| Index: src/gpu/GrTessellator.cpp
|
| diff --git a/src/gpu/batches/GrTessellatingPathRenderer.cpp b/src/gpu/GrTessellator.cpp
|
| similarity index 72%
|
| copy from src/gpu/batches/GrTessellatingPathRenderer.cpp
|
| copy to src/gpu/GrTessellator.cpp
|
| index 27e287e9c6bceb6b48c7e500ef338fcc7b259775..a93b538788f31ff4279587c31dcff624120ff840 100644
|
| --- a/src/gpu/batches/GrTessellatingPathRenderer.cpp
|
| +++ b/src/gpu/GrTessellator.cpp
|
| @@ -5,7 +5,7 @@
|
| * found in the LICENSE file.
|
| */
|
|
|
| -#include "GrTessellatingPathRenderer.h"
|
| +#include "GrTessellator.h"
|
|
|
| #include "GrBatchFlushState.h"
|
| #include "GrBatchTest.h"
|
| @@ -14,7 +14,6 @@
|
| #include "GrVertices.h"
|
| #include "GrResourceCache.h"
|
| #include "GrResourceProvider.h"
|
| -#include "SkChunkAlloc.h"
|
| #include "SkGeometry.h"
|
|
|
| #include "batches/GrVertexBatch.h"
|
| @@ -22,10 +21,6 @@
|
| #include <stdio.h>
|
|
|
| /*
|
| - * This path renderer tessellates the path into triangles, uploads the triangles to a
|
| - * vertex buffer, and renders them with a single draw call. It does not currently do
|
| - * antialiasing, so it must be used in conjunction with multisampling.
|
| - *
|
| * There are six stages to the algorithm:
|
| *
|
| * 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
|
| @@ -80,8 +75,8 @@
|
| * increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
|
| * degrees counterclockwise, rather that transposing.
|
| */
|
| +
|
| #define LOGGING_ENABLED 0
|
| -#define WIREFRAME 0
|
|
|
| #if LOGGING_ENABLED
|
| #define LOG printf
|
| @@ -91,10 +86,93 @@
|
|
|
| #define ALLOC_NEW(Type, args, alloc) new (alloc.allocThrow(sizeof(Type))) Type args
|
|
|
| -namespace {
|
| +namespace GrTessellator {
|
| +
|
| +/**
|
| + * Vertices are used in three ways: first, the path contours are converted into a circularly-linked
|
| + * list of vertices for each contour. After edge construction, the same vertices are re-ordered by
|
| + * the merge sort according to the sweep_lt comparator (usually, increasing in Y) using the same
|
| + * fPrev/fNext pointers that were used for the contours, to avoid reallocation. Finally,
|
| + * MonotonePolys are built containing a circularly-linked list of vertices. Currently, those
|
| + * Vertices are newly-allocated for the MonotonePolys, since an individual vertex from the path mesh
|
| + * may belong to multiple MonotonePolys, so the original vertices cannot be re-used.
|
| + */
|
| +struct Vertex {
|
| + Vertex(const SkPoint& point)
|
| + : fPoint(point), fPrev(nullptr), fNext(nullptr)
|
| + , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
|
| + , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
|
| + , fProcessed(false)
|
| +#if LOGGING_ENABLED
|
| + , fID (-1.0f)
|
| +#endif
|
| + {}
|
| + SkPoint fPoint; // Vertex position
|
| + Vertex* fPrev; // Linked list of contours, then Y-sorted vertices.
|
| + Vertex* fNext; // "
|
| + Edge* fFirstEdgeAbove; // Linked list of edges above this vertex.
|
| + Edge* fLastEdgeAbove; // "
|
| + Edge* fFirstEdgeBelow; // Linked list of edges below this vertex.
|
| + Edge* fLastEdgeBelow; // "
|
| + bool fProcessed; // Has this vertex been seen in simplify()?
|
| +#if LOGGING_ENABLED
|
| + float fID; // Identifier used for logging.
