Chromium Code Reviews| Index: content/browser/indexed_db/leveldb/avltree.h |
| diff --git a/content/browser/indexed_db/leveldb/avltree.h b/content/browser/indexed_db/leveldb/avltree.h |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..695a15055b17a6f391e3d4216d4b2c9f7fc8a89e |
| --- /dev/null |
| +++ b/content/browser/indexed_db/leveldb/avltree.h |
| @@ -0,0 +1,975 @@ |
| +/* |
| + * Copyright (C) 2008 Apple Inc. All rights reserved. |
|
dgrogan
2013/05/22 18:22:06
This turned out to be ok?
jamesr
2013/05/22 18:59:44
this doesn't look like the right copyright header.
jsbell
2013/05/22 19:13:04
I asked the lawyerly types what to do here in adva
|
| + * |
| + * Based on Abstract AVL Tree Template v1.5 by Walt Karas |
| + * <http://geocities.com/wkaras/gen_cpp/avl_tree.html>. |
| + * |
| + * Redistribution and use in source and binary forms, with or without |
| + * modification, are permitted provided that the following conditions |
| + * are met: |
| + * |
| + * 1. Redistributions of source code must retain the above copyright |
| + * notice, this list of conditions and the following disclaimer. |
| + * 2. Redistributions in binary form must reproduce the above copyright |
| + * notice, this list of conditions and the following disclaimer in the |
| + * documentation and/or other materials provided with the distribution. |
| + * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of |
| + * its contributors may be used to endorse or promote products derived |
| + * from this software without specific prior written permission. |
| + * |
| + * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| + * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| + * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| + * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| + * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| + */ |
| + |
| +#ifndef CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_ |
| +#define CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_ |
| + |
| +#include "base/logging.h" |
| +#include "content/browser/indexed_db/leveldb/fixed_array.h" |
| + |
| +namespace content { |
| + |
| +// Here is the reference class for BSet. |
| +// |
| +// class BSet |
| +// { |
| +// public: |
| +// |
| +// class ANY_bitref |
| +// { |
| +// public: |
| +// operator bool (); |
| +// void operator = (bool b); |
| +// }; |
| +// |
| +// // Does not have to initialize bits. |
| +// BSet(); |
| +// |
| +// // Must return a valid value for index when 0 <= index < maxDepth |
| +// ANY_bitref operator [] (unsigned index); |
| +// |
| +// // Set all bits to 1. |
| +// void set(); |
| +// |
| +// // Set all bits to 0. |
| +// void reset(); |
| +// }; |
| + |
| +template <unsigned maxDepth> class AVLTreeDefaultBSet { |
| + public: |
| + bool& operator[](unsigned i) { |
| +#if defined(ADDRESS_SANITIZER) |
| + CHECK(i < maxDepth); |
| +#endif |
| + return m_data[i]; |
| + } |
| + void set() { |
| + for (unsigned i = 0; i < maxDepth; ++i) |
| + m_data[i] = true; |
| + } |
| + void reset() { |
| + for (unsigned i = 0; i < maxDepth; ++i) |
| + m_data[i] = false; |
| + } |
| + |
| + private: |
| + FixedArray<bool, maxDepth> m_data; |
| +}; |
| + |
| +// How to determine maxDepth: |
| +// d Minimum number of nodes |
| +// 2 2 |
| +// 3 4 |
| +// 4 7 |
| +// 5 12 |
| +// 6 20 |
| +// 7 33 |
| +// 8 54 |
| +// 9 88 |
| +// 10 143 |
| +// 11 232 |
| +// 12 376 |
| +// 13 609 |
| +// 14 986 |
| +// 15 1,596 |
| +// 16 2,583 |
| +// 17 4,180 |
| +// 18 6,764 |
| +// 19 10,945 |
| +// 20 17,710 |
| +// 21 28,656 |
| +// 22 46,367 |
| +// 23 75,024 |
| +// 24 121,392 |
| +// 25 196,417 |
| +// 26 317,810 |
| +// 27 514,228 |
| +// 28 832,039 |
| +// 29 1,346,268 |
| +// 30 2,178,308 |
| +// 31 3,524,577 |
| +// 32 5,702,886 |
| +// 33 9,227,464 |
| +// 34 14,930,351 |
| +// 35 24,157,816 |
| +// 36 39,088,168 |
| +// 37 63,245,985 |
| +// 38 102,334,154 |
| +// 39 165,580,140 |
| +// 40 267,914,295 |
| +// 41 433,494,436 |
