); | |
| 795 } else { | |
| 796 (*put)(img, raster+y*w+col, col, y, | |
| 797 tw, nrow, 0, toskew, p0 + pos, p1 + pos, p2
+ pos, (alpha?(pa+pos):NULL)); | |
| 798 } | |
| 799 } | |
| 800 | |
| 801 y += (flip & FLIP_VERTICALLY ?-(int32) nrow : (int32) nrow); | |
| 802 } | |
| 803 | |
| 804 if (flip & FLIP_HORIZONTALLY) { | |
| 805 uint32 line; | |
| 806 | |
| 807 for (line = 0; line < h; line++) { | |
| 808 uint32 *left = raster + (line * w); | |
| 809 uint32 *right = left + w - 1; | |
| 810 | |
| 811 while ( left < right ) { | |
| 812 uint32 temp = *left; | |
| 813 *left = *right; | |
| 814 *right = temp; | |
| 815 left++, right--; | |
| 816 } | |
| 817 } | |
| 818 } | |
| 819 | |
| 820 _TIFFfree(buf); | |
| 821 return (ret); | |
| 822 } | |
| 823 | |
| 824 /* | |
| 825 * Get a strip-organized image that has | |
| 826 * PlanarConfiguration contiguous if SamplesPerPixel > 1 | |
| 827 * or | |
| 828 * SamplesPerPixel == 1 | |
| 829 */ | |
| 830 static int | |
| 831 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
| 832 { | |
| 833 TIFF* tif = img->tif; | |
| 834 tileContigRoutine put = img->put.contig; | |
| 835 uint32 row, y, nrow, nrowsub, rowstoread; | |
| 836 tmsize_t pos; | |
| 837 unsigned char* buf; | |
| 838 uint32 rowsperstrip; | |
| 839 uint16 subsamplinghor,subsamplingver; | |
| 840 uint32 imagewidth = img->width; | |
| 841 tmsize_t scanline; | |
| 842 int32 fromskew, toskew; | |
| 843 int ret = 1, flip; | |
| 844 | |
| 845 buf = (unsigned char*) _TIFFmalloc(TIFFStripSize(tif)); | |
| 846 if (buf == 0) { | |
| 847 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space f
or strip buffer"); | |
| 848 return (0); | |
| 849 } | |
| 850 _TIFFmemset(buf, 0, TIFFStripSize(tif)); | |
| 851 | |
| 852 flip = setorientation(img); | |
| 853 if (flip & FLIP_VERTICALLY) { | |
| 854 y = h - 1; | |
| 855 toskew = -(int32)(w + w); | |
| 856 } else { | |
| 857 y = 0; | |
| 858 toskew = -(int32)(w - w); | |
| 859 } | |
| 860 | |
| 861 TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
| 862 TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &s
ubsamplingver); | |
| 863 scanline = TIFFScanlineSize(tif); | |
| 864 fromskew = (w < imagewidth ? imagewidth - w : 0); | |
| 865 for (row = 0; row < h; row += nrow) | |
| 866 { | |
| 867 rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstr
ip; | |
| 868 nrow = (row + rowstoread > h ? h - row : rowstoread); | |
| 869 nrowsub = nrow; | |
| 870 if ((nrowsub%subsamplingver)!=0) | |
| 871 nrowsub+=subsamplingver-nrowsub%subsamplingver; | |
| 872 if (TIFFReadEncodedStrip(tif, | |
| 873 TIFFComputeStrip(tif,row+img->row_offset, 0), | |
| 874 buf, | |
| 875 ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)
==(tmsize_t)(-1) | |
| 876 && img->stoponerr) | |
| 877 { | |
| 878 ret = 0; | |
| 879 break; | |
| 880 } | |
| 881 | |
| 882 pos = ((row + img->row_offset) % rowsperstrip) * scanline; | |
| 883 (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + p
os); | |
| 884 y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
| 885 } | |
| 886 | |
| 887 if (flip & FLIP_HORIZONTALLY) { | |
| 888 uint32 line; | |
| 889 | |
| 890 for (line = 0; line < h; line++) { | |
| 891 uint32 *left = raster + (line * w); | |
| 892 uint32 *right = left + w - 1; | |
| 893 | |
| 894 while ( left < right ) { | |
| 895 uint32 temp = *left; | |
| 896 *left = *right; | |
| 897 *right = temp; | |
| 898 left++, right--; | |
| 899 } | |
| 900 } | |
| 901 } | |
| 902 | |
| 903 _TIFFfree(buf); | |
| 904 return (ret); | |
| 905 } | |
| 906 | |
| 907 /* | |
| 908 * Get a strip-organized image with | |
| 909 * SamplesPerPixel > 1 | |
| 910 * PlanarConfiguration separated | |
| 911 * We assume that all such images are RGB. | |
| 912 */ | |
| 913 static int | |
| 914 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
| 915 { | |
| 916 TIFF* tif = img->tif; | |
| 917 tileSeparateRoutine put = img->put.separate; | |
| 918 unsigned char *buf; | |
| 919 unsigned char *p0, *p1, *p2, *pa; | |
| 920 uint32 row, y, nrow, rowstoread; | |
| 921 tmsize_t pos; | |
| 922 tmsize_t scanline; | |
| 923 uint32 rowsperstrip, offset_row; | |
| 924 uint32 imagewidth = img->width; | |
| 925 tmsize_t stripsize; | |
| 926 tmsize_t bufsize; | |
| 927 int32 fromskew, toskew; | |
| 928 int alpha = img->alpha; | |
| 929 int ret = 1, flip, colorchannels; | |
| 930 | |
| 931 stripsize = TIFFStripSize(tif); | |
| 932 bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize); | |
| 933 if (bufsize == 0) { | |
| 934 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer ov
erflow in %s", "gtStripSeparate"); | |
| 935 return (0); | |
| 936 } | |
| 937 p0 = buf = (unsigned char *)_TIFFmalloc(bufsize); | |
| 938 if (buf == 0) { | |
| 939 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space f
or tile buffer"); | |
| 940 return (0); | |
| 941 } | |
| 942 _TIFFmemset(buf, 0, bufsize); | |
| 943 p1 = p0 + stripsize; | |
| 944 p2 = p1 + stripsize; | |
| 945 pa = (alpha?(p2+stripsize):NULL); | |
| 946 | |
| 947 flip = setorientation(img); | |
| 948 if (flip & FLIP_VERTICALLY) { | |
| 949 y = h - 1; | |
| 950 toskew = -(int32)(w + w); | |
| 951 } | |
| 952 else { | |
| 953 y = 0; | |
| 954 toskew = -(int32)(w - w); | |
| 955 } | |
| 956 | |
| 957 switch( img->photometric ) | |
| 958 { | |
| 959 case PHOTOMETRIC_MINISWHITE: | |
| 960 case PHOTOMETRIC_MINISBLACK: | |
| 961 case PHOTOMETRIC_PALETTE: | |
| 962 colorchannels = 1; | |
| 963 p2 = p1 = p0; | |
| 964 break; | |
| 965 | |
| 966 default: | |
| 967 colorchannels = 3; | |
| 968 break; | |
| 969 } | |
| 970 | |
| 971 TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
| 972 scanline = TIFFScanlineSize(tif); | |
| 973 fromskew = (w < imagewidth ? imagewidth - w : 0); | |
| 974 for (row = 0; row < h; row += nrow) | |
| 975 { | |
| 976 rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstr
ip; | |
| 977 nrow = (row + rowstoread > h ? h - row : rowstoread); | |
| 978 offset_row = row + img->row_offset; | |
| 979 if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row,
0), | |
| 980 p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline
)==(tmsize_t)(-1) | |
| 981 && img->stoponerr) | |
| 982 { | |
| 983 ret = 0; | |
| 984 break; | |
| 985 } | |
| 986 if (colorchannels > 1 | |
| 987 && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_ro
w, 1), | |
| 988 p1, ((row + img->row_offset)%rowsper
strip + nrow) * scanline) == (tmsize_t)(-1) | |
| 989 && img->stoponerr) | |
| 990 { | |
| 991 ret = 0; | |
| 992 break; | |
| 993 } | |
| 994 if (colorchannels > 1 | |
| 995 && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_ro
w, 2), | |
| 996 p2, ((row + img->row_offset)%rowsper
strip + nrow) * scanline) == (tmsize_t)(-1) | |
| 997 && img->stoponerr) | |
| 998 { | |
| 999 ret = 0; | |
| 1000 break; | |
| 1001 } | |
| 1002 if (alpha) | |
| 1003 { | |
| 1004 if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offs
et_row, colorchannels), | |
| 1005 pa, ((row + img->row_offset)%rowsperstrip + nrow) *
scanline)==(tmsize_t)(-1) | |
| 1006 && img->stoponerr) | |
| 1007 { | |
| 1008 ret = 0; | |
| 1009 break; | |
| 1010 } | |
| 1011 } | |
| 1012 | |
| 1013 pos = ((row + img->row_offset) % rowsperstrip) * scanline; | |
| 1014 (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + po
s, p1 + pos, | |
| 1015 p2 + pos, (alpha?(pa+pos):NULL)); | |
| 1016 y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
| 1017 } | |
| 1018 | |
| 1019 if (flip & FLIP_HORIZONTALLY) { | |
| 1020 uint32 line; | |
| 1021 | |
| 1022 for (line = 0; line < h; line++) { | |
| 1023 uint32 *left = raster + (line * w); | |
| 1024 uint32 *right = left + w - 1; | |
| 1025 | |
| 1026 while ( left < right ) { | |
| 1027 uint32 temp = *left; | |
| 1028 *left = *right; | |
| 1029 *right = temp; | |
| 1030 left++, right--; | |
| 1031 } | |
| 1032 } | |
| 1033 } | |
| 1034 | |
| 1035 _TIFFfree(buf); | |
| 1036 return (ret); | |
| 1037 } | |
| 1038 | |
| 1039 /* | |
| 1040 * The following routines move decoded data returned | |
| 1041 * from the TIFF library into rasters filled with packed | |
| 1042 * ABGR pixels (i.e. suitable for passing to lrecwrite.) | |
| 1043 * | |
| 1044 * The routines have been created according to the most | |
| 1045 * important cases and optimized. PickContigCase and | |
| 1046 * PickSeparateCase analyze the parameters and select | |
| 1047 * the appropriate "get" and "put" routine to use. | |
| 1048 */ | |
| 1049 #define REPEAT8(op) REPEAT4(op); REPEAT4(op) | |
| 1050 #define REPEAT4(op) REPEAT2(op); REPEAT2(op) | |
| 1051 #define REPEAT2(op) op; op | |