|
| +#endif
|
| +};
|
| +
|
| +double Edge::dist(const SkPoint& p) const {
|
| + return fDY * p.fX - fDX * p.fY + fC;
|
| +}
|
| +
|
| +bool Edge::isRightOf(Vertex* v) const {
|
| + return dist(v->fPoint) < 0.0;
|
| +}
|
| +
|
| +bool Edge::isLeftOf(Vertex* v) const {
|
| + return dist(v->fPoint) > 0.0;
|
| +}
|
| +
|
| +void Edge::recompute() {
|
| + fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
|
| + fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
|
| + fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
|
| + static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
|
| +}
|
| +
|
| +bool Edge::intersect(const Edge& other, SkPoint* p) {
|
| +#if LOGGING_ENABLED
|
| + LOG("intersecting %g -> %g with %g -> %g\n",
|
| + fTop->fID, fBottom->fID,
|
| + other.fTop->fID, other.fBottom->fID);
|
| +#endif
|
| + if (fTop == other.fTop || fBottom == other.fBottom) {
|
| + return false;
|
| + }
|
| + double denom = fDX * other.fDY - fDY * other.fDX;
|
| + if (denom == 0.0) {
|
| + return false;
|
| + }
|
| + double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
|
| + double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
|
| + double sNumer = dy * other.fDX - dx * other.fDY;
|
| + double tNumer = dy * fDX - dx * fDY;
|
| + // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
|
| + // This saves us doing the divide below unless absolutely necessary.
|
| + if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
|
| + : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
|
| + return false;
|
| + }
|
| + double s = sNumer / denom;
|
| + SkASSERT(s >= 0.0 && s <= 1.0);
|
| + p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
|
| + p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
|
| + return true;
|
| +}
|
| +
|
| +bool Edge::isActive(EdgeList* activeEdges) const {
|
| + return activeEdges && (fLeft || fRight || activeEdges->fHead == this);
|
| +}
|
|
|
| -struct Vertex;
|
| -struct Edge;
|
| struct Poly;
|
|
|
| template <class T, T* T::*Prev, T* T::*Next>
|
| @@ -128,40 +206,6 @@ void remove(T* t, T** head, T** tail) {
|
| t->*Prev = t->*Next = nullptr;
|
| }
|
|
|
| -/**
|
| - * Vertices are used in three ways: first, the path contours are converted into a
|
| - * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
|
| - * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
|
| - * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
|
| - * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
|
| - * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
|
| - * an individual Vertex from the path mesh may belong to multiple
|
| - * MonotonePolys, so the original Vertices cannot be re-used.
|
| - */
|
| -
|
| -struct Vertex {
|
| - Vertex(const SkPoint& point)
|
| - : fPoint(point), fPrev(nullptr), fNext(nullptr)
|
| - , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
|
| - , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
|
| - , fProcessed(false)
|
| -#if LOGGING_ENABLED
|
| - , fID (-1.0f)
|
| -#endif
|
| - {}
|
| - SkPoint fPoint; // Vertex position
|
| - Vertex* fPrev; // Linked list of contours, then Y-sorted vertices.
|
| - Vertex* fNext; // "
|
| - Edge* fFirstEdgeAbove; // Linked list of edges above this vertex.
|
| - Edge* fLastEdgeAbove; // "
|
| - Edge* fFirstEdgeBelow; // Linked list of edges below this vertex.
|
| - Edge* fLastEdgeBelow; // "
|
| - bool fProcessed; // Has this vertex been seen in simplify()?
|
| -#if LOGGING_ENABLED
|
| - float fID; // Identifier used for logging.
|
| -#endif
|
| -};
|
| -
|
| /***************************************************************************************/
|
|
|
| typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
|
| @@ -193,7 +237,7 @@ inline SkPoint* emit_vertex(Vertex* v, SkPoint* data) {
|
| }
|
|
|
| SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) {
|
| -#if WIREFRAME
|
| +#if TESSELLATOR_WIREFRAME
|
| data = emit_vertex(v0, data);
|
| data = emit_vertex(v1, data);
|
| data = emit_vertex(v1, data);
|
| @@ -208,12 +252,6 @@ SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) {
|
| return data;
|
| }
|
|
|
| -struct EdgeList {
|
| - EdgeList() : fHead(nullptr), fTail(nullptr) {}
|
| - Edge* fHead;
|
| - Edge* fTail;
|
| -};
|
| -
|
| /**
|
| * An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
|
| * "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
|
| @@ -232,82 +270,6 @@ struct EdgeList {
|
| * this file).
