Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(828)

Unified Diff: src/gpu/GrTessellator.cpp

Issue 1557083002: Broke GrTessellatingPathRenderer's tessellator out into a separate file. (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 4 years, 12 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: src/gpu/GrTessellator.cpp
diff --git a/src/gpu/batches/GrTessellatingPathRenderer.cpp b/src/gpu/GrTessellator.cpp
similarity index 63%
copy from src/gpu/batches/GrTessellatingPathRenderer.cpp
copy to src/gpu/GrTessellator.cpp
index 27e287e9c6bceb6b48c7e500ef338fcc7b259775..fdf19676ed927cbf2af47ff0711c7ec0643e78cb 100644
--- a/src/gpu/batches/GrTessellatingPathRenderer.cpp
+++ b/src/gpu/GrTessellator.cpp
@@ -5,7 +5,7 @@
* found in the LICENSE file.
*/
-#include "GrTessellatingPathRenderer.h"
+#include "GrTessellator.h"
#include "GrBatchFlushState.h"
#include "GrBatchTest.h"
@@ -14,7 +14,6 @@
#include "GrVertices.h"
#include "GrResourceCache.h"
#include "GrResourceProvider.h"
-#include "SkChunkAlloc.h"
#include "SkGeometry.h"
#include "batches/GrVertexBatch.h"
@@ -22,10 +21,6 @@
#include <stdio.h>
/*
- * This path renderer tessellates the path into triangles, uploads the triangles to a
- * vertex buffer, and renders them with a single draw call. It does not currently do
- * antialiasing, so it must be used in conjunction with multisampling.
- *
* There are six stages to the algorithm:
*
* 1) Linearize the path contours into piecewise linear segments (path_to_contours()).
@@ -80,10 +75,8 @@
* increasing in Y; edges to the right are decreasing in Y). That is, the setting rotates 90
* degrees counterclockwise, rather that transposing.
*/
-#define LOGGING_ENABLED 0
Stephen White 2016/01/04 22:51:19 If we do manage to keep Vertex and friends in the
-#define WIREFRAME 0
-#if LOGGING_ENABLED
+#if TESSELLATOR_LOGGING_ENABLED
#define LOG printf
#else
#define LOG(...)
@@ -91,10 +84,59 @@
#define ALLOC_NEW(Type, args, alloc) new (alloc.allocThrow(sizeof(Type))) Type args
-namespace {
+double Edge::dist(const SkPoint& p) const {
+ return fDY * p.fX - fDX * p.fY + fC;
+}
+
+bool Edge::isRightOf(TessellatorVertex* v) const {
+ return dist(v->fPoint) < 0.0;
+}
+
+bool Edge::isLeftOf(TessellatorVertex* v) const {
+ return dist(v->fPoint) > 0.0;
+}
+
+void Edge::recompute() {
+ fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
+ fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
+ fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
+ static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
+}
+
+bool Edge::intersect(const Edge& other, SkPoint* p) {
+#if TESSELLATOR_LOGGING_ENABLED
+ LOG("intersecting %g -> %g with %g -> %g\n",
+ fTop->fID, fBottom->fID,
+ other.fTop->fID, other.fBottom->fID);
+#endif
+ if (fTop == other.fTop || fBottom == other.fBottom) {
+ return false;
+ }
+ double denom = fDX * other.fDY - fDY * other.fDX;
+ if (denom == 0.0) {
+ return false;
+ }
+ double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
+ double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
+ double sNumer = dy * other.fDX - dx * other.fDY;
+ double tNumer = dy * fDX - dx * fDY;
+ // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
+ // This saves us doing the divide below unless absolutely necessary.
+ if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
+ : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
+ return false;
+ }
+ double s = sNumer / denom;
+ SkASSERT(s >= 0.0 && s <= 1.0);
+ p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
+ p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
+ return true;
+}
+
+bool Edge::isActive(EdgeList* activeEdges) const {
+ return activeEdges && (fLeft || fRight || activeEdges->fHead == this);
+}
-struct Vertex;
-struct Edge;
struct Poly;
template <class T, T* T::*Prev, T* T::*Next>
@@ -128,40 +170,6 @@ void remove(T* t, T** head, T** tail) {
t->*Prev = t->*Next = nullptr;
}
-/**
- * Vertices are used in three ways: first, the path contours are converted into a
- * circularly-linked list of Vertices for each contour. After edge construction, the same Vertices
- * are re-ordered by the merge sort according to the sweep_lt comparator (usually, increasing
- * in Y) using the same fPrev/fNext pointers that were used for the contours, to avoid
- * reallocation. Finally, MonotonePolys are built containing a circularly-linked list of
- * Vertices. (Currently, those Vertices are newly-allocated for the MonotonePolys, since
- * an individual Vertex from the path mesh may belong to multiple
- * MonotonePolys, so the original Vertices cannot be re-used.
- */
-
-struct Vertex {
- Vertex(const SkPoint& point)
- : fPoint(point), fPrev(nullptr), fNext(nullptr)
- , fFirstEdgeAbove(nullptr), fLastEdgeAbove(nullptr)
- , fFirstEdgeBelow(nullptr), fLastEdgeBelow(nullptr)
- , fProcessed(false)
-#if LOGGING_ENABLED
- , fID (-1.0f)
-#endif
- {}
- SkPoint fPoint; // Vertex position
- Vertex* fPrev; // Linked list of contours, then Y-sorted vertices.
- Vertex* fNext; // "
- Edge* fFirstEdgeAbove; // Linked list of edges above this vertex.
- Edge* fLastEdgeAbove; // "
- Edge* fFirstEdgeBelow; // Linked list of edges below this vertex.
- Edge* fLastEdgeBelow; // "
- bool fProcessed; // Has this vertex been seen in simplify()?
-#if LOGGING_ENABLED
- float fID; // Identifier used for logging.
-#endif
-};
-
/***************************************************************************************/
typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b);
@@ -187,13 +195,14 @@ bool sweep_gt_vert(const SkPoint& a, const SkPoint& b) {
return a.fY == b.fY ? a.fX > b.fX : a.fY > b.fY;
}
-inline SkPoint* emit_vertex(Vertex* v, SkPoint* data) {
+inline SkPoint* emit_vertex(TessellatorVertex* v, SkPoint* data) {
*data++ = v->fPoint;
return data;
}
-SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) {
-#if WIREFRAME
+SkPoint* emit_triangle(TessellatorVertex* v0, TessellatorVertex* v1, TessellatorVertex* v2,
+ SkPoint* data) {
+#if TESSELLATOR_WIREFRAME
data = emit_vertex(v0, data);
data = emit_vertex(v1, data);
data = emit_vertex(v1, data);
@@ -208,12 +217,6 @@ SkPoint* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, SkPoint* data) {
return data;
}
-struct EdgeList {
- EdgeList() : fHead(nullptr), fTail(nullptr) {}
- Edge* fHead;
- Edge* fTail;
-};
-
/**
* An Edge joins a top Vertex to a bottom Vertex. Edge ordering for the list of "edges above" and
* "edge below" a vertex as well as for the active edge list is handled by isLeftOf()/isRightOf().