| 1052 #define CASE8(x,op) \ | |
| 1053 switch (x) { \ | |
| 1054 case 7: op; case 6: op; case 5: op; \ | |
| 1055 case 4: op; case 3: op; case 2: op; \ | |
| 1056 case 1: op; \ | |
| 1057 } | |
| 1058 #define CASE4(x,op) switch (x) { case 3: op; case 2: op; case 1: op; } | |
| 1059 #define NOP | |
| 1060 | |
| 1061 #define UNROLL8(w, op1, op2) { \ | |
| 1062 uint32 _x; \ | |
| 1063 for (_x = w; _x >= 8; _x -= 8) { \ | |
| 1064 op1; \ | |
| 1065 REPEAT8(op2); \ | |
| 1066 } \ | |
| 1067 if (_x > 0) { \ | |
| 1068 op1; \ | |
| 1069 CASE8(_x,op2); \ | |
| 1070 } \ | |
| 1071 } | |
| 1072 #define UNROLL4(w, op1, op2) { \ | |
| 1073 uint32 _x; \ | |
| 1074 for (_x = w; _x >= 4; _x -= 4) { \ | |
| 1075 op1; \ | |
| 1076 REPEAT4(op2); \ | |
| 1077 } \ | |
| 1078 if (_x > 0) { \ | |
| 1079 op1; \ | |
| 1080 CASE4(_x,op2); \ | |
| 1081 } \ | |
| 1082 } | |
| 1083 #define UNROLL2(w, op1, op2) { \ | |
| 1084 uint32 _x; \ | |
| 1085 for (_x = w; _x >= 2; _x -= 2) { \ | |
| 1086 op1; \ | |
| 1087 REPEAT2(op2); \ | |
| 1088 } \ | |
| 1089 if (_x) { \ | |
| 1090 op1; \ | |
| 1091 op2; \ | |
| 1092 } \ | |
| 1093 } | |
| 1094 | |
| 1095 #define SKEW(r,g,b,skew) { r += skew; g += skew; b += skew; } | |
| 1096 #define SKEW4(r,g,b,a,skew) { r += skew; g += skew; b += skew; a+= skew; } | |
| 1097 | |
| 1098 #define A1 (((uint32)0xffL)<<24) | |
| 1099 #define PACK(r,g,b) \ | |
| 1100 ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1) | |
| 1101 #define PACK4(r,g,b,a) \ | |
| 1102 ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24)) | |
| 1103 #define W2B(v) (((v)>>8)&0xff) | |
| 1104 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */ | |
| 1105 #define PACKW(r,g,b) \ | |
| 1106 ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1) | |
| 1107 #define PACKW4(r,g,b,a) \ | |
| 1108 ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)
<<24)) | |
| 1109 | |
| 1110 #define DECLAREContigPutFunc(name) \ | |
| 1111 static void name(\ | |
| 1112 TIFFRGBAImage* img, \ | |
| 1113 uint32* cp, \ | |
| 1114 uint32 x, uint32 y, \ | |
| 1115 uint32 w, uint32 h, \ | |
| 1116 int32 fromskew, int32 toskew, \ | |
| 1117 unsigned char* pp \ | |
| 1118 ) | |
| 1119 | |
| 1120 /* | |
| 1121 * 8-bit palette => colormap/RGB | |
| 1122 */ | |
| 1123 DECLAREContigPutFunc(put8bitcmaptile) | |
| 1124 { | |
| 1125 uint32** PALmap = img->PALmap; | |
| 1126 int samplesperpixel = img->samplesperpixel; | |
| 1127 | |
| 1128 (void) y; | |
| 1129 while (h-- > 0) { | |
| 1130 for (x = w; x-- > 0;) | |
| 1131 { | |
| 1132 *cp++ = PALmap[*pp][0]; | |
| 1133 pp += samplesperpixel; | |
| 1134 } | |
| 1135 cp += toskew; | |
| 1136 pp += fromskew; | |
| 1137 } | |
| 1138 } | |
| 1139 | |
| 1140 /* | |
| 1141 * 4-bit palette => colormap/RGB | |
| 1142 */ | |
| 1143 DECLAREContigPutFunc(put4bitcmaptile) | |
| 1144 { | |
| 1145 uint32** PALmap = img->PALmap; | |
| 1146 | |
| 1147 (void) x; (void) y; | |
| 1148 fromskew /= 2; | |
| 1149 while (h-- > 0) { | |
| 1150 uint32* bw; | |
| 1151 UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
| 1152 cp += toskew; | |
| 1153 pp += fromskew; | |
| 1154 } | |
| 1155 } | |
| 1156 | |
| 1157 /* | |
| 1158 * 2-bit palette => colormap/RGB | |
| 1159 */ | |
| 1160 DECLAREContigPutFunc(put2bitcmaptile) | |
| 1161 { | |
| 1162 uint32** PALmap = img->PALmap; | |
| 1163 | |
| 1164 (void) x; (void) y; | |
| 1165 fromskew /= 4; | |
| 1166 while (h-- > 0) { | |
| 1167 uint32* bw; | |
| 1168 UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
| 1169 cp += toskew; | |
| 1170 pp += fromskew; | |
| 1171 } | |
| 1172 } | |
| 1173 | |
| 1174 /* | |
| 1175 * 1-bit palette => colormap/RGB | |
| 1176 */ | |
| 1177 DECLAREContigPutFunc(put1bitcmaptile) | |
| 1178 { | |
| 1179 uint32** PALmap = img->PALmap; | |
| 1180 | |
| 1181 (void) x; (void) y; | |
| 1182 fromskew /= 8; | |
| 1183 while (h-- > 0) { | |
| 1184 uint32* bw; | |
| 1185 UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
| 1186 cp += toskew; | |
| 1187 pp += fromskew; | |
| 1188 } | |
| 1189 } | |
| 1190 | |
| 1191 /* | |
| 1192 * 8-bit greyscale => colormap/RGB | |
| 1193 */ | |
| 1194 DECLAREContigPutFunc(putgreytile) | |
| 1195 { | |
| 1196 int samplesperpixel = img->samplesperpixel; | |
| 1197 uint32** BWmap = img->BWmap; | |
| 1198 | |
| 1199 (void) y; | |
| 1200 while (h-- > 0) { | |
| 1201 for (x = w; x-- > 0;) | |
| 1202 { | |
| 1203 *cp++ = BWmap[*pp][0]; | |
| 1204 pp += samplesperpixel; | |
| 1205 } | |
| 1206 cp += toskew; | |
| 1207 pp += fromskew; | |
| 1208 } | |
| 1209 } | |
| 1210 | |
| 1211 /* | |
| 1212 * 8-bit greyscale with associated alpha => colormap/RGBA | |
| 1213 */ | |
| 1214 DECLAREContigPutFunc(putagreytile) | |
| 1215 { | |
| 1216 int samplesperpixel = img->samplesperpixel; | |
| 1217 uint32** BWmap = img->BWmap; | |
| 1218 | |
| 1219 (void) y; | |
| 1220 while (h-- > 0) { | |
| 1221 for (x = w; x-- > 0;) | |
| 1222 { | |
| 1223 *cp++ = BWmap[*pp][0] & (*(pp+1) << 24 | ~A1); | |
| 1224 pp += samplesperpixel; | |
| 1225 } | |
| 1226 cp += toskew; | |
| 1227 pp += fromskew; | |
| 1228 } | |
| 1229 } | |
| 1230 | |
| 1231 /* | |
| 1232 * 16-bit greyscale => colormap/RGB | |
| 1233 */ | |
| 1234 DECLAREContigPutFunc(put16bitbwtile) | |
| 1235 { | |
| 1236 int samplesperpixel = img->samplesperpixel; | |
| 1237 uint32** BWmap = img->BWmap; | |
| 1238 | |
| 1239 (void) y; | |
| 1240 while (h-- > 0) { | |
| 1241 uint16 *wp = (uint16 *) pp; | |
| 1242 | |
| 1243 for (x = w; x-- > 0;) | |
| 1244 { | |
| 1245 /* use high order byte of 16bit value */ | |
| 1246 | |
| 1247 *cp++ = BWmap[*wp >> 8][0]; | |
| 1248 pp += 2 * samplesperpixel; | |
| 1249 wp += samplesperpixel; | |
| 1250 } | |
| 1251 cp += toskew; | |
| 1252 pp += fromskew; | |
| 1253 } | |
| 1254 } | |
| 1255 | |
| 1256 /* | |
| 1257 * 1-bit bilevel => colormap/RGB | |
| 1258 */ | |
| 1259 DECLAREContigPutFunc(put1bitbwtile) | |
| 1260 { | |
| 1261 uint32** BWmap = img->BWmap; | |
| 1262 | |
| 1263 (void) x; (void) y; | |
| 1264 fromskew /= 8; | |
| 1265 while (h-- > 0) { | |
| 1266 uint32* bw; | |
| 1267 UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
| 1268 cp += toskew; | |
| 1269 pp += fromskew; | |
| 1270 } | |
| 1271 } | |
| 1272 | |
| 1273 /* | |
| 1274 * 2-bit greyscale => colormap/RGB | |
| 1275 */ | |
| 1276 DECLAREContigPutFunc(put2bitbwtile) | |
| 1277 { | |
| 1278 uint32** BWmap = img->BWmap; | |
| 1279 | |
| 1280 (void) x; (void) y; | |
| 1281 fromskew /= 4; | |
| 1282 while (h-- > 0) { | |
| 1283 uint32* bw; | |
| 1284 UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
| 1285 cp += toskew; | |
| 1286 pp += fromskew; | |
| 1287 } | |
| 1288 } | |
| 1289 | |
| 1290 /* | |
| 1291 * 4-bit greyscale => colormap/RGB | |
| 1292 */ | |
| 1293 DECLAREContigPutFunc(put4bitbwtile) | |
| 1294 { | |
| 1295 uint32** BWmap = img->BWmap; | |
| 1296 | |
| 1297 (void) x; (void) y; | |
| 1298 fromskew /= 2; | |
| 1299 while (h-- > 0) { | |
| 1300 uint32* bw; | |
| 1301 UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
| 1302 cp += toskew; | |
| 1303 pp += fromskew; | |
| 1304 } | |
| 1305 } | |
| 1306 | |
| 1307 /* | |
| 1308 * 8-bit packed samples, no Map => RGB | |
| 1309 */ | |
| 1310 DECLAREContigPutFunc(putRGBcontig8bittile) | |
| 1311 { | |
| 1312 int samplesperpixel = img->samplesperpixel; | |
| 1313 | |
| 1314 (void) x; (void) y; | |
| 1315 fromskew *= samplesperpixel; | |
| 1316 while (h-- > 0) { | |
| 1317 UNROLL8(w, NOP, | |
| 1318 *cp++ = PACK(pp[0], pp[1], pp[2]); | |
| 1319 pp += samplesperpixel); | |
| 1320 cp += toskew; | |
| 1321 pp += fromskew; | |
| 1322 } | |
| 1323 } | |
| 1324 | |
| 1325 /* | |
| 1326 * 8-bit packed samples => RGBA w/ associated alpha | |
| 1327 * (known to have Map == NULL) | |
| 1328 */ | |
| 1329 DECLAREContigPutFunc(putRGBAAcontig8bittile) | |
| 1330 { | |
| 1331 int samplesperpixel = img->samplesperpixel; | |
| 1332 | |
| 1333 (void) x; (void) y; | |
| 1334 fromskew *= samplesperpixel; | |
| 1335 while (h-- > 0) { | |
| 1336 UNROLL8(w, NOP, | |
| 1337 *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]); | |
| 1338 pp += samplesperpixel); | |
| 1339 cp += toskew; | |
| 1340 pp += fromskew; | |
| 1341 } | |
| 1342 } | |
| 1343 | |
| 1344 /* | |
| 1345 * 8-bit packed samples => RGBA w/ unassociated alpha | |
| 1346 * (known to have Map == NULL) | |
| 1347 */ | |
| 1348 DECLAREContigPutFunc(putRGBUAcontig8bittile) | |
| 1349 { | |
| 1350 int samplesperpixel = img->samplesperpixel; | |
| 1351 (void) y; | |
| 1352 fromskew *= samplesperpixel; | |
| 1353 while (h-- > 0) { | |
| 1354 uint32 r, g, b, a; | |