|
| */
|
|
|
| -struct Edge {
|
| - Edge(Vertex* top, Vertex* bottom, int winding)
|
| - : fWinding(winding)
|
| - , fTop(top)
|
| - , fBottom(bottom)
|
| - , fLeft(nullptr)
|
| - , fRight(nullptr)
|
| - , fPrevEdgeAbove(nullptr)
|
| - , fNextEdgeAbove(nullptr)
|
| - , fPrevEdgeBelow(nullptr)
|
| - , fNextEdgeBelow(nullptr)
|
| - , fLeftPoly(nullptr)
|
| - , fRightPoly(nullptr) {
|
| - recompute();
|
| - }
|
| - int fWinding; // 1 == edge goes downward; -1 = edge goes upward.
|
| - Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt).
|
| - Vertex* fBottom; // The bottom vertex in vertex-sort-order.
|
| - Edge* fLeft; // The linked list of edges in the active edge list.
|
| - Edge* fRight; // "
|
| - Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above".
|
| - Edge* fNextEdgeAbove; // "
|
| - Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below".
|
| - Edge* fNextEdgeBelow; // "
|
| - Poly* fLeftPoly; // The Poly to the left of this edge, if any.
|
| - Poly* fRightPoly; // The Poly to the right of this edge, if any.
|
| - double fDX; // The line equation for this edge, in implicit form.
|
| - double fDY; // fDY * x + fDX * y + fC = 0, for point (x, y) on the line.
|
| - double fC;
|
| - double dist(const SkPoint& p) const {
|
| - return fDY * p.fX - fDX * p.fY + fC;
|
| - }
|
| - bool isRightOf(Vertex* v) const {
|
| - return dist(v->fPoint) < 0.0;
|
| - }
|
| - bool isLeftOf(Vertex* v) const {
|
| - return dist(v->fPoint) > 0.0;
|
| - }
|
| - void recompute() {
|
| - fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
|
| - fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
|
| - fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
|
| - static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
|
| - }
|
| - bool intersect(const Edge& other, SkPoint* p) {
|
| - LOG("intersecting %g -> %g with %g -> %g\n",
|
| - fTop->fID, fBottom->fID,
|
| - other.fTop->fID, other.fBottom->fID);
|
| - if (fTop == other.fTop || fBottom == other.fBottom) {
|
| - return false;
|
| - }
|
| - double denom = fDX * other.fDY - fDY * other.fDX;
|
| - if (denom == 0.0) {
|
| - return false;
|
| - }
|
| - double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
|
| - double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
|
| - double sNumer = dy * other.fDX - dx * other.fDY;
|
| - double tNumer = dy * fDX - dx * fDY;
|
| - // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
|
| - // This saves us doing the divide below unless absolutely necessary.
|
| - if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
|
| - : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
|
| - return false;
|
| - }
|
| - double s = sNumer / denom;
|
| - SkASSERT(s >= 0.0 && s <= 1.0);
|
| - p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
|
| - p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
|
| - return true;
|
| - }
|
| - bool isActive(EdgeList* activeEdges) const {
|
| - return activeEdges && (fLeft || fRight || activeEdges->fHead == this);
|
| - }
|
| -};
|
| -
|
| /***************************************************************************************/
|
|
|
| struct Poly {
|
| @@ -361,7 +323,7 @@ struct Poly {
|
| return done;
|
| }
|
|
|
| - SkPoint* emit(SkPoint* data) {
|
| + SkPoint* emit(int winding, SkPoint* data) {
|
| Vertex* first = fHead;
|
| Vertex* v = first->fNext;
|
| while (v != fTail) {
|
| @@ -435,7 +397,7 @@ struct Poly {
|
| }
|
| LOG("emit() %d, size %d\n", fID, fCount);
|
| for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
|
| - data = m->emit(data);
|
| + data = m->emit(fWinding, data);
|
| }
|
| return data;
|
| }
|
| @@ -465,8 +427,8 @@ Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
|
| return poly;
|
| }
|
|
|
| -Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
|
| - SkChunkAlloc& alloc) {
|
| +Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev,
|
| + Vertex** head, SkChunkAlloc& alloc) {
|
| Vertex* v = ALLOC_NEW(Vertex, (p), alloc);
|
| #if LOGGING_ENABLED
|
| static float gID = 0.0f;
|
| @@ -541,7 +503,6 @@ Vertex* generate_cubic_points(const SkPoint& p0,
|
|
|
| void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
|
| Vertex** contours, SkChunkAlloc& alloc, bool *isLinear) {
|
| -
|
| SkScalar toleranceSqd = tolerance * tolerance;
|
|
|
| SkPoint pts[4];
|
| @@ -850,7 +811,8 @@ void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
|
| }
|
| }
|
|
|
| -void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc);
|
| +void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c,
|
| + SkChunkAlloc& alloc);
|
|
|
| void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
|
| Vertex* top = edge->fTop;
|
| @@ -921,7 +883,7 @@ void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkCh
|
| remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, nullptr);
|
| }
|
|
|
| -Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
|
| +Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
|
| SkChunkAlloc& alloc) {
|
| SkPoint p;
|
| if (!edge || !other) {
|
| @@ -1151,7 +1113,7 @@ void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
|
| }
|
| }
|
| } else {
|
| - if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
|
| + if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
|
| &activeEdges, c, alloc)) {
|
| if (c.sweep_lt(pv->fPoint, v->fPoint)) {
|
| v = pv;
|
| @@ -1293,7 +1255,15 @@ Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
|
|
|
| // This is a driver function which calls stages 2-5 in turn.