@@ -232,82 +235,6 @@ struct EdgeList {
* this file).
*/
-struct Edge {
- Edge(Vertex* top, Vertex* bottom, int winding)
- : fWinding(winding)
- , fTop(top)
- , fBottom(bottom)
- , fLeft(nullptr)
- , fRight(nullptr)
- , fPrevEdgeAbove(nullptr)
- , fNextEdgeAbove(nullptr)
- , fPrevEdgeBelow(nullptr)
- , fNextEdgeBelow(nullptr)
- , fLeftPoly(nullptr)
- , fRightPoly(nullptr) {
- recompute();
- }
- int fWinding; // 1 == edge goes downward; -1 = edge goes upward.
- Vertex* fTop; // The top vertex in vertex-sort-order (sweep_lt).
- Vertex* fBottom; // The bottom vertex in vertex-sort-order.
- Edge* fLeft; // The linked list of edges in the active edge list.
- Edge* fRight; // "
- Edge* fPrevEdgeAbove; // The linked list of edges in the bottom Vertex's "edges above".
- Edge* fNextEdgeAbove; // "
- Edge* fPrevEdgeBelow; // The linked list of edges in the top Vertex's "edges below".
- Edge* fNextEdgeBelow; // "
- Poly* fLeftPoly; // The Poly to the left of this edge, if any.
- Poly* fRightPoly; // The Poly to the right of this edge, if any.
- double fDX; // The line equation for this edge, in implicit form.
- double fDY; // fDY * x + fDX * y + fC = 0, for point (x, y) on the line.
- double fC;
- double dist(const SkPoint& p) const {
- return fDY * p.fX - fDX * p.fY + fC;
- }
- bool isRightOf(Vertex* v) const {
- return dist(v->fPoint) < 0.0;
- }
- bool isLeftOf(Vertex* v) const {
- return dist(v->fPoint) > 0.0;
- }
- void recompute() {
- fDX = static_cast<double>(fBottom->fPoint.fX) - fTop->fPoint.fX;
- fDY = static_cast<double>(fBottom->fPoint.fY) - fTop->fPoint.fY;
- fC = static_cast<double>(fTop->fPoint.fY) * fBottom->fPoint.fX -
- static_cast<double>(fTop->fPoint.fX) * fBottom->fPoint.fY;
- }
- bool intersect(const Edge& other, SkPoint* p) {
- LOG("intersecting %g -> %g with %g -> %g\n",
- fTop->fID, fBottom->fID,
- other.fTop->fID, other.fBottom->fID);
- if (fTop == other.fTop || fBottom == other.fBottom) {
- return false;
- }
- double denom = fDX * other.fDY - fDY * other.fDX;
- if (denom == 0.0) {
- return false;
- }
- double dx = static_cast<double>(fTop->fPoint.fX) - other.fTop->fPoint.fX;
- double dy = static_cast<double>(fTop->fPoint.fY) - other.fTop->fPoint.fY;
- double sNumer = dy * other.fDX - dx * other.fDY;
- double tNumer = dy * fDX - dx * fDY;
- // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early.
- // This saves us doing the divide below unless absolutely necessary.
- if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom)
- : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) {
- return false;
- }
- double s = sNumer / denom;
- SkASSERT(s >= 0.0 && s <= 1.0);
- p->fX = SkDoubleToScalar(fTop->fPoint.fX + s * fDX);
- p->fY = SkDoubleToScalar(fTop->fPoint.fY + s * fDY);
- return true;
- }
- bool isActive(EdgeList* activeEdges) const {
- return activeEdges && (fLeft || fRight || activeEdges->fHead == this);
- }
-};
-
/***************************************************************************************/
struct Poly {
@@ -320,7 +247,7 @@ struct Poly {
, fPartner(nullptr)
, fCount(0)
{
-#if LOGGING_ENABLED
+#if TESSELLATOR_LOGGING_ENABLED
static int gID = 0;
fID = gID++;
LOG("*** created Poly %d\n", fID);
@@ -335,12 +262,12 @@ struct Poly {
, fPrev(nullptr)
, fNext(nullptr) {}
Side fSide;
- Vertex* fHead;
- Vertex* fTail;
+ TessellatorVertex* fHead;
+ TessellatorVertex* fTail;
MonotonePoly* fPrev;
MonotonePoly* fNext;
- bool addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
- Vertex* newV = ALLOC_NEW(Vertex, (v->fPoint), alloc);
+ bool addVertex(TessellatorVertex* v, Side side, SkChunkAlloc& alloc) {
+ TessellatorVertex* newV = ALLOC_NEW(TessellatorVertex, (v->fPoint), alloc);
bool done = false;
if (fSide == kNeither_Side) {
fSide = side;
@@ -361,14 +288,14 @@ struct Poly {
return done;
}
- SkPoint* emit(SkPoint* data) {
- Vertex* first = fHead;
- Vertex* v = first->fNext;
+ SkPoint* emit(int winding, SkPoint* data) {
+ TessellatorVertex* first = fHead;
+ TessellatorVertex* v = first->fNext;
while (v != fTail) {
SkASSERT(v && v->fPrev && v->fNext);
- Vertex* prev = v->fPrev;
- Vertex* curr = v;
- Vertex* next = v->fNext;
+ TessellatorVertex* prev = v->fPrev;
+ TessellatorVertex* curr = v;
+ TessellatorVertex* next = v->fNext;
double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX;
double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY;
double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX;
@@ -389,7 +316,7 @@ struct Poly {
return data;
}
};
- Poly* addVertex(Vertex* v, Side side, SkChunkAlloc& alloc) {
+ Poly* addVertex(TessellatorVertex* v, Side side, SkChunkAlloc& alloc) {
LOG("addVertex() to %d at %g (%g, %g), %s side\n", fID, v->fID, v->fPoint.fX, v->fPoint.fY,
side == kLeft_Side ? "left" : side == kRight_Side ? "right" : "neither");
Poly* partner = fPartner;
@@ -412,7 +339,7 @@ struct Poly {
partner->addVertex(v, side, alloc);
poly = partner;
} else {
- Vertex* prev = fActive->fSide == Poly::kLeft_Side ?