| 1355 uint8* m; | |
| 1356 for (x = w; x-- > 0;) { | |
| 1357 a = pp[3]; | |
| 1358 m = img->UaToAa+(a<<8); | |
| 1359 r = m[pp[0]]; | |
| 1360 g = m[pp[1]]; | |
| 1361 b = m[pp[2]]; | |
| 1362 *cp++ = PACK4(r,g,b,a); | |
| 1363 pp += samplesperpixel; | |
| 1364 } | |
| 1365 cp += toskew; | |
| 1366 pp += fromskew; | |
| 1367 } | |
| 1368 } | |
| 1369 | |
| 1370 /* | |
| 1371 * 16-bit packed samples => RGB | |
| 1372 */ | |
| 1373 DECLAREContigPutFunc(putRGBcontig16bittile) | |
| 1374 { | |
| 1375 int samplesperpixel = img->samplesperpixel; | |
| 1376 uint16 *wp = (uint16 *)pp; | |
| 1377 (void) y; | |
| 1378 fromskew *= samplesperpixel; | |
| 1379 while (h-- > 0) { | |
| 1380 for (x = w; x-- > 0;) { | |
| 1381 *cp++ = PACK(img->Bitdepth16To8[wp[0]], | |
| 1382 img->Bitdepth16To8[wp[1]], | |
| 1383 img->Bitdepth16To8[wp[2]]); | |
| 1384 wp += samplesperpixel; | |
| 1385 } | |
| 1386 cp += toskew; | |
| 1387 wp += fromskew; | |
| 1388 } | |
| 1389 } | |
| 1390 | |
| 1391 /* | |
| 1392 * 16-bit packed samples => RGBA w/ associated alpha | |
| 1393 * (known to have Map == NULL) | |
| 1394 */ | |
| 1395 DECLAREContigPutFunc(putRGBAAcontig16bittile) | |
| 1396 { | |
| 1397 int samplesperpixel = img->samplesperpixel; | |
| 1398 uint16 *wp = (uint16 *)pp; | |
| 1399 (void) y; | |
| 1400 fromskew *= samplesperpixel; | |
| 1401 while (h-- > 0) { | |
| 1402 for (x = w; x-- > 0;) { | |
| 1403 *cp++ = PACK4(img->Bitdepth16To8[wp[0]], | |
| 1404 img->Bitdepth16To8[wp[1]], | |
| 1405 img->Bitdepth16To8[wp[2]], | |
| 1406 img->Bitdepth16To8[wp[3]]); | |
| 1407 wp += samplesperpixel; | |
| 1408 } | |
| 1409 cp += toskew; | |
| 1410 wp += fromskew; | |
| 1411 } | |
| 1412 } | |
| 1413 | |
| 1414 /* | |
| 1415 * 16-bit packed samples => RGBA w/ unassociated alpha | |
| 1416 * (known to have Map == NULL) | |
| 1417 */ | |
| 1418 DECLAREContigPutFunc(putRGBUAcontig16bittile) | |
| 1419 { | |
| 1420 int samplesperpixel = img->samplesperpixel; | |
| 1421 uint16 *wp = (uint16 *)pp; | |
| 1422 (void) y; | |
| 1423 fromskew *= samplesperpixel; | |
| 1424 while (h-- > 0) { | |
| 1425 uint32 r,g,b,a; | |
| 1426 uint8* m; | |
| 1427 for (x = w; x-- > 0;) { | |
| 1428 a = img->Bitdepth16To8[wp[3]]; | |
| 1429 m = img->UaToAa+(a<<8); | |
| 1430 r = m[img->Bitdepth16To8[wp[0]]]; | |
| 1431 g = m[img->Bitdepth16To8[wp[1]]]; | |
| 1432 b = m[img->Bitdepth16To8[wp[2]]]; | |
| 1433 *cp++ = PACK4(r,g,b,a); | |
| 1434 wp += samplesperpixel; | |
| 1435 } | |
| 1436 cp += toskew; | |
| 1437 wp += fromskew; | |
| 1438 } | |
| 1439 } | |
| 1440 | |
| 1441 /* | |
| 1442 * 8-bit packed CMYK samples w/o Map => RGB | |
| 1443 * | |
| 1444 * NB: The conversion of CMYK->RGB is *very* crude. | |
| 1445 */ | |
| 1446 /*DECLAREContigPutFunc(putRGBcontig8bitCMYKtile) | |
| 1447 { | |
| 1448 int samplesperpixel = img->samplesperpixel; | |
| 1449 uint16 r, g, b, k; | |
| 1450 | |
| 1451 (void) x; (void) y; | |
| 1452 fromskew *= samplesperpixel; | |
| 1453 while (h-- > 0) { | |
| 1454 UNROLL8(w, NOP, | |
| 1455 k = 255 - pp[3]; | |
| 1456 r = (k*(255-pp[0]))/255; | |
| 1457 g = (k*(255-pp[1]))/255; | |
| 1458 b = (k*(255-pp[2]))/255; | |
| 1459 *cp++ = PACK(r, g, b); | |
| 1460 pp += samplesperpixel); | |
| 1461 cp += toskew; | |
| 1462 pp += fromskew; | |
| 1463 }*/ | |
| 1464 /* Modify in 20090723 by Sunliang.Liu */ | |
| 1465 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile) | |
| 1466 { | |
| 1467 int samplesperpixel = img->samplesperpixel; | |
| 1468 uint8 r, g, b, k; | |
| 1469 | |
| 1470 (void) x; (void) y; | |
| 1471 fromskew *= samplesperpixel; | |
| 1472 while (h-- > 0) { | |
| 1473 UNROLL8(w, NOP, | |
| 1474 if(!TIFFCmyk2Rgb(img->tif->tif_clientdata,pp[0],pp[1],pp
[2],pp[3], | |
| 1475 &r,&g,&b)){ | |
| 1476 k = 255 - pp[3]; | |
| 1477 r = (k*(255-pp[0]))/255; | |
| 1478 g = (k*(255-pp[1]))/255; | |
| 1479 b = (k*(255-pp[2]))/255; | |
| 1480 } | |
| 1481 | |
| 1482 *cp++ = PACK(r, g, b); | |
| 1483 pp += samplesperpixel); | |
| 1484 cp += toskew; | |
| 1485 pp += fromskew; | |
| 1486 } | |
| 1487 } | |
| 1488 | |
| 1489 /* | |
| 1490 * 16-bit packed CMYK samples w/o Map => RGB(8-bit) | |
| 1491 * | |
| 1492 * NB: The conversion of CMYK->RGB is *very* crude. | |
| 1493 */ | |
| 1494 DECLAREContigPutFunc(putRGBcontig16bitCMYKtile) | |
| 1495 { | |
| 1496 int samplesperpixel = img->samplesperpixel; | |
| 1497 uint16* wp = (uint16*)pp; | |
| 1498 uint8 C, M, Y, K; | |
| 1499 uint8 r, g, b; | |
| 1500 | |
| 1501 (void) x; (void) y; | |
| 1502 fromskew *= samplesperpixel; | |
| 1503 while (h-- > 0) { | |
| 1504 UNROLL8(w, NOP, | |
| 1505 C = wp[0]>>8;M = wp[1]>>8;Y = wp[2]>>8;K = wp[3]>>8; | |
| 1506 if(!TIFFCmyk2Rgb(img->tif->tif_clientdata,C,M,Y,K, | |
| 1507 &r,&g,&b)){ | |
| 1508 K = 255 - K; | |
| 1509 r = (K*(255-C))/255; | |
| 1510 g = (K*(255-M))/255; | |
| 1511 b = (K*(255-Y))/255; | |
| 1512 } | |
| 1513 | |
| 1514 *cp++ = PACK(r, g, b); | |
| 1515 wp += samplesperpixel); | |
| 1516 cp += toskew; | |
| 1517 wp += fromskew; | |
| 1518 } | |
| 1519 } | |
| 1520 | |
| 1521 /* | |
| 1522 * 8-bit packed CMYK samples w/Map => RGB | |
| 1523 * | |
| 1524 * NB: The conversion of CMYK->RGB is *very* crude. | |
| 1525 */ | |
| 1526 /* | |
| 1527 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile) | |
| 1528 { | |
| 1529 int samplesperpixel = img->samplesperpixel; | |
| 1530 TIFFRGBValue* Map = img->Map; | |
| 1531 uint16 r, g, b, k; | |
| 1532 | |
| 1533 (void) y; | |
| 1534 fromskew *= samplesperpixel; | |
| 1535 while (h-- > 0) { | |
| 1536 for (x = w; x-- > 0;) { | |
| 1537 k = 255 - pp[3]; | |
| 1538 r = (k*(255-pp[0]))/255; | |
| 1539 g = (k*(255-pp[1]))/255; | |
| 1540 b = (k*(255-pp[2]))/255; | |
| 1541 *cp++ = PACK(Map[r], Map[g], Map[b]); | |
| 1542 pp += samplesperpixel; | |
| 1543 } | |
| 1544 pp += fromskew; | |
| 1545 cp += toskew; | |
| 1546 } | |
| 1547 }*/ | |
| 1548 /* Modify in 20090723 by Sunliang.Liu */ | |
| 1549 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile) | |
| 1550 { | |
| 1551 int samplesperpixel = img->samplesperpixel; | |
| 1552 TIFFRGBValue* Map = img->Map; | |
| 1553 uint8 r, g, b, k; | |
| 1554 | |
| 1555 (void) y; | |
| 1556 fromskew *= samplesperpixel; | |
| 1557 while (h-- > 0) { | |
| 1558 for (x = w; x-- > 0;) { | |
| 1559 if(!TIFFCmyk2Rgb(img->tif->tif_clientdata,pp[0],pp[1],pp
[2],pp[3], | |
| 1560 &r,&g,&b)){ | |
| 1561 k = 255 - pp[3]; | |
| 1562 r = (k*(255-pp[0]))/255; | |
| 1563 g = (k*(255-pp[1]))/255; | |
| 1564 b = (k*(255-pp[2]))/255; | |
| 1565 } | |
| 1566 *cp++ = PACK(Map[r], Map[g], Map[b]); | |
| 1567 pp += samplesperpixel; | |
| 1568 } | |
| 1569 pp += fromskew; | |
| 1570 cp += toskew; | |
| 1571 } | |
| 1572 } | |
| 1573 | |
| 1574 /* | |
| 1575 * 16-bit packed CMYK samples w/Map => RGB(8-bit) | |
| 1576 * | |
| 1577 * NB: The conversion of CMYK->RGB is *very* crude. | |
| 1578 */ | |
| 1579 DECLAREContigPutFunc(putRGBcontig16bitCMYKMaptile) | |
| 1580 { | |
| 1581 int samplesperpixel = img->samplesperpixel; | |
| 1582 TIFFRGBValue* Map = img->Map; | |
| 1583 uint16* wp = (uint16*)pp; | |
| 1584 uint8 C, M, Y, K; | |
| 1585 uint8 r, g, b; | |
| 1586 | |
| 1587 (void) y; | |
| 1588 fromskew *= samplesperpixel; | |
| 1589 while (h-- > 0) { | |
| 1590 for (x = w; x-- > 0;) { | |
| 1591 C = wp[0]>>8;M = wp[1]>>8;Y = wp[2]>>8;K = wp[3]>>8; | |
| 1592 if(!TIFFCmyk2Rgb(img->tif->tif_clientdata,C,M,Y,K, | |
| 1593 &r,&g,&b)){ | |
| 1594 K = 255 - K; | |
| 1595 r = (K*(255-C))/255; | |
| 1596 g = (K*(255-M))/255; | |
| 1597 b = (K*(255-Y))/255; | |
| 1598 } | |
| 1599 *cp++ = PACK(Map[r], Map[g], Map[b]); | |
| 1600 wp += samplesperpixel; | |
| 1601 } | |
| 1602 wp += fromskew; | |
| 1603 cp += toskew; | |
| 1604 } | |
| 1605 } | |
| 1606 | |
| 1607 #define DECLARESepPutFunc(name) \ | |
| 1608 static void name(\ | |
| 1609 TIFFRGBAImage* img,\ | |
| 1610 uint32* cp,\ | |
| 1611 uint32 x, uint32 y, \ | |
| 1612 uint32 w, uint32 h,\ | |
| 1613 int32 fromskew, int32 toskew,\ | |
| 1614 unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\ | |
| 1615 ) | |
| 1616 | |
| 1617 /* | |
| 1618 * 8-bit unpacked samples => RGB | |
| 1619 */ | |
| 1620 DECLARESepPutFunc(putRGBseparate8bittile) | |
| 1621 { | |
| 1622 (void) img; (void) x; (void) y; (void) a; | |
| 1623 while (h-- > 0) { | |
| 1624 UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++)); | |
| 1625 SKEW(r, g, b, fromskew); | |
| 1626 cp += toskew; | |
| 1627 } | |
| 1628 } | |
| 1629 | |
| 1630 /* | |
| 1631 * 8-bit unpacked samples => RGBA w/ associated alpha | |
| 1632 */ | |