|
|
|
| -Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
|
| +Poly* contours_to_polys(Vertex** contours, int contourCnt, SkRect pathBounds, SkChunkAlloc& alloc) {
|
| + Comparator c;
|
| + if (pathBounds.width() > pathBounds.height()) {
|
| + c.sweep_lt = sweep_lt_horiz;
|
| + c.sweep_gt = sweep_gt_horiz;
|
| + } else {
|
| + c.sweep_lt = sweep_lt_vert;
|
| + c.sweep_gt = sweep_gt_vert;
|
| + }
|
| #if LOGGING_ENABLED
|
| for (int i = 0; i < contourCnt; ++i) {
|
| Vertex* v = contours[i];
|
| @@ -1323,349 +1293,120 @@ Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChun
|
| return tessellate(vertices, alloc);
|
| }
|
|
|
| -// Stage 6: Triangulate the monotone polygons into a vertex buffer.
|
| -
|
| -SkPoint* polys_to_triangles(Poly* polys, SkPath::FillType fillType, SkPoint* data) {
|
| - SkPoint* d = data;
|
| - for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| - if (apply_fill_type(fillType, poly->fWinding)) {
|
| - d = poly->emit(d);
|
| - }
|
| +Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
|
| + bool* isLinear) {
|
| + int contourCnt;
|
| + int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tolerance);
|
| + if (maxPts <= 0) {
|
| + return nullptr;
|
| }
|
| - return d;
|
| -}
|
| -
|
| -struct TessInfo {
|
| - SkScalar fTolerance;
|
| - int fCount;
|
| -};
|
| -
|
| -bool cache_match(GrVertexBuffer* vertexBuffer, SkScalar tol, int* actualCount) {
|
| - if (!vertexBuffer) {
|
| - return false;
|
| + if (maxPts > ((int)SK_MaxU16 + 1)) {
|
| + SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
|
| + return nullptr;
|
| }
|
| - const SkData* data = vertexBuffer->getUniqueKey().getCustomData();
|
| - SkASSERT(data);
|
| - const TessInfo* info = static_cast<const TessInfo*>(data->data());
|
| - if (info->fTolerance == 0 || info->fTolerance < 3.0f * tol) {
|
| - *actualCount = info->fCount;
|
| - return true;
|
| + SkPath::FillType fillType = path.getFillType();
|
| + if (SkPath::IsInverseFillType(fillType)) {
|
| + contourCnt++;
|
| }
|
| - return false;
|
| -}
|
| -
|
| -};
|
| + SkAutoTDeleteArray<Vertex*> contours(new Vertex* [contourCnt]);
|
|
|
| -GrTessellatingPathRenderer::GrTessellatingPathRenderer() {
|
| + // For the initial size of the chunk allocator, estimate based on the point count:
|
| + // one vertex per point for the initial passes, plus two for the vertices in the
|
| + // resulting Polys, since the same point may end up in two Polys. Assume minimal
|
| + // connectivity of one Edge per Vertex (will grow for intersections).