| +// 42 701,408,732 |
| +// 43 1,134,903,169 |
| +// 44 1,836,311,902 |
| +// 45 2,971,215,072 |
| +// |
| +// E.g., if, in a particular instantiation, the maximum number of nodes in a |
| +// tree instance is 1,000,000, the maximum depth should be 28. |
| +// You pick 28 because MN(28) is 832,039, which is less than or equal to |
| +// 1,000,000, and MN(29) is 1,346,268, which is strictly greater than 1,000,000. |
| + |
| +template <class Abstractor, |
| + unsigned maxDepth = 32, |
| + class BSet = AVLTreeDefaultBSet<maxDepth> > |
| +class AVLTree { |
| + public: |
| + typedef typename Abstractor::key key; |
| + typedef typename Abstractor::handle handle; |
| + typedef typename Abstractor::size size; |
| + |
| + enum SearchType { |
| + EQUAL = 1, |
| + LESS = 2, |
| + GREATER = 4, |
| + LESS_EQUAL = EQUAL | LESS, |
| + GREATER_EQUAL = EQUAL | GREATER |
| + }; |
| + |
| + Abstractor& abstractor() { return abs; } |
| + |
| + inline handle insert(handle h); |
| + |
| + inline handle search(key k, SearchType st = EQUAL); |
| + inline handle search_least(); |
| + inline handle search_greatest(); |
| + |
| + inline handle remove(key k); |
| + |
| + inline handle subst(handle new_node); |
| + |
| + void purge() { abs.root = null(); } |
| + |
| + bool is_empty() { return abs.root == null(); } |
| + |
| + AVLTree() { abs.root = null(); } |
| + |
| + class Iterator { |
| + public: |
| + // Initialize depth to invalid value, to indicate iterator is |
| + // invalid. (Depth is zero-base.) |
| + Iterator() { depth = ~0U; } |
| + |
| + void start_iter(AVLTree& tree, key k, SearchType st = EQUAL) { |
| + // Mask of high bit in an int. |
| + const int kMaskHighBit = (int) ~((~(unsigned) 0) >> 1); |
| + |
| + // Save the tree that we're going to iterate through in a |
| + // member variable. |
| + tree_ = &tree; |
| + |
| + int cmp, target_cmp; |
| + handle h = tree_->abs.root; |
| + unsigned d = 0; |
| + |
| + depth = ~0U; |
| + |
| + if (h == null()) { |
| + // Tree is empty. |
| + return; |
| + } |
| + |
| + if (st & LESS) { |
| + // Key can be greater than key of starting node. |
| + target_cmp = 1; |
| + } else if (st & GREATER) { |
| + // Key can be less than key of starting node. |
| + target_cmp = -1; |
| + } else { |
| + // Key must be same as key of starting node. |
| + target_cmp = 0; |
| + } |
| + |
| + for (;;) { |
| + cmp = cmp_k_n(k, h); |
| + if (cmp == 0) { |
| + if (st & EQUAL) { |
| + // Equal node was sought and found as starting node. |
| + depth = d; |
| + break; |
| + } |
| + cmp = -target_cmp; |
| + } else if (target_cmp != 0) { |
| + if (!((cmp ^ target_cmp) & kMaskHighBit)) { |
| + // cmp and target_cmp are both negative or both positive. |
| + depth = d; |
| + } |
| + } |
| + h = cmp < 0 ? get_lt(h) : get_gt(h); |
| + if (h == null()) |
| + break; |
| + branch[d] = cmp > 0; |
| + path_h[d++] = h; |
| + } |
| + } |
| + |
| + void start_iter_least(AVLTree& tree) { |
| + tree_ = &tree; |
| + |
| + handle h = tree_->abs.root; |
| + |
| + depth = ~0U; |
| + |
| + branch.reset(); |
| + |
| + while (h != null()) { |
| + if (depth != ~0U) |
| + path_h[depth] = h; |
| + depth++; |
| + h = get_lt(h); |
| + } |
| + } |
| + |
| + void start_iter_greatest(AVLTree& tree) { |
| + tree_ = &tree; |
| + |
| + handle h = tree_->abs.root; |
| + |
| + depth = ~0U; |
| + |
| + branch.set(); |
| + |
| + while (h != null()) { |
| + if (depth != ~0U) |
| + path_h[depth] = h; |
| + depth++; |
| + h = get_gt(h); |
| + } |
| + } |
| + |
| + handle operator*() { |
| + if (depth == ~0U) |
| + return null(); |
| + |
| + return depth == 0 ? tree_->abs.root : path_h[depth - 1]; |
| + } |
| + |
| + void operator++() { |
| + if (depth != ~0U) { |
| + handle h = get_gt(**this); |
| + if (h == null()) { |
| + do { |
| + if (depth == 0) { |
| + depth = ~0U; |
| + break; |
| + } |
| + depth--; |
| + } while (branch[depth]); |
| + } else { |
| + branch[depth] = true; |
| + path_h[depth++] = h; |
| + for (;;) { |