| 1633 DECLARESepPutFunc(putRGBAAseparate8bittile) | |
| 1634 { | |
| 1635 (void) img; (void) x; (void) y; | |
| 1636 while (h-- > 0) { | |
| 1637 UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++)); | |
| 1638 SKEW4(r, g, b, a, fromskew); | |
| 1639 cp += toskew; | |
| 1640 } | |
| 1641 } | |
| 1642 | |
| 1643 /* | |
| 1644 * 8-bit unpacked CMYK samples => RGBA | |
| 1645 */ | |
| 1646 DECLARESepPutFunc(putCMYKseparate8bittile) | |
| 1647 { | |
| 1648 (void) img; (void) y; | |
| 1649 while (h-- > 0) { | |
| 1650 uint32 rv, gv, bv, kv; | |
| 1651 for (x = w; x-- > 0;) { | |
| 1652 kv = 255 - *a++; | |
| 1653 rv = (kv*(255-*r++))/255; | |
| 1654 gv = (kv*(255-*g++))/255; | |
| 1655 bv = (kv*(255-*b++))/255; | |
| 1656 *cp++ = PACK4(rv,gv,bv,255); | |
| 1657 } | |
| 1658 SKEW4(r, g, b, a, fromskew); | |
| 1659 cp += toskew; | |
| 1660 } | |
| 1661 } | |
| 1662 | |
| 1663 /* | |
| 1664 * 8-bit unpacked samples => RGBA w/ unassociated alpha | |
| 1665 */ | |
| 1666 DECLARESepPutFunc(putRGBUAseparate8bittile) | |
| 1667 { | |
| 1668 (void) img; (void) y; | |
| 1669 while (h-- > 0) { | |
| 1670 uint32 rv, gv, bv, av; | |
| 1671 uint8* m; | |
| 1672 for (x = w; x-- > 0;) { | |
| 1673 av = *a++; | |
| 1674 m = img->UaToAa+(av<<8); | |
| 1675 rv = m[*r++]; | |
| 1676 gv = m[*g++]; | |
| 1677 bv = m[*b++]; | |
| 1678 *cp++ = PACK4(rv,gv,bv,av); | |
| 1679 } | |
| 1680 SKEW4(r, g, b, a, fromskew); | |
| 1681 cp += toskew; | |
| 1682 } | |
| 1683 } | |
| 1684 | |
| 1685 /* | |
| 1686 * 16-bit unpacked samples => RGB | |
| 1687 */ | |
| 1688 DECLARESepPutFunc(putRGBseparate16bittile) | |
| 1689 { | |
| 1690 uint16 *wr = (uint16*) r; | |
| 1691 uint16 *wg = (uint16*) g; | |
| 1692 uint16 *wb = (uint16*) b; | |
| 1693 (void) img; (void) y; (void) a; | |
| 1694 while (h-- > 0) { | |
| 1695 for (x = 0; x < w; x++) | |
| 1696 *cp++ = PACK(img->Bitdepth16To8[*wr++], | |
| 1697 img->Bitdepth16To8[*wg++], | |
| 1698 img->Bitdepth16To8[*wb++]); | |
| 1699 SKEW(wr, wg, wb, fromskew); | |
| 1700 cp += toskew; | |
| 1701 } | |
| 1702 } | |
| 1703 | |
| 1704 /* | |
| 1705 * 16-bit unpacked samples => RGBA w/ associated alpha | |
| 1706 */ | |
| 1707 DECLARESepPutFunc(putRGBAAseparate16bittile) | |
| 1708 { | |
| 1709 uint16 *wr = (uint16*) r; | |
| 1710 uint16 *wg = (uint16*) g; | |
| 1711 uint16 *wb = (uint16*) b; | |
| 1712 uint16 *wa = (uint16*) a; | |
| 1713 (void) img; (void) y; | |
| 1714 while (h-- > 0) { | |
| 1715 for (x = 0; x < w; x++) | |
| 1716 *cp++ = PACK4(img->Bitdepth16To8[*wr++], | |
| 1717 img->Bitdepth16To8[*wg++], | |
| 1718 img->Bitdepth16To8[*wb++], | |
| 1719 img->Bitdepth16To8[*wa++]); | |
| 1720 SKEW4(wr, wg, wb, wa, fromskew); | |
| 1721 cp += toskew; | |
| 1722 } | |
| 1723 } | |
| 1724 | |
| 1725 /* | |
| 1726 * 16-bit unpacked samples => RGBA w/ unassociated alpha | |
| 1727 */ | |
| 1728 DECLARESepPutFunc(putRGBUAseparate16bittile) | |
| 1729 { | |
| 1730 uint16 *wr = (uint16*) r; | |
| 1731 uint16 *wg = (uint16*) g; | |
| 1732 uint16 *wb = (uint16*) b; | |
| 1733 uint16 *wa = (uint16*) a; | |
| 1734 (void) img; (void) y; | |
| 1735 while (h-- > 0) { | |
| 1736 uint32 r,g,b,a; | |
| 1737 uint8* m; | |
| 1738 for (x = w; x-- > 0;) { | |
| 1739 a = img->Bitdepth16To8[*wa++]; | |
| 1740 m = img->UaToAa+(a<<8); | |
| 1741 r = m[img->Bitdepth16To8[*wr++]]; | |
| 1742 g = m[img->Bitdepth16To8[*wg++]]; | |
| 1743 b = m[img->Bitdepth16To8[*wb++]]; | |
| 1744 *cp++ = PACK4(r,g,b,a); | |
| 1745 } | |
| 1746 SKEW4(wr, wg, wb, wa, fromskew); | |
| 1747 cp += toskew; | |
| 1748 } | |
| 1749 } | |
| 1750 | |
| 1751 /* | |
| 1752 * 8-bit packed CIE L*a*b 1976 samples => RGB | |
| 1753 */ | |
| 1754 DECLAREContigPutFunc(putcontig8bitCIELab) | |
| 1755 { | |
| 1756 float X, Y, Z; | |
| 1757 uint32 r, g, b; | |
| 1758 (void) y; | |
| 1759 fromskew *= 3; | |
| 1760 while (h-- > 0) { | |
| 1761 for (x = w; x-- > 0;) { | |
| 1762 TIFFCIELabToXYZ(img->cielab, | |
| 1763 (unsigned char)pp[0], | |
| 1764 (signed char)pp[1], | |
| 1765 (signed char)pp[2], | |
| 1766 &X, &Y, &Z); | |
| 1767 TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b); | |
| 1768 *cp++ = PACK(r, g, b); | |
| 1769 pp += 3; | |
| 1770 } | |
| 1771 cp += toskew; | |
| 1772 pp += fromskew; | |
| 1773 } | |
| 1774 } | |
| 1775 | |
| 1776 /* | |
| 1777 * YCbCr -> RGB conversion and packing routines. | |
| 1778 */ | |
| 1779 | |
| 1780 #define YCbCrtoRGB(dst, Y) { \ | |
| 1781 uint32 r, g, b; \ | |
| 1782 TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b); \ | |
| 1783 dst = PACK(r, g, b); \ | |
| 1784 } | |
| 1785 | |
| 1786 /* | |
| 1787 * 8-bit packed YCbCr samples => RGB | |
| 1788 * This function is generic for different sampling sizes, | |
| 1789 * and can handle blocks sizes that aren't multiples of the | |
| 1790 * sampling size. However, it is substantially less optimized | |
| 1791 * than the specific sampling cases. It is used as a fallback | |
| 1792 * for difficult blocks. | |
| 1793 */ | |
| 1794 #ifdef notdef | |
| 1795 static void putcontig8bitYCbCrGenericTile( | |
| 1796 TIFFRGBAImage* img, | |
| 1797 uint32* cp, | |
| 1798 uint32 x, uint32 y, | |
| 1799 uint32 w, uint32 h, | |
| 1800 int32 fromskew, int32 toskew, | |
| 1801 unsigned char* pp, | |
| 1802 int h_group, | |
| 1803 int v_group ) | |
| 1804 | |
| 1805 { | |
| 1806 uint32* cp1 = cp+w+toskew; | |
| 1807 uint32* cp2 = cp1+w+toskew; | |
| 1808 uint32* cp3 = cp2+w+toskew; | |
| 1809 int32 incr = 3*w+4*toskew; | |
| 1810 int32 Cb, Cr; | |
| 1811 int group_size = v_group * h_group + 2; | |
| 1812 | |
| 1813 (void) y; | |
| 1814 fromskew = (fromskew * group_size) / h_group; | |
| 1815 | |
| 1816 for( yy = 0; yy < h; yy++ ) | |
| 1817 { | |
| 1818 unsigned char *pp_line; | |
| 1819 int y_line_group = yy / v_group; | |
| 1820 int y_remainder = yy - y_line_group * v_group; | |
| 1821 | |
| 1822 pp_line = pp + v_line_group * | |
| 1823 | |
| 1824 | |
| 1825 for( xx = 0; xx < w; xx++ ) | |
| 1826 { | |
| 1827 Cb = pp | |
| 1828 } | |
| 1829 } | |
| 1830 for (; h >= 4; h -= 4) { | |
| 1831 x = w>>2; | |
| 1832 do { | |
| 1833 Cb = pp[16]; | |
| 1834 Cr = pp[17]; | |
| 1835 | |
| 1836 YCbCrtoRGB(cp [0], pp[ 0]); | |
| 1837 YCbCrtoRGB(cp [1], pp[ 1]); | |
| 1838 YCbCrtoRGB(cp [2], pp[ 2]); | |
| 1839 YCbCrtoRGB(cp [3], pp[ 3]); | |
| 1840 YCbCrtoRGB(cp1[0], pp[ 4]); | |
| 1841 YCbCrtoRGB(cp1[1], pp[ 5]); | |
| 1842 YCbCrtoRGB(cp1[2], pp[ 6]); | |
| 1843 YCbCrtoRGB(cp1[3], pp[ 7]); | |
| 1844 YCbCrtoRGB(cp2[0], pp[ 8]); | |
| 1845 YCbCrtoRGB(cp2[1], pp[ 9]); | |
| 1846 YCbCrtoRGB(cp2[2], pp[10]); | |
| 1847 YCbCrtoRGB(cp2[3], pp[11]); | |
| 1848 YCbCrtoRGB(cp3[0], pp[12]); | |
| 1849 YCbCrtoRGB(cp3[1], pp[13]); | |
| 1850 YCbCrtoRGB(cp3[2], pp[14]); | |
| 1851 YCbCrtoRGB(cp3[3], pp[15]); | |
| 1852 | |
| 1853 cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; | |
| 1854 pp += 18; | |
| 1855 } while (--x); | |
| 1856 cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
| 1857 pp += fromskew; | |
| 1858 } | |
| 1859 } | |
| 1860 #endif | |
| 1861 | |
| 1862 /* | |
| 1863 * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB | |
| 1864 */ | |
| 1865 DECLAREContigPutFunc(putcontig8bitYCbCr44tile) | |
| 1866 { | |
| 1867 uint32* cp1 = cp+w+toskew; | |
| 1868 uint32* cp2 = cp1+w+toskew; | |
| 1869 uint32* cp3 = cp2+w+toskew; | |
| 1870 int32 incr = 3*w+4*toskew; | |
| 1871 | |
| 1872 (void) y; | |
| 1873 /* adjust fromskew */ | |
| 1874 fromskew = (fromskew * 18) / 4; | |
| 1875 if ((h & 3) == 0 && (w & 3) == 0) { | |
| 1876 for (; h >= 4; h -= 4) { | |
| 1877 x = w>>2; | |
| 1878 do { | |
| 1879 int32 Cb = pp[16]; | |
| 1880 int32 Cr = pp[17]; | |
| 1881 | |
| 1882 YCbCrtoRGB(cp [0], pp[ 0]); | |
| 1883 YCbCrtoRGB(cp [1], pp[ 1]); | |
| 1884 YCbCrtoRGB(cp [2], pp[ 2]); | |
| 1885 YCbCrtoRGB(cp [3], pp[ 3]); | |
| 1886 YCbCrtoRGB(cp1[0], pp[ 4]); | |
| 1887 YCbCrtoRGB(cp1[1], pp[ 5]); | |
| 1888 YCbCrtoRGB(cp1[2], pp[ 6]); | |
| 1889 YCbCrtoRGB(cp1[3], pp[ 7]); | |
| 1890 YCbCrtoRGB(cp2[0], pp[ 8]); | |
| 1891 YCbCrtoRGB(cp2[1], pp[ 9]); | |
| 1892 YCbCrtoRGB(cp2[2], pp[10]); | |
| 1893 YCbCrtoRGB(cp2[3], pp[11]); | |
| 1894 YCbCrtoRGB(cp3[0], pp[12]); | |
| 1895 YCbCrtoRGB(cp3[1], pp[13]); | |
| 1896 YCbCrtoRGB(cp3[2], pp[14]); | |
| 1897 YCbCrtoRGB(cp3[3], pp[15]); | |
| 1898 | |
| 1899 cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; | |
| 1900 pp += 18; | |
| 1901 } while (--x); | |
| 1902 cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
| 1903 pp += fromskew; | |
| 1904 } | |
| 1905 } else { | |
| 1906 while (h > 0) { | |
| 1907 for (x = w; x > 0;) { | |