+ TessellatorVertex* prev = fActive->fSide == Poly::kLeft_Side ?
fActive->fHead->fNext : fActive->fTail->fPrev;
fActive = ALLOC_NEW(MonotonePoly, , alloc);
fActive->addVertex(prev, Poly::kNeither_Side, alloc);
@@ -422,7 +349,7 @@ struct Poly {
fCount++;
return poly;
}
- void end(Vertex* v, SkChunkAlloc& alloc) {
+ void end(TessellatorVertex* v, SkChunkAlloc& alloc) {
LOG("end() %d at %g, %g\n", fID, v->fPoint.fX, v->fPoint.fY);
if (fPartner) {
fPartner = fPartner->fPartner = nullptr;
@@ -435,7 +362,7 @@ struct Poly {
}
LOG("emit() %d, size %d\n", fID, fCount);
for (MonotonePoly* m = fHead; m != nullptr; m = m->fNext) {
- data = m->emit(data);
+ data = m->emit(fWinding, data);
}
return data;
}
@@ -446,7 +373,7 @@ struct Poly {
Poly* fNext;
Poly* fPartner;
int fCount;
-#if LOGGING_ENABLED
+#if TESSELLATOR_LOGGING_ENABLED
int fID;
#endif
};
@@ -457,7 +384,7 @@ bool coincident(const SkPoint& a, const SkPoint& b) {
return a == b;
}
-Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
+Poly* new_poly(Poly** head, TessellatorVertex* v, int winding, SkChunkAlloc& alloc) {
Poly* poly = ALLOC_NEW(Poly, (winding), alloc);
poly->addVertex(v, Poly::kNeither_Side, alloc);
poly->fNext = *head;
@@ -465,10 +392,10 @@ Poly* new_poly(Poly** head, Vertex* v, int winding, SkChunkAlloc& alloc) {
return poly;
}
-Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
- SkChunkAlloc& alloc) {
- Vertex* v = ALLOC_NEW(Vertex, (p), alloc);
-#if LOGGING_ENABLED
+TessellatorVertex* append_point_to_contour(const SkPoint& p, TessellatorVertex* prev,
+ TessellatorVertex** head, SkChunkAlloc& alloc) {
+ TessellatorVertex* v = ALLOC_NEW(TessellatorVertex, (p), alloc);
+#if TESSELLATOR_LOGGING_ENABLED
static float gID = 0.0f;
v->fID = gID++;
#endif
@@ -481,14 +408,14 @@ Vertex* append_point_to_contour(const SkPoint& p, Vertex* prev, Vertex** head,
return v;
}
-Vertex* generate_quadratic_points(const SkPoint& p0,
- const SkPoint& p1,
- const SkPoint& p2,
- SkScalar tolSqd,
- Vertex* prev,
- Vertex** head,
- int pointsLeft,
- SkChunkAlloc& alloc) {
+TessellatorVertex* generate_quadratic_points(const SkPoint& p0,
+ const SkPoint& p1,
+ const SkPoint& p2,
+ SkScalar tolSqd,
+ TessellatorVertex* prev,
+ TessellatorVertex** head,
+ int pointsLeft,
+ SkChunkAlloc& alloc) {
SkScalar d = p1.distanceToLineSegmentBetweenSqd(p0, p2);
if (pointsLeft < 2 || d < tolSqd || !SkScalarIsFinite(d)) {
return append_point_to_contour(p2, prev, head, alloc);
@@ -506,15 +433,15 @@ Vertex* generate_quadratic_points(const SkPoint& p0,
return prev;
}
-Vertex* generate_cubic_points(const SkPoint& p0,
- const SkPoint& p1,
- const SkPoint& p2,
- const SkPoint& p3,
- SkScalar tolSqd,
- Vertex* prev,
- Vertex** head,
- int pointsLeft,
- SkChunkAlloc& alloc) {
+TessellatorVertex* generate_cubic_points(const SkPoint& p0,
+ const SkPoint& p1,
+ const SkPoint& p2,
+ const SkPoint& p3,
+ SkScalar tolSqd,
+ TessellatorVertex* prev,
+ TessellatorVertex** head,
+ int pointsLeft,
+ SkChunkAlloc& alloc) {
SkScalar d1 = p1.distanceToLineSegmentBetweenSqd(p0, p3);
SkScalar d2 = p2.distanceToLineSegmentBetweenSqd(p0, p3);
if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) ||
@@ -540,16 +467,15 @@ Vertex* generate_cubic_points(const SkPoint& p0,
// Stage 1: convert the input path to a set of linear contours (linked list of Vertices).
void path_to_contours(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
- Vertex** contours, SkChunkAlloc& alloc, bool *isLinear) {
-
+ TessellatorVertex** contours, SkChunkAlloc& alloc, bool *isLinear) {
SkScalar toleranceSqd = tolerance * tolerance;
SkPoint pts[4];
bool done = false;
*isLinear = true;
SkPath::Iter iter(path, false);
- Vertex* prev = nullptr;
- Vertex* head = nullptr;
+ TessellatorVertex* prev = nullptr;
+ TessellatorVertex* head = nullptr;
if (path.isInverseFillType()) {
SkPoint quad[4];
clipBounds.toQuad(quad);
@@ -640,10 +566,11 @@ inline bool apply_fill_type(SkPath::FillType fillType, int winding) {
}
}
-Edge* new_edge(Vertex* prev, Vertex* next, SkChunkAlloc& alloc, Comparator& c) {
+Edge* new_edge(TessellatorVertex* prev, TessellatorVertex* next, SkChunkAlloc& alloc,
+ Comparator& c) {
int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1;
- Vertex* top = winding < 0 ? next : prev;
- Vertex* bottom = winding < 0 ? prev : next;
+ TessellatorVertex* top = winding < 0 ? next : prev;
+ TessellatorVertex* bottom = winding < 0 ? prev : next;
return ALLOC_NEW(Edge, (top, bottom, winding), alloc);
}
@@ -660,7 +587,7 @@ void insert_edge(Edge* edge, Edge* prev, EdgeList* edges) {
insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &edges->fHead, &edges->fTail);
}
-void find_enclosing_edges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) {
+void find_enclosing_edges(TessellatorVertex* v, EdgeList* edges, Edge** left, Edge** right) {
if (v->fFirstEdgeAbove) {
*left = v->fFirstEdgeAbove->fLeft;
*right = v->fLastEdgeAbove->fRight;
@@ -711,7 +638,7 @@ void fix_active_state(Edge* edge, EdgeList* activeEdges, Comparator& c) {
}
}
-void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
+void insert_edge_above(Edge* edge, TessellatorVertex* v, Comparator& c) {
if (edge->fTop->fPoint == edge->fBottom->fPoint ||
c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
return;
@@ -729,7 +656,7 @@ void insert_edge_above(Edge* edge, Vertex* v, Comparator& c) {
edge, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove);
}
-void insert_edge_below(Edge* edge, Vertex* v, Comparator& c) {
+void insert_edge_below(Edge* edge, TessellatorVertex* v, Comparator& c) {
if (edge->fTop->fPoint == edge->fBottom->fPoint ||
c.sweep_gt(edge->fTop->fPoint, edge->fBottom->fPoint)) {
return;
@@ -775,7 +702,7 @@ void erase_edge_if_zero_winding(Edge* edge, EdgeList* edges) {
void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c);
-void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