|
| + SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge)));
|
| + path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
|
| + return contours_to_polys(contours.get(), contourCnt, path.getBounds(), alloc);
|
| }
|
|
|
| -namespace {
|
| -
|
| -// When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
|
| -class PathInvalidator : public SkPathRef::GenIDChangeListener {
|
| -public:
|
| - explicit PathInvalidator(const GrUniqueKey& key) : fMsg(key) {}
|
| -private:
|
| - GrUniqueKeyInvalidatedMessage fMsg;
|
| +// Stage 6: Triangulate the monotone polygons into a vertex buffer.
|
|
|
| - void onChange() override {
|
| - SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg);
|
| +int PathToTriangles(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
|
| + GrResourceProvider* resourceProvider,
|
| + SkAutoTUnref<GrVertexBuffer>& vertexBuffer, bool canMapVB, bool* isLinear) {
|
| + Poly* polys = path_to_polys(path, tolerance, clipBounds, isLinear);
|
| + SkPath::FillType fillType = path.getFillType();
|
| + int count = 0;
|
| + for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| + if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
|
| + count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
|
| + }
|
| }
|
| -};
|
| -
|
| -} // namespace
|
| -
|
| -bool GrTessellatingPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
|
| - // This path renderer can draw all fill styles, all stroke styles except hairlines, but does
|
| - // not do antialiasing. It can do convex and concave paths, but we'll leave the convex ones to
|
| - // simpler algorithms.
|
| - return !IsStrokeHairlineOrEquivalent(*args.fStroke, *args.fViewMatrix, nullptr) &&
|
| - !args.fAntiAlias && !args.fPath->isConvex();
|
| -}
|
| -
|
| -class TessellatingPathBatch : public GrVertexBatch {
|
| -public:
|
| - DEFINE_BATCH_CLASS_ID
|
| -
|
| - static GrDrawBatch* Create(const GrColor& color,
|
| - const SkPath& path,
|
| - const GrStrokeInfo& stroke,
|
| - const SkMatrix& viewMatrix,
|
| - SkRect clipBounds) {
|
| - return new TessellatingPathBatch(color, path, stroke, viewMatrix, clipBounds);
|
| + if (0 == count) {
|
| + return 0;
|
| }
|
|
|
| - const char* name() const override { return "TessellatingPathBatch"; }
|
| -
|
| - void computePipelineOptimizations(GrInitInvariantOutput* color,
|
| - GrInitInvariantOutput* coverage,
|
| - GrBatchToXPOverrides* overrides) const override {
|
| - color->setKnownFourComponents(fColor);
|
| - coverage->setUnknownSingleComponent();
|
| - overrides->fUsePLSDstRead = false;
|
| + size_t size = count * sizeof(SkPoint);
|
| + if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) {
|
| + vertexBuffer.reset(resourceProvider->createVertexBuffer(
|
| + size, GrResourceProvider::kStatic_BufferUsage, 0));
|
| }
|
| -
|
| -private:
|
| - void initBatchTracker(const GrXPOverridesForBatch& overrides) override {
|
| - // Handle any color overrides
|
| - if (!overrides.readsColor()) {
|
| - fColor = GrColor_ILLEGAL;
|
| - }
|
| - overrides.getOverrideColorIfSet(&fColor);
|
| - fPipelineInfo = overrides;
|
| - }
|
| -
|
| - int tessellate(GrUniqueKey* key,
|
| - GrResourceProvider* resourceProvider,
|
| - SkAutoTUnref<GrVertexBuffer>& vertexBuffer,
|
| - bool canMapVB) const {
|
| - SkPath path;
|
| - GrStrokeInfo stroke(fStroke);
|
| - if (stroke.isDashed()) {
|
| - if (!stroke.applyDashToPath(&path, &stroke, fPath)) {
|
| - return 0;
|
| - }
|
| - } else {
|
| - path = fPath;
|
| - }
|
| - if (!stroke.isFillStyle()) {
|
| - stroke.setResScale(SkScalarAbs(fViewMatrix.getMaxScale()));
|
| - if (!stroke.applyToPath(&path, path)) {
|
| - return 0;
|
| - }
|
| - stroke.setFillStyle();
|
| - }
|
| - SkRect pathBounds = path.getBounds();
|
| - Comparator c;
|