| 1908 int32 Cb = pp[16]; | |
| 1909 int32 Cr = pp[17]; | |
| 1910 switch (x) { | |
| 1911 default: | |
| 1912 switch (h) { | |
| 1913 default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */ | |
| 1914 case 3: YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */ | |
| 1915 case 2: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ | |
| 1916 case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ | |
| 1917 } /* FALLTHROUGH */ | |
| 1918 case 3: | |
| 1919 switch (h) { | |
| 1920 default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */ | |
| 1921 case 3: YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */ | |
| 1922 case 2: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ | |
| 1923 case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ | |
| 1924 } /* FALLTHROUGH */ | |
| 1925 case 2: | |
| 1926 switch (h) { | |
| 1927 default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */ | |
| 1928 case 3: YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */ | |
| 1929 case 2: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ | |
| 1930 case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | |
| 1931 } /* FALLTHROUGH */ | |
| 1932 case 1: | |
| 1933 switch (h) { | |
| 1934 default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */ | |
| 1935 case 3: YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */ | |
| 1936 case 2: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ | |
| 1937 case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | |
| 1938 } /* FALLTHROUGH */ | |
| 1939 } | |
| 1940 if (x < 4) { | |
| 1941 cp += x; cp1 += x; cp2 += x; cp3 += x; | |
| 1942 x = 0; | |
| 1943 } | |
| 1944 else { | |
| 1945 cp += 4; cp1 += 4; cp2 += 4; cp3 += 4; | |
| 1946 x -= 4; | |
| 1947 } | |
| 1948 pp += 18; | |
| 1949 } | |
| 1950 if (h <= 4) | |
| 1951 break; | |
| 1952 h -= 4; | |
| 1953 cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
| 1954 pp += fromskew; | |
| 1955 } | |
| 1956 } | |
| 1957 } | |
| 1958 | |
| 1959 /* | |
| 1960 * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB | |
| 1961 */ | |
| 1962 DECLAREContigPutFunc(putcontig8bitYCbCr42tile) | |
| 1963 { | |
| 1964 uint32* cp1 = cp+w+toskew; | |
| 1965 int32 incr = 2*toskew+w; | |
| 1966 | |
| 1967 (void) y; | |
| 1968 fromskew = (fromskew * 10) / 4; | |
| 1969 if ((h & 3) == 0 && (w & 1) == 0) { | |
| 1970 for (; h >= 2; h -= 2) { | |
| 1971 x = w>>2; | |
| 1972 do { | |
| 1973 int32 Cb = pp[8]; | |
| 1974 int32 Cr = pp[9]; | |
| 1975 | |
| 1976 YCbCrtoRGB(cp [0], pp[0]); | |
| 1977 YCbCrtoRGB(cp [1], pp[1]); | |
| 1978 YCbCrtoRGB(cp [2], pp[2]); | |
| 1979 YCbCrtoRGB(cp [3], pp[3]); | |
| 1980 YCbCrtoRGB(cp1[0], pp[4]); | |
| 1981 YCbCrtoRGB(cp1[1], pp[5]); | |
| 1982 YCbCrtoRGB(cp1[2], pp[6]); | |
| 1983 YCbCrtoRGB(cp1[3], pp[7]); | |
| 1984 | |
| 1985 cp += 4, cp1 += 4; | |
| 1986 pp += 10; | |
| 1987 } while (--x); | |
| 1988 cp += incr, cp1 += incr; | |
| 1989 pp += fromskew; | |
| 1990 } | |
| 1991 } else { | |
| 1992 while (h > 0) { | |
| 1993 for (x = w; x > 0;) { | |
| 1994 int32 Cb = pp[8]; | |
| 1995 int32 Cr = pp[9]; | |
| 1996 switch (x) { | |
| 1997 default: | |
| 1998 switch (h) { | |
| 1999 default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ | |
| 2000 case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ | |
| 2001 } /* FALLTHROUGH */ | |
| 2002 case 3: | |
| 2003 switch (h) { | |
| 2004 default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ | |
| 2005 case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ | |
| 2006 } /* FALLTHROUGH */ | |
| 2007 case 2: | |
| 2008 switch (h) { | |
| 2009 default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ | |
| 2010 case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | |
| 2011 } /* FALLTHROUGH */ | |
| 2012 case 1: | |
| 2013 switch (h) { | |
| 2014 default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ | |
| 2015 case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | |
| 2016 } /* FALLTHROUGH */ | |
| 2017 } | |
| 2018 if (x < 4) { | |
| 2019 cp += x; cp1 += x; | |
| 2020 x = 0; | |
| 2021 } | |
| 2022 else { | |
| 2023 cp += 4; cp1 += 4; | |
| 2024 x -= 4; | |
| 2025 } | |
| 2026 pp += 10; | |
| 2027 } | |
| 2028 if (h <= 2) | |
| 2029 break; | |
| 2030 h -= 2; | |
| 2031 cp += incr, cp1 += incr; | |
| 2032 pp += fromskew; | |
| 2033 } | |
| 2034 } | |
| 2035 } | |
| 2036 | |
| 2037 /* | |
| 2038 * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB | |
| 2039 */ | |
| 2040 DECLAREContigPutFunc(putcontig8bitYCbCr41tile) | |
| 2041 { | |
| 2042 (void) y; | |
| 2043 /* XXX adjust fromskew */ | |
| 2044 do { | |
| 2045 x = w>>2; | |
| 2046 do { | |
| 2047 int32 Cb = pp[4]; | |
| 2048 int32 Cr = pp[5]; | |
| 2049 | |
| 2050 YCbCrtoRGB(cp [0], pp[0]); | |
| 2051 YCbCrtoRGB(cp [1], pp[1]); | |
| 2052 YCbCrtoRGB(cp [2], pp[2]); | |
| 2053 YCbCrtoRGB(cp [3], pp[3]); | |
| 2054 | |
| 2055 cp += 4; | |
| 2056 pp += 6; | |
| 2057 } while (--x); | |
| 2058 | |
| 2059 if( (w&3) != 0 ) | |
| 2060 { | |
| 2061 int32 Cb = pp[4]; | |
| 2062 int32 Cr = pp[5]; | |
| 2063 | |
| 2064 switch( (w&3) ) { | |
| 2065 case 3: YCbCrtoRGB(cp [2], pp[2]); | |
| 2066 case 2: YCbCrtoRGB(cp [1], pp[1]); | |
| 2067 case 1: YCbCrtoRGB(cp [0], pp[0]); | |
| 2068 case 0: break; | |
| 2069 } | |
| 2070 | |
| 2071 cp += (w&3); | |
| 2072 pp += 6; | |
| 2073 } | |
| 2074 | |
| 2075 cp += toskew; | |
| 2076 pp += fromskew; | |
| 2077 } while (--h); | |
| 2078 | |
| 2079 } | |
| 2080 | |
| 2081 /* | |
| 2082 * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB | |
| 2083 */ | |
| 2084 DECLAREContigPutFunc(putcontig8bitYCbCr22tile) | |
| 2085 { | |
| 2086 uint32* cp2; | |
| 2087 int32 incr = 2*toskew+w; | |
| 2088 (void) y; | |
| 2089 fromskew = (fromskew / 2) * 6; | |
| 2090 cp2 = cp+w+toskew; | |
| 2091 while (h>=2) { | |
| 2092 x = w; | |
| 2093 while (x>=2) { | |
| 2094 uint32 Cb = pp[4]; | |
| 2095 uint32 Cr = pp[5]; | |
| 2096 YCbCrtoRGB(cp[0], pp[0]); | |
| 2097 YCbCrtoRGB(cp[1], pp[1]); | |
| 2098 YCbCrtoRGB(cp2[0], pp[2]); | |
| 2099 YCbCrtoRGB(cp2[1], pp[3]); | |
| 2100 cp += 2; | |
| 2101 cp2 += 2; | |
| 2102 pp += 6; | |
| 2103 x -= 2; | |
| 2104 } | |
| 2105 if (x==1) { | |
| 2106 uint32 Cb = pp[4]; | |
| 2107 uint32 Cr = pp[5]; | |
| 2108 YCbCrtoRGB(cp[0], pp[0]); | |
| 2109 YCbCrtoRGB(cp2[0], pp[2]); | |
| 2110 cp ++ ; | |
| 2111 cp2 ++ ; | |
| 2112 pp += 6; | |
| 2113 } | |
| 2114 cp += incr; | |
| 2115 cp2 += incr; | |
| 2116 pp += fromskew; | |
| 2117 h-=2; | |
| 2118 } | |
| 2119 if (h==1) { | |
| 2120 x = w; | |
| 2121 while (x>=2) { | |
| 2122 uint32 Cb = pp[4]; | |
| 2123 uint32 Cr = pp[5]; | |
| 2124 YCbCrtoRGB(cp[0], pp[0]); | |
| 2125 YCbCrtoRGB(cp[1], pp[1]); | |
| 2126 cp += 2; | |
| 2127 cp2 += 2; | |
| 2128 pp += 6; | |
| 2129 x -= 2; | |
| 2130 } | |
| 2131 if (x==1) { | |
| 2132 uint32 Cb = pp[4]; | |
| 2133 uint32 Cr = pp[5]; | |
| 2134 YCbCrtoRGB(cp[0], pp[0]); | |
| 2135 } | |
| 2136 } | |
| 2137 } | |
| 2138 | |
| 2139 /* | |
| 2140 * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB | |
| 2141 */ | |
| 2142 DECLAREContigPutFunc(putcontig8bitYCbCr21tile) | |
| 2143 { | |
| 2144 (void) y; | |
| 2145 fromskew = (fromskew * 4) / 2; | |
| 2146 do { | |
| 2147 x = w>>1; | |
| 2148 do { | |
| 2149 int32 Cb = pp[2]; | |
| 2150 int32 Cr = pp[3]; | |
| 2151 | |
| 2152 YCbCrtoRGB(cp[0], pp[0]); | |
| 2153 YCbCrtoRGB(cp[1], pp[1]); | |
| 2154 | |
| 2155 cp += 2; | |
| 2156 pp += 4; | |
| 2157 } while (--x); | |
| 2158 | |
| 2159 if( (w&1) != 0 ) | |
| 2160 { | |
| 2161 int32 Cb = pp[2]; | |
| 2162 int32 Cr = pp[3]; | |
| 2163 | |
| 2164 YCbCrtoRGB(cp[0], pp[0]); | |
| 2165 | |
| 2166 cp += 1; | |
| 2167 pp += 4; | |
| 2168 } | |
| 2169 | |
| 2170 cp += toskew; | |
| 2171 pp += fromskew; | |
| 2172 } while (--h); | |
| 2173 } | |
| 2174 | |
| 2175 /* | |
| 2176 * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB | |
| 2177 */ | |
| 2178 DECLAREContigPutFunc(putcontig8bitYCbCr12tile) | |
| 2179 { | |
| 2180 uint32* cp2; | |
| 2181 int32 incr = 2*toskew+w; | |
| 2182 (void) y; | |
| 2183 fromskew = (fromskew / 2) * 4; | |
| 2184 cp2 = cp+w+toskew; | |
| 2185 while (h>=2) { | |
| 2186 x = w; | |
| 2187 do { | |
| 2188 uint32 Cb = pp[2]; | |
| 2189 uint32 Cr = pp[3]; | |
| 2190 YCbCrtoRGB(cp[0], pp[0]); | |
| 2191 YCbCrtoRGB(cp2[0], pp[1]); | |
| 2192 cp ++; | |
| 2193 cp2 ++; | |
| 2194 pp += 4; | |
| 2195 } while (--x); | |
| 2196 cp += incr; | |
| 2197 cp2 += incr; | |
| 2198 pp += fromskew; | |
| 2199 h-=2; | |
| 2200 } | |
| 2201 if (h==1) { | |
| 2202 x = w; | |
| 2203 do { | |