+void set_top(Edge* edge, TessellatorVertex* v, EdgeList* activeEdges, Comparator& c) {
remove_edge_below(edge);
edge->fTop = v;
edge->recompute();
@@ -784,7 +711,7 @@ void set_top(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
merge_collinear_edges(edge, activeEdges, c);
}
-void set_bottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c) {
+void set_bottom(Edge* edge, TessellatorVertex* v, EdgeList* activeEdges, Comparator& c) {
remove_edge_above(edge);
edge->fBottom = v;
edge->recompute();
@@ -850,14 +777,15 @@ void merge_collinear_edges(Edge* edge, EdgeList* activeEdges, Comparator& c) {
}
}
-void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc);
+void split_edge(Edge* edge, TessellatorVertex* v, EdgeList* activeEdges, Comparator& c,
+ SkChunkAlloc& alloc);
void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
- Vertex* top = edge->fTop;
- Vertex* bottom = edge->fBottom;
+ TessellatorVertex* top = edge->fTop;
+ TessellatorVertex* bottom = edge->fBottom;
if (edge->fLeft) {
- Vertex* leftTop = edge->fLeft->fTop;
- Vertex* leftBottom = edge->fLeft->fBottom;
+ TessellatorVertex* leftTop = edge->fLeft->fTop;
+ TessellatorVertex* leftBottom = edge->fLeft->fBottom;
if (c.sweep_gt(top->fPoint, leftTop->fPoint) && !edge->fLeft->isLeftOf(top)) {
split_edge(edge->fLeft, edge->fTop, activeEdges, c, alloc);
} else if (c.sweep_gt(leftTop->fPoint, top->fPoint) && !edge->isRightOf(leftTop)) {
@@ -870,8 +798,8 @@ void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkCh
}
}
if (edge->fRight) {
- Vertex* rightTop = edge->fRight->fTop;
- Vertex* rightBottom = edge->fRight->fBottom;
+ TessellatorVertex* rightTop = edge->fRight->fTop;
+ TessellatorVertex* rightBottom = edge->fRight->fBottom;
if (c.sweep_gt(top->fPoint, rightTop->fPoint) && !edge->fRight->isRightOf(top)) {
split_edge(edge->fRight, top, activeEdges, c, alloc);
} else if (c.sweep_gt(rightTop->fPoint, top->fPoint) && !edge->isLeftOf(rightTop)) {
@@ -886,7 +814,8 @@ void cleanup_active_edges(Edge* edge, EdgeList* activeEdges, Comparator& c, SkCh
}
}
-void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkChunkAlloc& alloc) {
+void split_edge(Edge* edge, TessellatorVertex* v, EdgeList* activeEdges, Comparator& c,
+ SkChunkAlloc& alloc) {
LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n",
edge->fTop->fID, edge->fBottom->fID,
v->fID, v->fPoint.fX, v->fPoint.fY);
@@ -905,7 +834,8 @@ void split_edge(Edge* edge, Vertex* v, EdgeList* activeEdges, Comparator& c, SkC
}
}
-void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkChunkAlloc& alloc) {
+void merge_vertices(TessellatorVertex* src, TessellatorVertex* dst, TessellatorVertex** head,
+ Comparator& c, SkChunkAlloc& alloc) {
LOG("found coincident verts at %g, %g; merging %g into %g\n", src->fPoint.fX, src->fPoint.fY,
src->fID, dst->fID);
for (Edge* edge = src->fFirstEdgeAbove; edge;) {
@@ -918,17 +848,18 @@ void merge_vertices(Vertex* src, Vertex* dst, Vertex** head, Comparator& c, SkCh
set_top(edge, dst, nullptr, c);
edge = next;
}
- remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(src, head, nullptr);
+ remove<TessellatorVertex, &TessellatorVertex::fPrev, &TessellatorVertex::fNext>(src, head,
+ nullptr);
}
-Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, Comparator& c,
- SkChunkAlloc& alloc) {
+TessellatorVertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges,
+ Comparator& c, SkChunkAlloc& alloc) {
SkPoint p;
if (!edge || !other) {
return nullptr;
}
if (edge->intersect(*other, &p)) {
- Vertex* v;
+ TessellatorVertex* v;
LOG("found intersection, pt is %g, %g\n", p.fX, p.fY);
if (p == edge->fTop->fPoint || c.sweep_lt(p, edge->fTop->fPoint)) {
split_edge(other, edge->fTop, activeEdges, c, alloc);
@@ -943,24 +874,24 @@ Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, C
split_edge(edge, other->fBottom, activeEdges, c, alloc);
v = other->fBottom;
} else {
- Vertex* nextV = edge->fTop;
+ TessellatorVertex* nextV = edge->fTop;
while (c.sweep_lt(p, nextV->fPoint)) {
nextV = nextV->fPrev;
}
while (c.sweep_lt(nextV->fPoint, p)) {
nextV = nextV->fNext;
}
- Vertex* prevV = nextV->fPrev;
+ TessellatorVertex* prevV = nextV->fPrev;
if (coincident(prevV->fPoint, p)) {
v = prevV;
} else if (coincident(nextV->fPoint, p)) {
v = nextV;
} else {
- v = ALLOC_NEW(Vertex, (p), alloc);
+ v = ALLOC_NEW(TessellatorVertex, (p), alloc);
LOG("inserting between %g (%g, %g) and %g (%g, %g)\n",
prevV->fID, prevV->fPoint.fX, prevV->fPoint.fY,
nextV->fID, nextV->fPoint.fX, nextV->fPoint.fY);
-#if LOGGING_ENABLED
+#if TESSELLATOR_LOGGING_ENABLED
v->fID = (nextV->fID + prevV->fID) * 0.5f;
#endif
v->fPrev = prevV;
@@ -976,10 +907,10 @@ Vertex* check_for_intersection(Edge* edge, Edge* other, EdgeList* activeEdges, C
return nullptr;
}
-void sanitize_contours(Vertex** contours, int contourCnt) {
+void sanitize_contours(TessellatorVertex** contours, int contourCnt) {
for (int i = 0; i < contourCnt; ++i) {
SkASSERT(contours[i]);
- for (Vertex* v = contours[i];;) {
+ for (TessellatorVertex* v = contours[i];;) {
if (coincident(v->fPrev->fPoint, v->fPoint)) {
LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY);
if (v->fPrev == v) {
@@ -1000,8 +931,8 @@ void sanitize_contours(Vertex** contours, int contourCnt) {
}
}
-void merge_coincident_vertices(Vertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
- for (Vertex* v = (*vertices)->fNext; v != nullptr; v = v->fNext) {
+void merge_coincident_vertices(TessellatorVertex** vertices, Comparator& c, SkChunkAlloc& alloc) {
+ for (TessellatorVertex* v = (*vertices)->fNext; v != nullptr; v = v->fNext) {
if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) {
v->fPoint = v->fPrev->fPoint;
}
@@ -1013,12 +944,13 @@ void merge_coincident_vertices(Vertex** vertices, Comparator& c, SkChunkAlloc& a
// Stage 2: convert the contours to a mesh of edges connecting the vertices.
-Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
- Vertex* vertices = nullptr;
- Vertex* prev = nullptr;
+TessellatorVertex* build_edges(TessellatorVertex** contours, int contourCnt, Comparator& c,
+ SkChunkAlloc& alloc) {
+ TessellatorVertex* vertices = nullptr;
+ TessellatorVertex* prev = nullptr;
for (int i = 0; i < contourCnt; ++i) {
- for (Vertex* v = contours[i]; v != nullptr;) {
- Vertex* vNext = v->fNext;
+ for (TessellatorVertex* v = contours[i]; v != nullptr;) {
+ TessellatorVertex* vNext = v->fNext;
Edge* edge = new_edge(v->fPrev, v, alloc, c);
if (edge->fWinding > 0) {
insert_edge_below(edge, v->fPrev, c);
@@ -1047,11 +979,11 @@ Vertex* build_edges(Vertex** contours, int contourCnt, Comparator& c, SkChunkAll
// Stage 3: sort the vertices by increasing sweep direction.
-Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c);
+TessellatorVertex* sorted_merge(TessellatorVertex* a, TessellatorVertex* b, Comparator& c);
-void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
- Vertex* fast;
- Vertex* slow;
+void front_back_split(TessellatorVertex* v, TessellatorVertex** pFront, TessellatorVertex** pBack) {
+ TessellatorVertex* fast;
+ TessellatorVertex* slow;
if (!v || !v->fNext) {
*pFront = v;
*pBack = nullptr;
@@ -1074,13 +1006,13 @@ void front_back_split(Vertex* v, Vertex** pFront, Vertex** pBack) {
}
}
-void merge_sort(Vertex** head, Comparator& c) {
+void merge_sort(TessellatorVertex** head, Comparator& c) {
if (!*head || !(*head)->fNext) {
return;
}
- Vertex* a;
- Vertex* b;
+ TessellatorVertex* a;
+ TessellatorVertex* b;
front_back_split(*head, &a, &b);
merge_sort(&a, c);
@@ -1089,25 +1021,31 @@ void merge_sort(Vertex** head, Comparator& c) {
*head = sorted_merge(a, b, c);
}
-inline void append_vertex(Vertex* v, Vertex** head, Vertex** tail) {
- insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, nullptr, head, tail);
+inline void append_vertex(TessellatorVertex* v, TessellatorVertex** head,
+ TessellatorVertex** tail) {
+ insert<TessellatorVertex, &TessellatorVertex::fPrev, &TessellatorVertex::fNext>(v, *tail,
+ nullptr, head,
+ tail);
}
-inline void append_vertex_list(Vertex* v, Vertex** head, Vertex** tail) {
- insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, *tail, v->fNext, head, tail);
+inline void append_vertex_list(TessellatorVertex* v, TessellatorVertex** head,
+ TessellatorVertex** tail) {
+ insert<TessellatorVertex, &TessellatorVertex::fPrev, &TessellatorVertex::fNext>(v, *tail,
+ v->fNext, head,
+ tail);
}
-Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c) {
- Vertex* head = nullptr;
- Vertex* tail = nullptr;
+TessellatorVertex* sorted_merge(TessellatorVertex* a, TessellatorVertex* b, Comparator& c) {
+ TessellatorVertex* head = nullptr;
+ TessellatorVertex* tail = nullptr;
while (a && b) {
if (c.sweep_lt(a->fPoint, b->fPoint)) {
- Vertex* next = a->fNext;
+ TessellatorVertex* next = a->fNext;
append_vertex(a, &head, &tail);
a = next;
} else {
- Vertex* next = b->fNext;
+ TessellatorVertex* next = b->fNext;
append_vertex(b, &head, &tail);
b = next;
}
@@ -1123,14 +1061,14 @@ Vertex* sorted_merge(Vertex* a, Vertex* b, Comparator& c) {
// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges.
-void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
+void simplify(TessellatorVertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
LOG("simplifying complex polygons\n");
EdgeList activeEdges;
- for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
+ for (TessellatorVertex* v = vertices; v != nullptr; v = v->fNext) {
if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
continue;
}
-#if LOGGING_ENABLED
+#if TESSELLATOR_LOGGING_ENABLED
LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
#endif
Edge* leftEnclosingEdge = nullptr;
@@ -1151,8 +1089,9 @@ void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
}
}
} else {
- if (Vertex* pv = check_for_intersection(leftEnclosingEdge, rightEnclosingEdge,
- &activeEdges, c, alloc)) {
+ if (TessellatorVertex* pv = check_for_intersection(leftEnclosingEdge,
+ rightEnclosingEdge, &activeEdges,
+ c, alloc)) {
if (c.sweep_lt(pv->fPoint, v->fPoint)) {
v = pv;
}
@@ -1175,15 +1114,15 @@ void simplify(Vertex* vertices, Comparator& c, SkChunkAlloc& alloc) {
// Stage 5: Tessellate the simplified mesh into monotone polygons.
-Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
+Poly* tessellate(TessellatorVertex* vertices, SkChunkAlloc& alloc) {
LOG("tessellating simple polygons\n");
EdgeList activeEdges;
Poly* polys = nullptr;
- for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
+ for (TessellatorVertex* v = vertices; v != nullptr; v = v->fNext) {
if (!v->fFirstEdgeAbove && !v->fFirstEdgeBelow) {
continue;
}
-#if LOGGING_ENABLED
+#if TESSELLATOR_LOGGING_ENABLED
LOG("\nvertex %g: (%g,%g)\n", v->fID, v->fPoint.fX, v->fPoint.fY);
#endif
Edge* leftEnclosingEdge = nullptr;
@@ -1198,7 +1137,7 @@ Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr;
rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr;
}
-#if LOGGING_ENABLED
+#if TESSELLATOR_LOGGING_ENABLED
LOG("edges above:\n");
for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) {
LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
@@ -1280,7 +1219,7 @@ Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
}
v->fLastEdgeBelow->fRightPoly = rightPoly;
}
-#if LOGGING_ENABLED
+#if TESSELLATOR_LOGGING_ENABLED
LOG("\nactive edges:\n");
for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) {
LOG("%g -> %g, lpoly %d, rpoly %d\n", e->fTop->fID, e->fBottom->fID,
@@ -1293,10 +1232,19 @@ Poly* tessellate(Vertex* vertices, SkChunkAlloc& alloc) {
// This is a driver function which calls stages 2-5 in turn.
-Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChunkAlloc& alloc) {
-#if LOGGING_ENABLED
+Poly* contours_to_polys(TessellatorVertex** contours, int contourCnt, SkRect pathBounds,
+ SkChunkAlloc& alloc) {
+ Comparator c;
+ if (pathBounds.width() > pathBounds.height()) {
+ c.sweep_lt = sweep_lt_horiz;
+ c.sweep_gt = sweep_gt_horiz;
+ } else {
+ c.sweep_lt = sweep_lt_vert;
+ c.sweep_gt = sweep_gt_vert;
+ }
+#if TESSELLATOR_LOGGING_ENABLED
for (int i = 0; i < contourCnt; ++i) {
- Vertex* v = contours[i];
+ TessellatorVertex* v = contours[i];
SkASSERT(v);
LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY);
for (v = v->fNext; v != contours[i]; v = v->fNext) {
@@ -1305,7 +1253,7 @@ Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChun
}
#endif
sanitize_contours(contours, contourCnt);
- Vertex* vertices = build_edges(contours, contourCnt, c, alloc);
+ TessellatorVertex* vertices = build_edges(contours, contourCnt, c, alloc);
if (!vertices) {
return nullptr;
}
@@ -1313,8 +1261,8 @@ Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChun
// Sort vertices in Y (secondarily in X).
merge_sort(&vertices, c);
merge_coincident_vertices(&vertices, c, alloc);
-#if LOGGING_ENABLED
- for (Vertex* v = vertices; v != nullptr; v = v->fNext) {
+#if TESSELLATOR_LOGGING_ENABLED
+ for (TessellatorVertex* v = vertices; v != nullptr; v = v->fNext) {
static float gID = 0.0f;
v->fID = gID++;
}
@@ -1323,349 +1271,113 @@ Poly* contours_to_polys(Vertex** contours, int contourCnt, Comparator& c, SkChun
return tessellate(vertices, alloc);
}
-// Stage 6: Triangulate the monotone polygons into a vertex buffer.
-
-SkPoint* polys_to_triangles(Poly* polys, SkPath::FillType fillType, SkPoint* data) {
- SkPoint* d = data;
- for (Poly* poly = polys; poly; poly = poly->fNext) {
- if (apply_fill_type(fillType, poly->fWinding)) {
- d = poly->emit(d);
- }
+Poly* path_to_polys(const SkPath& path, SkScalar tolerance, const SkRect& clipBounds,
+ bool* isLinear) {
+ int contourCnt;
+ int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tolerance);
+ if (maxPts <= 0) {
+ return nullptr;
}
- return d;
-}
-
-struct TessInfo {
- SkScalar fTolerance;
- int fCount;
-};
-
-bool cache_match(GrVertexBuffer* vertexBuffer, SkScalar tol, int* actualCount) {
- if (!vertexBuffer) {
- return false;
+ if (maxPts > ((int)SK_MaxU16 + 1)) {
+ SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
+ return nullptr;
}
- const SkData* data = vertexBuffer->getUniqueKey().getCustomData();
- SkASSERT(data);
- const TessInfo* info = static_cast<const TessInfo*>(data->data());
- if (info->fTolerance == 0 || info->fTolerance < 3.0f * tol) {
- *actualCount = info->fCount;
- return true;
+ SkPath::FillType fillType = path.getFillType();
+ if (SkPath::IsInverseFillType(fillType)) {
+ contourCnt++;
}
- return false;
-}
-
-};
+ SkAutoTDeleteArray<TessellatorVertex*> contours(new TessellatorVertex* [contourCnt]);
-GrTessellatingPathRenderer::GrTessellatingPathRenderer() {
+ // For the initial size of the chunk allocator, estimate based on the point count:
+ // one vertex per point for the initial passes, plus two for the vertices in the
+ // resulting Polys, since the same point may end up in two Polys. Assume minimal
+ // connectivity of one Edge per TessellatorVertex (will grow for intersections).
+ SkChunkAlloc alloc(maxPts * (3 * sizeof(TessellatorVertex) + sizeof(Edge)));
+ path_to_contours(path, tolerance, clipBounds, contours.get(), alloc, isLinear);
+ return contours_to_polys(contours.get(), contourCnt, path.getBounds(), alloc);
}
-namespace {
-
-// When the SkPathRef genID changes, invalidate a corresponding GrResource described by key.
-class PathInvalidator : public SkPathRef::GenIDChangeListener {
-public:
- explicit PathInvalidator(const GrUniqueKey& key) : fMsg(key) {}
-private:
- GrUniqueKeyInvalidatedMessage fMsg;
+// Stage 6: Triangulate the monotone polygons into a vertex buffer.
- void onChange() override {
- SkMessageBus<GrUniqueKeyInvalidatedMessage>::Post(fMsg);
+int polys_to_triangles(Poly* polys, SkPath::FillType fillType, bool isLinear,
+ GrResourceProvider* resourceProvider,
+ SkAutoTUnref<GrVertexBuffer>& vertexBuffer, bool canMapVB) {
+ int count = 0;
+ for (Poly* poly = polys; poly; poly = poly->fNext) {
+ if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
+ count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
+ }
}
-};
-
-} // namespace
-
-bool GrTessellatingPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const {
- // This path renderer can draw all fill styles, all stroke styles except hairlines, but does
- // not do antialiasing. It can do convex and concave paths, but we'll leave the convex ones to
- // simpler algorithms.