| - if (pathBounds.width() > pathBounds.height()) {
|
| - c.sweep_lt = sweep_lt_horiz;
|
| - c.sweep_gt = sweep_gt_horiz;
|
| - } else {
|
| - c.sweep_lt = sweep_lt_vert;
|
| - c.sweep_gt = sweep_gt_vert;
|
| - }
|
| - SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance;
|
| - SkScalar tol = GrPathUtils::scaleToleranceToSrc(screenSpaceTol, fViewMatrix, pathBounds);
|
| - int contourCnt;
|
| - int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tol);
|
| - if (maxPts <= 0) {
|
| - return 0;
|
| - }
|
| - if (maxPts > ((int)SK_MaxU16 + 1)) {
|
| - SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
|
| - return 0;
|
| - }
|
| - SkPath::FillType fillType = path.getFillType();
|
| - if (SkPath::IsInverseFillType(fillType)) {
|
| - contourCnt++;
|
| - }
|
| -
|
| - LOG("got %d pts, %d contours\n", maxPts, contourCnt);
|
| - SkAutoTDeleteArray<Vertex*> contours(new Vertex* [contourCnt]);
|
| -
|
| - // For the initial size of the chunk allocator, estimate based on the point count:
|
| - // one vertex per point for the initial passes, plus two for the vertices in the
|
| - // resulting Polys, since the same point may end up in two Polys. Assume minimal
|
| - // connectivity of one Edge per Vertex (will grow for intersections).
|
| - SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge)));
|
| - bool isLinear;
|
| - path_to_contours(path, tol, fClipBounds, contours.get(), alloc, &isLinear);
|
| - Poly* polys;
|
| - polys = contours_to_polys(contours.get(), contourCnt, c, alloc);
|
| - int count = 0;
|
| - for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| - if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
|
| - count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3);
|
| - }
|
| - }
|
| - if (0 == count) {
|
| - return 0;
|
| - }
|
| -
|
| - size_t size = count * sizeof(SkPoint);
|
| - if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) {
|
| - vertexBuffer.reset(resourceProvider->createVertexBuffer(
|
| - size, GrResourceProvider::kStatic_BufferUsage, 0));
|
| - }
|
| - if (!vertexBuffer.get()) {
|
| - SkDebugf("Could not allocate vertices\n");
|
| - return 0;
|
| - }
|
| - SkPoint* verts;
|
| - if (canMapVB) {
|
| - verts = static_cast<SkPoint*>(vertexBuffer->map());
|
| - } else {
|
| - verts = new SkPoint[count];
|
| - }
|
| - SkPoint* end = polys_to_triangles(polys, fillType, verts);
|
| - int actualCount = static_cast<int>(end - verts);
|
| - LOG("actual count: %d\n", actualCount);
|
| - SkASSERT(actualCount <= count);
|
| - if (canMapVB) {
|
| - vertexBuffer->unmap();
|
| - } else {
|
| - vertexBuffer->updateData(verts, actualCount * sizeof(SkPoint));
|
| - delete[] verts;
|
| - }
|
| -
|
| -
|
| - if (!fPath.isVolatile()) {
|
| - TessInfo info;
|
| - info.fTolerance = isLinear ? 0 : tol;
|
| - info.fCount = actualCount;
|
| - SkAutoTUnref<SkData> data(SkData::NewWithCopy(&info, sizeof(info)));
|
| - key->setCustomData(data.get());
|
| - resourceProvider->assignUniqueKeyToResource(*key, vertexBuffer.get());
|
| - SkPathPriv::AddGenIDChangeListener(fPath, new PathInvalidator(*key));
|
| - }
|
| - return actualCount;
|
| - }
|
| -
|
| - void onPrepareDraws(Target* target) const override {
|
| - // construct a cache key from the path's genID and the view matrix
|
| - static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
|
| - GrUniqueKey key;
|
| - int clipBoundsSize32 =
|
| - fPath.isInverseFillType() ? sizeof(fClipBounds) / sizeof(uint32_t) : 0;
|
| - int strokeDataSize32 = fStroke.computeUniqueKeyFragmentData32Cnt();
|
| - GrUniqueKey::Builder builder(&key, kDomain, 2 + clipBoundsSize32 + strokeDataSize32);
|
| - builder[0] = fPath.getGenerationID();
|
| - builder[1] = fPath.getFillType();
|
| - // For inverse fills, the tessellation is dependent on clip bounds.