| 2204 uint32 Cb = pp[2]; | |
| 2205 uint32 Cr = pp[3]; | |
| 2206 YCbCrtoRGB(cp[0], pp[0]); | |
| 2207 cp ++; | |
| 2208 pp += 4; | |
| 2209 } while (--x); | |
| 2210 } | |
| 2211 } | |
| 2212 | |
| 2213 /* | |
| 2214 * 8-bit packed YCbCr samples w/ no subsampling => RGB | |
| 2215 */ | |
| 2216 DECLAREContigPutFunc(putcontig8bitYCbCr11tile) | |
| 2217 { | |
| 2218 (void) y; | |
| 2219 fromskew *= 3; | |
| 2220 do { | |
| 2221 x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */ | |
| 2222 do { | |
| 2223 int32 Cb = pp[1]; | |
| 2224 int32 Cr = pp[2]; | |
| 2225 | |
| 2226 YCbCrtoRGB(*cp++, pp[0]); | |
| 2227 | |
| 2228 pp += 3; | |
| 2229 } while (--x); | |
| 2230 cp += toskew; | |
| 2231 pp += fromskew; | |
| 2232 } while (--h); | |
| 2233 } | |
| 2234 | |
| 2235 /* | |
| 2236 * 8-bit packed YCbCr samples w/ no subsampling => RGB | |
| 2237 */ | |
| 2238 DECLARESepPutFunc(putseparate8bitYCbCr11tile) | |
| 2239 { | |
| 2240 (void) y; | |
| 2241 (void) a; | |
| 2242 /* TODO: naming of input vars is still off, change obfuscating declarati
on inside define, or resolve obfuscation */ | |
| 2243 while (h-- > 0) { | |
| 2244 x = w; | |
| 2245 do { | |
| 2246 uint32 dr, dg, db; | |
| 2247 TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db); | |
| 2248 *cp++ = PACK(dr,dg,db); | |
| 2249 } while (--x); | |
| 2250 SKEW(r, g, b, fromskew); | |
| 2251 cp += toskew; | |
| 2252 } | |
| 2253 } | |
| 2254 #undef YCbCrtoRGB | |
| 2255 | |
| 2256 static int | |
| 2257 initYCbCrConversion(TIFFRGBAImage* img) | |
| 2258 { | |
| 2259 static const char module[] = "initYCbCrConversion"; | |
| 2260 | |
| 2261 float *luma, *refBlackWhite; | |
| 2262 | |
| 2263 if (img->ycbcr == NULL) { | |
| 2264 img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc( | |
| 2265 TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long)) | |
| 2266 + 4*256*sizeof (TIFFRGBValue) | |
| 2267 + 2*256*sizeof (int) | |
| 2268 + 3*256*sizeof (int32) | |
| 2269 ); | |
| 2270 if (img->ycbcr == NULL) { | |
| 2271 TIFFErrorExt(img->tif->tif_clientdata, module, | |
| 2272 "No space for YCbCr->RGB conversion state"); | |
| 2273 return (0); | |
| 2274 } | |
| 2275 } | |
| 2276 | |
| 2277 TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma); | |
| 2278 TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE, | |
| 2279 &refBlackWhite); | |
| 2280 if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0) | |
| 2281 return(0); | |
| 2282 return (1); | |
| 2283 } | |
| 2284 | |
| 2285 static tileContigRoutine | |
| 2286 initCIELabConversion(TIFFRGBAImage* img) | |
| 2287 { | |
| 2288 static const char module[] = "initCIELabConversion"; | |
| 2289 | |
| 2290 float *whitePoint; | |
| 2291 float refWhite[3]; | |
| 2292 | |
| 2293 if (!img->cielab) { | |
| 2294 img->cielab = (TIFFCIELabToRGB *) | |
| 2295 _TIFFmalloc(sizeof(TIFFCIELabToRGB)); | |
| 2296 if (!img->cielab) { | |
| 2297 TIFFErrorExt(img->tif->tif_clientdata, module, | |
| 2298 "No space for CIE L*a*b*->RGB conversion state."); | |
| 2299 return NULL; | |
| 2300 } | |
| 2301 } | |
| 2302 | |
| 2303 TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint); | |
| 2304 refWhite[1] = 100.0F; | |
| 2305 refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1]; | |
| 2306 refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1]) | |
| 2307 / whitePoint[1] * refWhite[1]; | |
| 2308 if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) { | |
| 2309 TIFFErrorExt(img->tif->tif_clientdata, module, | |
| 2310 "Failed to initialize CIE L*a*b*->RGB conversion state."); | |
| 2311 _TIFFfree(img->cielab); | |
| 2312 return NULL; | |
| 2313 } | |
| 2314 | |
| 2315 return (tileContigRoutine)putcontig8bitCIELab; | |
| 2316 } | |
| 2317 | |
| 2318 /* | |
| 2319 * Greyscale images with less than 8 bits/sample are handled | |
| 2320 * with a table to avoid lots of shifts and masks. The table | |
| 2321 * is setup so that put*bwtile (below) can retrieve 8/bitspersample | |
| 2322 * pixel values simply by indexing into the table with one | |
| 2323 * number. | |
| 2324 */ | |
| 2325 static int | |
| 2326 makebwmap(TIFFRGBAImage* img) | |
| 2327 { | |
| 2328 TIFFRGBValue* Map = img->Map; | |
| 2329 int bitspersample = img->bitspersample; | |
| 2330 int nsamples = 8 / bitspersample; | |
| 2331 int i; | |
| 2332 uint32* p; | |
| 2333 | |
| 2334 if( nsamples == 0 ) | |
| 2335 nsamples = 1; | |
| 2336 | |
| 2337 img->BWmap = (uint32**) _TIFFmalloc( | |
| 2338 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | |
| 2339 if (img->BWmap == NULL) { | |
| 2340 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "
No space for B&W mapping table"); | |
| 2341 return (0); | |
| 2342 } | |
| 2343 p = (uint32*)(img->BWmap + 256); | |
| 2344 for (i = 0; i < 256; i++) { | |
| 2345 TIFFRGBValue c; | |
| 2346 img->BWmap[i] = p; | |
| 2347 switch (bitspersample) { | |
| 2348 #define GREY(x) c = Map[x]; *p++ = PACK(c,c,c); | |
| 2349 case 1: | |
| 2350 GREY(i>>7); | |
| 2351 GREY((i>>6)&1); | |
| 2352 GREY((i>>5)&1); | |
| 2353 GREY((i>>4)&1); | |
| 2354 GREY((i>>3)&1); | |
| 2355 GREY((i>>2)&1); | |
| 2356 GREY((i>>1)&1); | |
| 2357 GREY(i&1); | |
| 2358 break; | |
| 2359 case 2: | |
| 2360 GREY(i>>6); | |
| 2361 GREY((i>>4)&3); | |
| 2362 GREY((i>>2)&3); | |
| 2363 GREY(i&3); | |
| 2364 break; | |
| 2365 case 4: | |
| 2366 GREY(i>>4); | |
| 2367 GREY(i&0xf); | |
| 2368 break; | |
| 2369 case 8: | |
| 2370 case 16: | |
| 2371 GREY(i); | |
| 2372 break; | |
| 2373 } | |
| 2374 #undef GREY | |
| 2375 } | |
| 2376 return (1); | |
| 2377 } | |
| 2378 | |
| 2379 /* | |
| 2380 * Construct a mapping table to convert from the range | |
| 2381 * of the data samples to [0,255] --for display. This | |
| 2382 * process also handles inverting B&W images when needed. | |
| 2383 */ | |
| 2384 static int | |
| 2385 setupMap(TIFFRGBAImage* img) | |
| 2386 { | |
| 2387 int32 x, range; | |
| 2388 | |
| 2389 range = (int32)((1L<<img->bitspersample)-1); | |
| 2390 | |
| 2391 /* treat 16 bit the same as eight bit */ | |
| 2392 if( img->bitspersample == 16 ) | |
| 2393 range = (int32) 255; | |
| 2394 | |
| 2395 img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue)); | |
| 2396 if (img->Map == NULL) { | |
| 2397 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), | |
| 2398 "No space for photometric conversion table"); | |
| 2399 return (0); | |
| 2400 } | |
| 2401 if (img->photometric == PHOTOMETRIC_MINISWHITE) { | |
| 2402 for (x = 0; x <= range; x++) | |
| 2403 img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range); | |
| 2404 } else { | |
| 2405 for (x = 0; x <= range; x++) | |
| 2406 img->Map[x] = (TIFFRGBValue) ((x * 255) / range); | |
| 2407 } | |
| 2408 if (img->bitspersample <= 16 && | |
| 2409 (img->photometric == PHOTOMETRIC_MINISBLACK || | |
| 2410 img->photometric == PHOTOMETRIC_MINISWHITE)) { | |
| 2411 /* | |
| 2412 * Use photometric mapping table to construct | |
| 2413 * unpacking tables for samples <= 8 bits. | |
| 2414 */ | |
| 2415 if (!makebwmap(img)) | |
| 2416 return (0); | |
| 2417 /* no longer need Map, free it */ | |
| 2418 _TIFFfree(img->Map), img->Map = NULL; | |
| 2419 } | |
| 2420 return (1); | |
| 2421 } | |
| 2422 | |
| 2423 static int | |
| 2424 checkcmap(TIFFRGBAImage* img) | |
| 2425 { | |
| 2426 uint16* r = img->redcmap; | |
| 2427 uint16* g = img->greencmap; | |
| 2428 uint16* b = img->bluecmap; | |
| 2429 long n = 1L<<img->bitspersample; | |
| 2430 | |
| 2431 while (n-- > 0) | |
| 2432 if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256) | |
| 2433 return (16); | |
| 2434 return (8); | |
| 2435 } | |
| 2436 | |
| 2437 static void | |
| 2438 cvtcmap(TIFFRGBAImage* img) | |
| 2439 { | |
| 2440 uint16* r = img->redcmap; | |
| 2441 uint16* g = img->greencmap; | |
| 2442 uint16* b = img->bluecmap; | |
| 2443 long i; | |
| 2444 | |
| 2445 for (i = (1L<<img->bitspersample)-1; i >= 0; i--) { | |
| 2446 #define CVT(x) ((uint16)((x)>>8)) | |
| 2447 r[i] = CVT(r[i]); | |
| 2448 g[i] = CVT(g[i]); | |
| 2449 b[i] = CVT(b[i]); | |
| 2450 #undef CVT | |
| 2451 } | |
| 2452 } | |
| 2453 | |
| 2454 /* | |
| 2455 * Palette images with <= 8 bits/sample are handled | |
| 2456 * with a table to avoid lots of shifts and masks. The table | |
| 2457 * is setup so that put*cmaptile (below) can retrieve 8/bitspersample | |
| 2458 * pixel values simply by indexing into the table with one | |
| 2459 * number. | |
| 2460 */ | |
| 2461 static int | |
| 2462 makecmap(TIFFRGBAImage* img) | |
| 2463 { | |
| 2464 int bitspersample = img->bitspersample; | |
| 2465 int nsamples = 8 / bitspersample; | |