- return !IsStrokeHairlineOrEquivalent(*args.fStroke, *args.fViewMatrix, nullptr) &&
- !args.fAntiAlias && !args.fPath->isConvex();
-}
-
-class TessellatingPathBatch : public GrVertexBatch {
-public:
- DEFINE_BATCH_CLASS_ID
-
- static GrDrawBatch* Create(const GrColor& color,
- const SkPath& path,
- const GrStrokeInfo& stroke,
- const SkMatrix& viewMatrix,
- SkRect clipBounds) {
- return new TessellatingPathBatch(color, path, stroke, viewMatrix, clipBounds);
+ if (0 == count) {
+ return 0;
}
- const char* name() const override { return "TessellatingPathBatch"; }
-
- void computePipelineOptimizations(GrInitInvariantOutput* color,
- GrInitInvariantOutput* coverage,
- GrBatchToXPOverrides* overrides) const override {
- color->setKnownFourComponents(fColor);
- coverage->setUnknownSingleComponent();
- overrides->fUsePLSDstRead = false;
+ size_t size = count * sizeof(SkPoint);
+ if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) {
+ vertexBuffer.reset(resourceProvider->createVertexBuffer(
+ size, GrResourceProvider::kStatic_BufferUsage, 0));
}
-
-private:
- void initBatchTracker(const GrXPOverridesForBatch& overrides) override {
- // Handle any color overrides
- if (!overrides.readsColor()) {
- fColor = GrColor_ILLEGAL;
- }
- overrides.getOverrideColorIfSet(&fColor);
- fPipelineInfo = overrides;
- }
-
- int tessellate(GrUniqueKey* key,
- GrResourceProvider* resourceProvider,
- SkAutoTUnref<GrVertexBuffer>& vertexBuffer,
- bool canMapVB) const {
- SkPath path;
- GrStrokeInfo stroke(fStroke);
- if (stroke.isDashed()) {
- if (!stroke.applyDashToPath(&path, &stroke, fPath)) {
- return 0;
- }
- } else {
- path = fPath;
- }
- if (!stroke.isFillStyle()) {
- stroke.setResScale(SkScalarAbs(fViewMatrix.getMaxScale()));
- if (!stroke.applyToPath(&path, path)) {
- return 0;
- }
- stroke.setFillStyle();
- }
- SkRect pathBounds = path.getBounds();
- Comparator c;
- if (pathBounds.width() > pathBounds.height()) {
- c.sweep_lt = sweep_lt_horiz;
- c.sweep_gt = sweep_gt_horiz;
- } else {
- c.sweep_lt = sweep_lt_vert;
- c.sweep_gt = sweep_gt_vert;
- }
- SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance;
- SkScalar tol = GrPathUtils::scaleToleranceToSrc(screenSpaceTol, fViewMatrix, pathBounds);
- int contourCnt;
- int maxPts = GrPathUtils::worstCasePointCount(path, &contourCnt, tol);
- if (maxPts <= 0) {
- return 0;
- }
- if (maxPts > ((int)SK_MaxU16 + 1)) {
- SkDebugf("Path not rendered, too many verts (%d)\n", maxPts);
- return 0;
- }
- SkPath::FillType fillType = path.getFillType();
- if (SkPath::IsInverseFillType(fillType)) {
- contourCnt++;
- }
-
- LOG("got %d pts, %d contours\n", maxPts, contourCnt);
- SkAutoTDeleteArray<Vertex*> contours(new Vertex* [contourCnt]);
-
- // For the initial size of the chunk allocator, estimate based on the point count:
- // one vertex per point for the initial passes, plus two for the vertices in the
- // resulting Polys, since the same point may end up in two Polys. Assume minimal
- // connectivity of one Edge per Vertex (will grow for intersections).
- SkChunkAlloc alloc(maxPts * (3 * sizeof(Vertex) + sizeof(Edge)));
- bool isLinear;
- path_to_contours(path, tol, fClipBounds, contours.get(), alloc, &isLinear);
- Poly* polys;
- polys = contours_to_polys(contours.get(), contourCnt, c, alloc);
- int count = 0;
- for (Poly* poly = polys; poly; poly = poly->fNext) {
- if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
- count += (poly->fCount - 2) * (WIREFRAME ? 6 : 3);
- }
- }
- if (0 == count) {
- return 0;
- }
-
- size_t size = count * sizeof(SkPoint);
- if (!vertexBuffer.get() || vertexBuffer->gpuMemorySize() < size) {
- vertexBuffer.reset(resourceProvider->createVertexBuffer(
- size, GrResourceProvider::kStatic_BufferUsage, 0));
- }
- if (!vertexBuffer.get()) {
- SkDebugf("Could not allocate vertices\n");
- return 0;
- }
- SkPoint* verts;
- if (canMapVB) {
- verts = static_cast<SkPoint*>(vertexBuffer->map());
- } else {
- verts = new SkPoint[count];
- }
- SkPoint* end = polys_to_triangles(polys, fillType, verts);
- int actualCount = static_cast<int>(end - verts);
- LOG("actual count: %d\n", actualCount);
- SkASSERT(actualCount <= count);
- if (canMapVB) {
- vertexBuffer->unmap();
- } else {
- vertexBuffer->updateData(verts, actualCount * sizeof(SkPoint));
- delete[] verts;
- }
-
-
- if (!fPath.isVolatile()) {
- TessInfo info;
- info.fTolerance = isLinear ? 0 : tol;
- info.fCount = actualCount;
- SkAutoTUnref<SkData> data(SkData::NewWithCopy(&info, sizeof(info)));
- key->setCustomData(data.get());
- resourceProvider->assignUniqueKeyToResource(*key, vertexBuffer.get());
- SkPathPriv::AddGenIDChangeListener(fPath, new PathInvalidator(*key));
- }
- return actualCount;
- }
-
- void onPrepareDraws(Target* target) const override {
- // construct a cache key from the path's genID and the view matrix
- static const GrUniqueKey::Domain kDomain = GrUniqueKey::GenerateDomain();
- GrUniqueKey key;
- int clipBoundsSize32 =
- fPath.isInverseFillType() ? sizeof(fClipBounds) / sizeof(uint32_t) : 0;
- int strokeDataSize32 = fStroke.computeUniqueKeyFragmentData32Cnt();
- GrUniqueKey::Builder builder(&key, kDomain, 2 + clipBoundsSize32 + strokeDataSize32);
- builder[0] = fPath.getGenerationID();
- builder[1] = fPath.getFillType();
- // For inverse fills, the tessellation is dependent on clip bounds.
- if (fPath.isInverseFillType()) {
- memcpy(&builder[2], &fClipBounds, sizeof(fClipBounds));
- }
- fStroke.asUniqueKeyFragment(&builder[2 + clipBoundsSize32]);
- builder.finish();
- GrResourceProvider* rp = target->resourceProvider();
- SkAutoTUnref<GrVertexBuffer> vertexBuffer(rp->findAndRefTByUniqueKey<GrVertexBuffer>(key));
- int actualCount;
- SkScalar screenSpaceTol = GrPathUtils::kDefaultTolerance;
- SkScalar tol = GrPathUtils::scaleToleranceToSrc(
- screenSpaceTol, fViewMatrix, fPath.getBounds());
- if (!cache_match(vertexBuffer.get(), tol, &actualCount)) {
- bool canMapVB = GrCaps::kNone_MapFlags != target->caps().mapBufferFlags();
- actualCount = this->tessellate(&key, rp, vertexBuffer, canMapVB);
- }
-
- if (actualCount == 0) {
- return;
- }
-
- SkAutoTUnref<const GrGeometryProcessor> gp;
- {
- using namespace GrDefaultGeoProcFactory;
-
- Color color(fColor);
- LocalCoords localCoords(fPipelineInfo.readsLocalCoords() ?