|
| - if (fPath.isInverseFillType()) {
|
| - memcpy(&builder[2], &fClipBounds, sizeof(fClipBounds));
|
| - }
|
| - fStroke.asUniqueKeyFragment(&builder[2 + clipBoundsSize32]);
|
| - builder.finish();
|
| - GrResourceProvider* rp = target->resourceProvider();
|
| - SkAutoTUnref<GrVertexBuffer> vertexBuffer(rp->findAndRefTByUniqueKey<GrVertexBuffer>(key));
|
| - int actualCount;
|
| - SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance;
|
| - SkScalar tol = GrPathUtils::scaleToleranceToSrc(
|
| - screenSpaceTol, fViewMatrix, fPath.getBounds());
|
| - if (!cache_match(vertexBuffer.get(), tol, &actualCount)) {
|
| - bool canMapVB = GrCaps::kNone_MapFlags != target->caps().mapBufferFlags();
|
| - actualCount = this->tessellate(&key, rp, vertexBuffer, canMapVB);
|
| - }
|
| -
|
| - if (actualCount == 0) {
|
| - return;
|
| + if (!vertexBuffer.get()) {
|
| + SkDebugf("Could not allocate vertices\n");
|
| + return 0;
|
| + }
|
| + SkPoint* verts;
|
| + if (canMapVB) {
|
| + verts = static_cast<SkPoint*>(vertexBuffer->map());
|
| + } else {
|
| + verts = new SkPoint[count];
|
| + }
|
| + SkPoint* end = verts;
|
| + for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| + if (apply_fill_type(fillType, poly->fWinding)) {
|
| + end = poly->emit(end);
|
| }
|
| + }
|
| + int actualCount = static_cast<int>(end - verts);
|
| + LOG("actual count: %d\n", actualCount);
|
| + SkASSERT(actualCount <= count);
|
| + if (canMapVB) {
|
| + vertexBuffer->unmap();
|
| + } else {
|
| + vertexBuffer->updateData(verts, actualCount * sizeof(SkPoint));
|
| + delete[] verts;
|
| + }
|
|
|
| - SkAutoTUnref<const GrGeometryProcessor> gp;
|
| - {
|
| - using namespace GrDefaultGeoProcFactory;
|
| -
|
| - Color color(fColor);
|
| - LocalCoords localCoords(fPipelineInfo.readsLocalCoords() ?
|
| - LocalCoords::kUsePosition_Type :
|
| - LocalCoords::kUnused_Type);
|
| - Coverage::Type coverageType;
|
| - if (fPipelineInfo.readsCoverage()) {
|
| - coverageType = Coverage::kSolid_Type;
|
| - } else {
|
| - coverageType = Coverage::kNone_Type;
|
| - }
|
| - Coverage coverage(coverageType);
|
| - gp.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords,
|
| - fViewMatrix));
|
| - }
|
| + return actualCount;
|
| +}
|
|
|
| - target->initDraw(gp, this->pipeline());
|
| - SkASSERT(gp->getVertexStride() == sizeof(SkPoint));
|
| -
|
| - GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType
|
| - : kTriangles_GrPrimitiveType;
|
| - GrVertices vertices;
|
| - vertices.init(primitiveType, vertexBuffer.get(), 0, actualCount);
|
| - target->draw(vertices);
|
| - }
|
| -
|
| - bool onCombineIfPossible(GrBatch*, const GrCaps&) override { return false; }
|
| -
|
| - TessellatingPathBatch(const GrColor& color,
|
| - const SkPath& path,
|
| - const GrStrokeInfo& stroke,
|
| - const SkMatrix& viewMatrix,
|
| - const SkRect& clipBounds)
|
| - : INHERITED(ClassID())
|
| - , fColor(color)
|
| - , fPath(path)
|
| - , fStroke(stroke)
|
| - , fViewMatrix(viewMatrix) {
|
| - const SkRect& pathBounds = path.getBounds();
|
| - fClipBounds = clipBounds;
|
| - // Because the clip bounds are used to add a contour for inverse fills, they must also
|
| - // include the path bounds.