| 2466 uint16* r = img->redcmap; | |
| 2467 uint16* g = img->greencmap; | |
| 2468 uint16* b = img->bluecmap; | |
| 2469 uint32 *p; | |
| 2470 int i; | |
| 2471 | |
| 2472 img->PALmap = (uint32**) _TIFFmalloc( | |
| 2473 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | |
| 2474 if (img->PALmap == NULL) { | |
| 2475 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "
No space for Palette mapping table"); | |
| 2476 return (0); | |
| 2477 } | |
| 2478 p = (uint32*)(img->PALmap + 256); | |
| 2479 for (i = 0; i < 256; i++) { | |
| 2480 TIFFRGBValue c; | |
| 2481 img->PALmap[i] = p; | |
| 2482 #define CMAP(x) c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xf
f); | |
| 2483 switch (bitspersample) { | |
| 2484 case 1: | |
| 2485 CMAP(i>>7); | |
| 2486 CMAP((i>>6)&1); | |
| 2487 CMAP((i>>5)&1); | |
| 2488 CMAP((i>>4)&1); | |
| 2489 CMAP((i>>3)&1); | |
| 2490 CMAP((i>>2)&1); | |
| 2491 CMAP((i>>1)&1); | |
| 2492 CMAP(i&1); | |
| 2493 break; | |
| 2494 case 2: | |
| 2495 CMAP(i>>6); | |
| 2496 CMAP((i>>4)&3); | |
| 2497 CMAP((i>>2)&3); | |
| 2498 CMAP(i&3); | |
| 2499 break; | |
| 2500 case 4: | |
| 2501 CMAP(i>>4); | |
| 2502 CMAP(i&0xf); | |
| 2503 break; | |
| 2504 case 8: | |
| 2505 CMAP(i); | |
| 2506 break; | |
| 2507 } | |
| 2508 #undef CMAP | |
| 2509 } | |
| 2510 return (1); | |
| 2511 } | |
| 2512 | |
| 2513 /* | |
| 2514 * Construct any mapping table used | |
| 2515 * by the associated put routine. | |
| 2516 */ | |
| 2517 static int | |
| 2518 buildMap(TIFFRGBAImage* img) | |
| 2519 { | |
| 2520 switch (img->photometric) { | |
| 2521 case PHOTOMETRIC_RGB: | |
| 2522 case PHOTOMETRIC_YCBCR: | |
| 2523 case PHOTOMETRIC_SEPARATED: | |
| 2524 if (img->bitspersample == 8) | |
| 2525 break; | |
| 2526 /* fall thru... */ | |
| 2527 case PHOTOMETRIC_MINISBLACK: | |
| 2528 case PHOTOMETRIC_MINISWHITE: | |
| 2529 if (!setupMap(img)) | |
| 2530 return (0); | |
| 2531 break; | |
| 2532 case PHOTOMETRIC_PALETTE: | |
| 2533 /* | |
| 2534 * Convert 16-bit colormap to 8-bit (unless it looks | |
| 2535 * like an old-style 8-bit colormap). | |
| 2536 */ | |
| 2537 if (checkcmap(img) == 16) | |
| 2538 cvtcmap(img); | |
| 2539 else | |
| 2540 TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "As
suming 8-bit colormap"); | |
| 2541 /* | |
| 2542 * Use mapping table and colormap to construct | |
| 2543 * unpacking tables for samples < 8 bits. | |
| 2544 */ | |
| 2545 if (img->bitspersample <= 8 && !makecmap(img)) | |
| 2546 return (0); | |
| 2547 break; | |
| 2548 } | |
| 2549 return (1); | |
| 2550 } | |
| 2551 | |
| 2552 /* | |
| 2553 * Select the appropriate conversion routine for packed data. | |
| 2554 */ | |
| 2555 static int | |
| 2556 PickContigCase(TIFFRGBAImage* img) | |
| 2557 { | |
| 2558 img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig; | |
| 2559 img->put.contig = NULL; | |
| 2560 switch (img->photometric) { | |
| 2561 case PHOTOMETRIC_RGB: | |
| 2562 switch (img->bitspersample) { | |
| 2563 case 8: | |
| 2564 if (img->alpha == EXTRASAMPLE_ASSOCALPHA
) | |
| 2565 img->put.contig = putRGBAAcontig
8bittile; | |
| 2566 else if (img->alpha == EXTRASAMPLE_UNASS
ALPHA) | |
| 2567 { | |
| 2568 if (BuildMapUaToAa(img)) | |
| 2569 img->put.contig = putRGB
UAcontig8bittile; | |
| 2570 } | |
| 2571 else | |
| 2572 img->put.contig = putRGBcontig8b
ittile; | |
| 2573 break; | |
| 2574 case 16: | |
| 2575 if (img->alpha == EXTRASAMPLE_ASSOCALPHA
) | |
| 2576 { | |
| 2577 if (BuildMapBitdepth16To8(img)) | |
| 2578 img->put.contig = putRGB
AAcontig16bittile; | |
| 2579 } | |
| 2580 else if (img->alpha == EXTRASAMPLE_UNASS
ALPHA) | |
| 2581 { | |
| 2582 if (BuildMapBitdepth16To8(img) &
& | |
| 2583 BuildMapUaToAa(img)) | |
| 2584 img->put.contig = putRGB
UAcontig16bittile; | |
| 2585 } | |
| 2586 else | |
| 2587 { | |
| 2588 if (BuildMapBitdepth16To8(img)) | |
| 2589 img->put.contig = putRGB
contig16bittile; | |
| 2590 } | |
| 2591 break; | |
| 2592 } | |
| 2593 break; | |
| 2594 case PHOTOMETRIC_SEPARATED: | |
| 2595 if (buildMap(img)) { | |
| 2596 if (img->bitspersample == 8) { | |
| 2597 if (!img->Map) | |
| 2598 img->put.contig = putRGBcontig8bitCMYKti
le; | |
| 2599 else | |
| 2600 img->put.contig = putRGBcontig8bitCMYKMa
ptile; | |
| 2601 } | |
| 2602 else if(img->bitspersample == 16) /*LiuSunliang added 16
bpp CMYK support.*/ | |
| 2603 { | |
| 2604 if (!img->Map) | |
| 2605 img->put.contig = putRGBcontig16bitCMYKt
ile; | |
| 2606 else | |
| 2607 img->put.contig = putRGBcontig16bitCMYKM
aptile; | |
| 2608 } | |
| 2609 } | |
| 2610 break; | |
| 2611 case PHOTOMETRIC_PALETTE: | |
| 2612 if (buildMap(img)) { | |
| 2613 switch (img->bitspersample) { | |
| 2614 case 8: | |
| 2615 img->put.contig = put8bitcmaptil
e; | |
| 2616 break; | |
| 2617 case 4: | |
| 2618 img->put.contig = put4bitcmaptil
e; | |
| 2619 break; | |
| 2620 case 2: | |
| 2621 img->put.contig = put2bitcmaptil
e; | |
| 2622 break; | |
| 2623 case 1: | |
| 2624 img->put.contig = put1bitcmaptil
e; | |
| 2625 break; | |
| 2626 } | |
| 2627 } | |
| 2628 break; | |
| 2629 case PHOTOMETRIC_MINISWHITE: | |
| 2630 case PHOTOMETRIC_MINISBLACK: | |
| 2631 if (buildMap(img)) { | |
| 2632 switch (img->bitspersample) { | |
| 2633 case 16: | |
| 2634 img->put.contig = put16bitbwtile
; | |
| 2635 break; | |
| 2636 case 8: | |
| 2637 if (img->alpha && img->samplespe
rpixel == 2) | |
| 2638 img->put.contig = putagr
eytile; | |
| 2639 else | |
| 2640 img->put.contig = putgre
ytile; | |
| 2641 break; | |
| 2642 case 4: | |
| 2643 img->put.contig = put4bitbwtile; | |
| 2644 break; | |
| 2645 case 2: | |
| 2646 img->put.contig = put2bitbwtile; | |
| 2647 break; | |
| 2648 case 1: | |
| 2649 img->put.contig = put1bitbwtile; | |
| 2650 break; | |
| 2651 } | |
| 2652 } | |
| 2653 break; | |
| 2654 case PHOTOMETRIC_YCBCR: | |
| 2655 if ((img->bitspersample==8) && (img->samplesperpixel==3)
) | |
| 2656 { | |
| 2657 if (initYCbCrConversion(img)!=0) | |
| 2658 { | |
| 2659 /* | |
| 2660 * The 6.0 spec says that subsampling mu
st be | |
| 2661 * one of 1, 2, or 4, and that vertical
subsampling | |
| 2662 * must always be <= horizontal subsampl
ing; so | |
| 2663 * there are only a few possibilities an
d we just | |
| 2664 * enumerate the cases. | |
| 2665 * Joris: added support for the [1,2] ca
se, nonetheless, to accomodate | |
| 2666 * some OJPEG files | |
| 2667 */ | |
| 2668 uint16 SubsamplingHor; | |
| 2669 uint16 SubsamplingVer; | |
| 2670 TIFFGetFieldDefaulted(img->tif, TIFFTAG_
YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer); | |
| 2671 switch ((SubsamplingHor<<4)|SubsamplingV
er) { | |
| 2672 case 0x44: | |
| 2673 img->put.contig = putcon
tig8bitYCbCr44tile; | |
| 2674 break; | |
| 2675 case 0x42: | |
| 2676 img->put.contig = putcon
tig8bitYCbCr42tile; | |
| 2677 break; | |
| 2678 case 0x41: | |
| 2679 img->put.contig = putcon
tig8bitYCbCr41tile; | |
| 2680 break; | |
| 2681 case 0x22: | |
| 2682 img->put.contig = putcon
tig8bitYCbCr22tile; | |
| 2683 break; | |
| 2684 case 0x21: | |
| 2685 img->put.contig = putcon
tig8bitYCbCr21tile; | |
| 2686 break; | |
| 2687 case 0x12: | |
| 2688 img->put.contig = putcon
tig8bitYCbCr12tile; | |
| 2689 break; | |
| 2690 case 0x11: | |
| 2691 img->put.contig = putcon
tig8bitYCbCr11tile; | |
| 2692 break; | |
| 2693 } | |
| 2694 } | |
| 2695 } | |
| 2696 break; | |
| 2697 case PHOTOMETRIC_CIELAB: | |
| 2698 if (buildMap(img)) { | |
| 2699 if (img->bitspersample == 8) | |
| 2700 img->put.contig = initCIELabConversion(i
mg); | |
| 2701 break; | |
| 2702 } | |
| 2703 } | |
| 2704 return ((img->get!=NULL) && (img->put.contig!=NULL)); | |
| 2705 } | |
| 2706 | |
| 2707 /* | |
| 2708 * Select the appropriate conversion routine for unpacked data. | |
| 2709 * | |
| 2710 * NB: we assume that unpacked single channel data is directed | |
| 2711 * to the "packed routines. | |
| 2712 */ | |
| 2713 static int | |
| 2714 PickSeparateCase(TIFFRGBAImage* img) | |
| 2715 { | |
| 2716 img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate; | |
| 2717 img->put.separate = NULL; | |
| 2718 switch (img->photometric) { | |
| 2719 case PHOTOMETRIC_MINISWHITE: | |
| 2720 case PHOTOMETRIC_MINISBLACK: | |
| 2721 /* greyscale images processed pretty much as RGB by gtTileSepara
te */ | |
| 2722 case PHOTOMETRIC_RGB: | |
| 2723 switch (img->bitspersample) { | |
| 2724 case 8: | |
| 2725 if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
| 2726 img->put.separate = putRGBAAseparate8bittile; | |
| 2727 else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
| 2728 { | |
| 2729 if (BuildMapUaToAa(img)) | |