- LocalCoords::kUsePosition_Type :
- LocalCoords::kUnused_Type);
- Coverage::Type coverageType;
- if (fPipelineInfo.readsCoverage()) {
- coverageType = Coverage::kSolid_Type;
- } else {
- coverageType = Coverage::kNone_Type;
- }
- Coverage coverage(coverageType);
- gp.reset(GrDefaultGeoProcFactory::Create(color, coverage, localCoords,
- fViewMatrix));
- }
-
- target->initDraw(gp, this->pipeline());
- SkASSERT(gp->getVertexStride() == sizeof(SkPoint));
-
- GrPrimitiveType primitiveType = WIREFRAME ? kLines_GrPrimitiveType
- : kTriangles_GrPrimitiveType;
- GrVertices vertices;
- vertices.init(primitiveType, vertexBuffer.get(), 0, actualCount);
- target->draw(vertices);
- }
-
- bool onCombineIfPossible(GrBatch*, const GrCaps&) override { return false; }
-
- TessellatingPathBatch(const GrColor& color,
- const SkPath& path,
- const GrStrokeInfo& stroke,
- const SkMatrix& viewMatrix,
- const SkRect& clipBounds)
- : INHERITED(ClassID())
- , fColor(color)
- , fPath(path)
- , fStroke(stroke)
- , fViewMatrix(viewMatrix) {
- const SkRect& pathBounds = path.getBounds();
- fClipBounds = clipBounds;
- // Because the clip bounds are used to add a contour for inverse fills, they must also
- // include the path bounds.
- fClipBounds.join(pathBounds);
- if (path.isInverseFillType()) {
- fBounds = fClipBounds;
- } else {
- fBounds = path.getBounds();
- }
- if (!stroke.isFillStyle()) {
- SkScalar radius = SkScalarHalf(stroke.getWidth());
- if (stroke.getJoin() == SkPaint::kMiter_Join) {
- SkScalar scale = stroke.getMiter();
- if (scale > SK_Scalar1) {
- radius = SkScalarMul(radius, scale);
- }
- }
- fBounds.outset(radius, radius);
- }
- viewMatrix.mapRect(&fBounds);
+ if (!vertexBuffer.get()) {
+ SkDebugf("Could not allocate vertices\n");
+ return 0;
}
-
- GrColor fColor;
- SkPath fPath;
- GrStrokeInfo fStroke;
- SkMatrix fViewMatrix;
- SkRect fClipBounds; // in source space
- GrXPOverridesForBatch fPipelineInfo;
-
- typedef GrVertexBatch INHERITED;
-};
-
-bool GrTessellatingPathRenderer::onDrawPath(const DrawPathArgs& args) {
- SkASSERT(!args.fAntiAlias);
- const GrRenderTarget* rt = args.fPipelineBuilder->getRenderTarget();
- if (nullptr == rt) {
- return false;
+ SkPoint* verts;
+ if (canMapVB) {
+ verts = static_cast<SkPoint*>(vertexBuffer->map());
+ } else {
+ verts = new SkPoint[count];
}
-
- SkIRect clipBoundsI;
- args.fPipelineBuilder->clip().getConservativeBounds(rt->width(), rt->height(), &clipBoundsI);
- SkRect clipBounds = SkRect::Make(clipBoundsI);
- SkMatrix vmi;
- if (!args.fViewMatrix->invert(&vmi)) {
- return false;
+ SkPoint* end = verts;
+ for (Poly* poly = polys; poly; poly = poly->fNext) {
+ if (apply_fill_type(fillType, poly->fWinding)) {
+ end = poly->emit(end);
+ }
+ }
+ int actualCount = static_cast<int>(end - verts);
+ LOG("actual count: %d\n", actualCount);
+ SkASSERT(actualCount <= count);
+ if (canMapVB) {
+ vertexBuffer->unmap();
+ } else {
+ vertexBuffer->updateData(verts, actualCount * sizeof(SkPoint));
+ delete[] verts;
}
- vmi.mapRect(&clipBounds);
- SkAutoTUnref<GrDrawBatch> batch(TessellatingPathBatch::Create(args.fColor, *args.fPath,
- *args.fStroke, *args.fViewMatrix,
- clipBounds));
- args.fTarget->drawBatch(*args.fPipelineBuilder, batch);
- return true;
+ return actualCount;
}
-///////////////////////////////////////////////////////////////////////////////////////////////////
-
-#ifdef GR_TEST_UTILS
+int polys_to_vertices(Poly* polys, SkPath::FillType fillType, bool isLinear,
+ WindingVertex** verts) {
+ int count = 0;
+ for (Poly* poly = polys; poly; poly = poly->fNext) {
+ if (apply_fill_type(fillType, poly->fWinding) && poly->fCount >= 3) {
+ count += (poly->fCount - 2) * (TESSELLATOR_WIREFRAME ? 6 : 3);
+ }
+ }
+ if (0 == count) {
+ *verts = nullptr;
+ return 0;
+ }
-DRAW_BATCH_TEST_DEFINE(TesselatingPathBatch) {
- GrColor color = GrRandomColor(random);
- SkMatrix viewMatrix = GrTest::TestMatrixInvertible(random);
- SkPath path = GrTest::TestPath(random);
- SkRect clipBounds = GrTest::TestRect(random);
- SkMatrix vmi;
- bool result = viewMatrix.invert(&vmi);
- if (!result) {
- SkFAIL("Cannot invert matrix\n");
+ *verts = new WindingVertex[count];
+ WindingVertex* vertsEnd = *verts;
+ SkPoint* points = new SkPoint[count];
+ SkPoint* pointsEnd = points;
+ for (Poly* poly = polys; poly; poly = poly->fNext) {
+ if (apply_fill_type(fillType, poly->fWinding)) {
+ SkPoint* start = pointsEnd;
+ pointsEnd = poly->emit(pointsEnd);
+ while (start != pointsEnd) {
+ vertsEnd->fPos = *start;
+ vertsEnd->fWinding = poly->fWinding;
+ ++start;
+ ++vertsEnd;
+ }
+ }
}
- vmi.mapRect(&clipBounds);
- GrStrokeInfo strokeInfo = GrTest::TestStrokeInfo(random);
- return TessellatingPathBatch::Create(color, path, strokeInfo, viewMatrix, clipBounds);
+ int actualCount = static_cast<int>(vertsEnd - *verts);
+ SkASSERT(actualCount <= count);
+ SkASSERT(pointsEnd - points == actualCount);
+ delete[] points;
+ return actualCount;
}
-
-#endif

Powered by Google App Engine
This is Rietveld 408576698