|
| - fClipBounds.join(pathBounds);
|
| - if (path.isInverseFillType()) {
|
| - fBounds = fClipBounds;
|
| - } else {
|
| - fBounds = path.getBounds();
|
| - }
|
| - if (!stroke.isFillStyle()) {
|
| - SkScalar radius = SkScalarHalf(stroke.getWidth());
|
| - if (stroke.getJoin() == SkPaint::kMiter_Join) {
|
| - SkScalar scale = stroke.getMiter();
|
| - if (scale > SK_Scalar1) {
|
| - radius = SkScalarMul(radius, scale);
|
| - }
|
| - }
|
| - fBounds.outset(radius, radius);
|
| +int PathToVertices(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
|
| + WindingVertex** verts) {
|
| + bool isLinear;
|
| + Poly* polys = path_to_polys(path, tolerance, clipBounds, &isLinear);
|
| + SkPath::FillType fillType = path.getFillType();
|
| + int count = 0;
|
| + for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| + if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
|
| + count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
|
| }
|
| - viewMatrix.mapRect(&fBounds);
|
| }
|
| -
|
| - GrColor fColor;
|
| - SkPath fPath;
|
| - GrStrokeInfo fStroke;
|
| - SkMatrix fViewMatrix;
|
| - SkRect fClipBounds; // in source space
|
| - GrXPOverridesForBatch fPipelineInfo;
|
| -
|
| - typedef GrVertexBatch INHERITED;
|
| -};
|
| -
|
| -bool GrTessellatingPathRenderer::onDrawPath(const DrawPathArgs& args) {
|
| - SkASSERT(!args.fAntiAlias);
|
| - const GrRenderTarget* rt = args.fPipelineBuilder->getRenderTarget();
|
| - if (nullptr == rt) {
|
| - return false;
|
| + if (0 == count) {
|
| + *verts = nullptr;
|
| + return 0;
|
| }
|
|
|
| - SkIRect clipBoundsI;
|
| - args.fPipelineBuilder->clip().getConservativeBounds(rt->width(), rt->height(), &clipBoundsI);
|
| - SkRect clipBounds = SkRect::Make(clipBoundsI);
|
| - SkMatrix vmi;
|
| - if (!args.fViewMatrix->invert(&vmi)) {
|
| - return false;
|
| + *verts = new WindingVertex[count];
|
| + WindingVertex* vertsEnd = *verts;
|
| + SkPoint* points = new SkPoint[count];
|
| + SkPoint* pointsEnd = points;
|
| + for (Poly* poly = polys; poly; poly = poly->fNext) {
|
| + if (apply_fill_type(fillType, poly->fWinding)) {
|
| + SkPoint* start = pointsEnd;
|
| + pointsEnd = poly->emit(pointsEnd);
|
| + while (start != pointsEnd) {
|
| + vertsEnd->fPos = *start;
|
| + vertsEnd->fWinding = poly->fWinding;
|
| + ++start;
|
| + ++vertsEnd;
|
| + }
|
| + }
|
| }
|
| - vmi.mapRect(&clipBounds);
|
| - SkAutoTUnref<GrDrawBatch> batch(TessellatingPathBatch::Create(args.fColor, *args.fPath,
|
| - *args.fStroke, *args.fViewMatrix,
|
| - clipBounds));
|
| - args.fTarget->drawBatch(*args.fPipelineBuilder, batch);
|
| -
|
| - return true;
|
| + int actualCount = static_cast<int>(vertsEnd - *verts);
|
| + SkASSERT(actualCount <= count);
|
| + SkASSERT(pointsEnd - points == actualCount);
|
| + delete[] points;
|
| + return actualCount;
|
| }
|
|
|
| -///////////////////////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -#ifdef GR_TEST_UTILS
|
| -
|
| -DRAW_BATCH_TEST_DEFINE(TesselatingPathBatch) {
|
| - GrColor color = GrRandomColor(random);
|
| - SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random);
|
| - SkPath path = GrTest::TestPath(random);
|
| - SkRect clipBounds = GrTest::TestRect(random);
|
| - SkMatrix vmi;
|
| - bool result = viewMatrix.invert(&vmi);
|
| - if (!result) {
|
| - SkFAIL("Cannot invert matrix\n");
|
| - }
|
| - vmi.mapRect(&clipBounds);
|
| - GrStrokeInfo strokeInfo = GrTest::TestStrokeInfo(random);
|
| - return TessellatingPathBatch::Create(color, path, strokeInfo, viewMatrix, clipBounds);
|
| }
|
| -
|
| -#endif
|
|
|