| 2730 img->put.separate = putRGBUAseparate8bit
tile; | |
| 2731 } | |
| 2732 else | |
| 2733 img->put.separate = putRGBseparate8bittile; | |
| 2734 break; | |
| 2735 case 16: | |
| 2736 if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
| 2737 { | |
| 2738 if (BuildMapBitdepth16To8(img)) | |
| 2739 img->put.separate = putRGBAAseparate16bi
ttile; | |
| 2740 } | |
| 2741 else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
| 2742 { | |
| 2743 if (BuildMapBitdepth16To8(img) && | |
| 2744 BuildMapUaToAa(img)) | |
| 2745 img->put.separate = putRGBUAseparate16bi
ttile; | |
| 2746 } | |
| 2747 else | |
| 2748 { | |
| 2749 if (BuildMapBitdepth16To8(img)) | |
| 2750 img->put.separate = putRGBseparate16bitt
ile; | |
| 2751 } | |
| 2752 break; | |
| 2753 } | |
| 2754 break; | |
| 2755 case PHOTOMETRIC_SEPARATED: | |
| 2756 if (img->bitspersample == 8 && img->samplesperpixel == 4) | |
| 2757 { | |
| 2758 img->alpha = 1; // Not alpha, but seems like the only wa
y to get 4th band | |
| 2759 img->put.separate = putCMYKseparate8bittile; | |
| 2760 } | |
| 2761 break; | |
| 2762 case PHOTOMETRIC_YCBCR: | |
| 2763 if ((img->bitspersample==8) && (img->samplesperpixel==3)) | |
| 2764 { | |
| 2765 if (initYCbCrConversion(img)!=0) | |
| 2766 { | |
| 2767 uint16 hs, vs; | |
| 2768 TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUB
SAMPLING, &hs, &vs); | |
| 2769 switch ((hs<<4)|vs) { | |
| 2770 case 0x11: | |
| 2771 img->put.separate = putseparate8bitYCbCr
11tile; | |
| 2772 break; | |
| 2773 /* TODO: add other cases here */ | |
| 2774 } | |
| 2775 } | |
| 2776 } | |
| 2777 break; | |
| 2778 } | |
| 2779 return ((img->get!=NULL) && (img->put.separate!=NULL)); | |
| 2780 } | |
| 2781 | |
| 2782 static int | |
| 2783 BuildMapUaToAa(TIFFRGBAImage* img) | |
| 2784 { | |
| 2785 static const char module[]="BuildMapUaToAa"; | |
| 2786 uint8* m; | |
| 2787 uint16 na,nv; | |
| 2788 assert(img->UaToAa==NULL); | |
| 2789 img->UaToAa=_TIFFmalloc(65536); | |
| 2790 if (img->UaToAa==NULL) | |
| 2791 { | |
| 2792 TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory"); | |
| 2793 return(0); | |
| 2794 } | |
| 2795 m=img->UaToAa; | |
| 2796 for (na=0; na<256; na++) | |
| 2797 { | |
| 2798 for (nv=0; nv<256; nv++) | |
| 2799 *m++=(nv*na+127)/255; | |
| 2800 } | |
| 2801 return(1); | |
| 2802 } | |
| 2803 | |
| 2804 static int | |
| 2805 BuildMapBitdepth16To8(TIFFRGBAImage* img) | |
| 2806 { | |
| 2807 static const char module[]="BuildMapBitdepth16To8"; | |
| 2808 uint8* m; | |
| 2809 uint32 n; | |
| 2810 assert(img->Bitdepth16To8==NULL); | |
| 2811 img->Bitdepth16To8=_TIFFmalloc(65536); | |
| 2812 if (img->Bitdepth16To8==NULL) | |
| 2813 { | |
| 2814 TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory"); | |
| 2815 return(0); | |
| 2816 } | |
| 2817 m=img->Bitdepth16To8; | |
| 2818 for (n=0; n<65536; n++) | |
| 2819 *m++=(n+128)/257; | |
| 2820 return(1); | |
| 2821 } | |
| 2822 | |
| 2823 | |
| 2824 /* | |
| 2825 * Read a whole strip off data from the file, and convert to RGBA form. | |
| 2826 * If this is the last strip, then it will only contain the portion of | |
| 2827 * the strip that is actually within the image space. The result is | |
| 2828 * organized in bottom to top form. | |
| 2829 */ | |
| 2830 | |
| 2831 | |
| 2832 int | |
| 2833 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster ) | |
| 2834 | |
| 2835 { | |
| 2836 char emsg[1024] = ""; | |
| 2837 TIFFRGBAImage img; | |
| 2838 int ok; | |
| 2839 uint32 rowsperstrip, rows_to_read; | |
| 2840 | |
| 2841 if( TIFFIsTiled( tif ) ) | |
| 2842 { | |
| 2843 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
| 2844 "Can't use TIFFReadRGBAStrip() with tiled file."); | |
| 2845 return (0); | |
| 2846 } | |
| 2847 | |
| 2848 TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
| 2849 if( (row % rowsperstrip) != 0 ) | |
| 2850 { | |
| 2851 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
| 2852 "Row passed to TIFFReadRGBAStrip() must be first
in a strip."); | |
| 2853 return (0); | |
| 2854 } | |
| 2855 | |
| 2856 if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, 0, emsg)) { | |
| 2857 | |
| 2858 img.row_offset = row; | |
| 2859 img.col_offset = 0; | |
| 2860 | |
| 2861 if( row + rowsperstrip > img.height ) | |
| 2862 rows_to_read = img.height - row; | |
| 2863 else | |
| 2864 rows_to_read = rowsperstrip; | |
| 2865 | |
| 2866 ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read ); | |
| 2867 | |
| 2868 TIFFRGBAImageEnd(&img); | |
| 2869 } else { | |
| 2870 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg)
; | |
| 2871 ok = 0; | |
| 2872 } | |
| 2873 | |
| 2874 return (ok); | |
| 2875 } | |
| 2876 | |
| 2877 /* | |
| 2878 * Read a whole tile off data from the file, and convert to RGBA form. | |
| 2879 * The returned RGBA data is organized from bottom to top of tile, | |
| 2880 * and may include zeroed areas if the tile extends off the image. | |
| 2881 */ | |
| 2882 | |
| 2883 int | |
| 2884 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster) | |
| 2885 | |
| 2886 { | |
| 2887 char emsg[1024] = ""; | |
| 2888 TIFFRGBAImage img; | |
| 2889 int ok; | |
| 2890 uint32 tile_xsize, tile_ysize; | |
| 2891 uint32 read_xsize, read_ysize; | |
| 2892 uint32 i_row; | |
| 2893 | |
| 2894 /* | |
| 2895 * Verify that our request is legal - on a tile file, and on a | |
| 2896 * tile boundary. | |
| 2897 */ | |
| 2898 | |
| 2899 if( !TIFFIsTiled( tif ) ) | |
| 2900 { | |
| 2901 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
| 2902 "Can't use TIFFReadRGBATile() with stripped fi
le."); | |
| 2903 return (0); | |
| 2904 } | |
| 2905 | |
| 2906 TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize); | |
| 2907 TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize); | |
| 2908 if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 ) | |
| 2909 { | |
| 2910 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
| 2911 "Row/col passed to TIFFReadRGBATile() must be top" | |
| 2912 "left corner of a tile."); | |
| 2913 return (0); | |
| 2914 } | |
| 2915 | |
| 2916 /* | |
| 2917 * Setup the RGBA reader. | |
| 2918 */ | |
| 2919 | |
| 2920 if (!TIFFRGBAImageOK(tif, emsg) | |
| 2921 || !TIFFRGBAImageBegin(&img, tif, 0, emsg)) { | |
| 2922 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); | |
| 2923 return( 0 ); | |
| 2924 } | |
| 2925 | |
| 2926 /* | |
| 2927 * The TIFFRGBAImageGet() function doesn't allow us to get off the | |
| 2928 * edge of the image, even to fill an otherwise valid tile. So we | |
| 2929 * figure out how much we can read, and fix up the tile buffer to | |
| 2930 * a full tile configuration afterwards. | |
| 2931 */ | |
| 2932 | |
| 2933 if( row + tile_ysize > img.height ) | |
| 2934 read_ysize = img.height - row; | |
| 2935 else | |
| 2936 read_ysize = tile_ysize; | |
| 2937 | |
| 2938 if( col + tile_xsize > img.width ) | |
| 2939 read_xsize = img.width - col; | |
| 2940 else | |
| 2941 read_xsize = tile_xsize; | |
| 2942 | |
| 2943 /* | |
| 2944 * Read the chunk of imagery. | |
| 2945 */ | |
| 2946 | |
| 2947 img.row_offset = row; | |
| 2948 img.col_offset = col; | |
| 2949 | |
| 2950 ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize ); | |
| 2951 | |
| 2952 TIFFRGBAImageEnd(&img); | |
| 2953 | |
| 2954 /* | |
| 2955 * If our read was incomplete we will need to fix up the tile by | |
| 2956 * shifting the data around as if a full tile of data is being returned. | |
| 2957 * | |
| 2958 * This is all the more complicated because the image is organized in | |
| 2959 * bottom to top format. | |
| 2960 */ | |
| 2961 | |
| 2962 if( read_xsize == tile_xsize && read_ysize == tile_ysize ) | |
| 2963 return( ok ); | |
| 2964 | |
| 2965 for( i_row = 0; i_row < read_ysize; i_row++ ) { | |
| 2966 memmove( raster + (tile_ysize - i_row - 1) * tile_xsize, | |
| 2967 raster + (read_ysize - i_row - 1) * read_xsize, | |
| 2968 read_xsize * sizeof(uint32) ); | |
| 2969 _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize, | |
| 2970 0, sizeof(uint32) * (tile_xsize - read_xsize) ); | |
| 2971 } | |
| 2972 | |
| 2973 for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) { | |
| 2974 _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize, | |
| 2975 0, sizeof(uint32) * tile_xsize ); | |
| 2976 } | |
| 2977 | |
| 2978 return (ok); | |
| 2979 } | |
| 2980 | |
| 2981 /* vim: set ts=8 sts=8 sw=8 noet: */ | |
| 2982 /* | |
| 2983 * Local Variables: | |
| 2984 * mode: c | |
| 2985 * c-basic-offset: 8 | |
| 2986 * fill-column: 78 | |
| 2987 * End: | |
| 2988 */ | |
| 2989 | |
| OLD | NEW |