| + h = get_lt(h); |
| + if (h == null()) |
| + break; |
| + branch[depth] = false; |
| + path_h[depth++] = h; |
| + } |
| + } |
| + } |
| + } |
| + |
| + void operator--() { |
| + if (depth != ~0U) { |
| + handle h = get_lt(**this); |
| + if (h == null()) { |
| + do { |
| + if (depth == 0) { |
| + depth = ~0U; |
| + break; |
| + } |
| + depth--; |
| + } while (!branch[depth]); |
| + } else { |
| + branch[depth] = false; |
| + path_h[depth++] = h; |
| + for (;;) { |
| + h = get_gt(h); |
| + if (h == null()) |
| + break; |
| + branch[depth] = true; |
| + path_h[depth++] = h; |
| + } |
| + } |
| + } |
| + } |
| + |
| + void operator++(int) { ++(*this); } |
| + void operator--(int) { --(*this); } |
| + |
| + protected: |
| + |
| + // Tree being iterated over. |
| + AVLTree* tree_; |
| + |
| + // Records a path into the tree. If branch[n] is true, indicates |
| + // take greater branch from the nth node in the path, otherwise |
| + // take the less branch. branch[0] gives branch from root, and |
| + // so on. |
| + BSet branch; |
| + |
| + // Zero-based depth of path into tree. |
| + unsigned depth; |
| + |
| + // Handles of nodes in path from root to current node (returned by *). |
| + handle path_h[maxDepth - 1]; |
| + |
| + int cmp_k_n(key k, handle h) { return tree_->abs.compare_key_node(k, h); } |
| + int cmp_n_n(handle h1, handle h2) { |
| + return tree_->abs.compare_node_node(h1, h2); |
| + } |
| + handle get_lt(handle h) { return tree_->abs.get_less(h); } |
| + handle get_gt(handle h) { return tree_->abs.get_greater(h); } |
| + handle null() { return tree_->abs.null(); } |
| + }; |
| + |
| + template <typename fwd_iter> bool build(fwd_iter p, size num_nodes) { |
| + if (num_nodes == 0) { |
| + abs.root = null(); |
| + return true; |
| + } |
| + |
| + // Gives path to subtree being built. If branch[N] is false, branch |
| + // less from the node at depth N, if true branch greater. |
| + BSet branch; |
| + |
| + // If rem[N] is true, then for the current subtree at depth N, it's |
| + // greater subtree has one more node than it's less subtree. |
| + BSet rem; |
| + |
| + // Depth of root node of current subtree. |
| + unsigned depth = 0; |
| + |
| + // Number of nodes in current subtree. |
| + size num_sub = num_nodes; |
| + |
| + // The algorithm relies on a stack of nodes whose less subtree has |
| + // been built, but whose right subtree has not yet been built. The |
| + // stack is implemented as linked list. The nodes are linked |
| + // together by having the "greater" handle of a node set to the |
| + // next node in the list. "less_parent" is the handle of the first |
| + // node in the list. |
| + handle less_parent = null(); |
| + |
| + // h is root of current subtree, child is one of its children. |
| + handle h, child; |
| + |
| + for (;;) { |
| + while (num_sub > 2) { |
| + // Subtract one for root of subtree. |
| + num_sub--; |
| + rem[depth] = !!(num_sub & 1); |
| + branch[depth++] = false; |
| + num_sub >>= 1; |
| + } |
| + |
| + if (num_sub == 2) { |
| + // Build a subtree with two nodes, slanting to greater. |
| + // I arbitrarily chose to always have the extra node in the |
| + // greater subtree when there is an odd number of nodes to |
| + // split between the two subtrees. |
| + |
| + h = *p; |
| + p++; |
| + child = *p; |
| + p++; |
| + set_lt(child, null()); |
| + set_gt(child, null()); |
| + set_bf(child, 0); |
| + set_gt(h, child); |
| + set_lt(h, null()); |
| + set_bf(h, 1); |
| + } else { // num_sub == 1 |
| + // Build a subtree with one node. |
| + |
| + h = *p; |
| + p++; |
| + set_lt(h, null()); |
| + set_gt(h, null()); |
| + set_bf(h, 0); |
| + } |
| + |
| + while (depth) { |
| + depth--; |
| + if (!branch[depth]) { |
| + // We've completed a less subtree. |
| + break; |
| + } |
| + |
| + // We've completed a greater subtree, so attach it to |
| + // its parent (that is less than it). We pop the parent |
| + // off the stack of less parents. |
| + child = h; |
| + h = less_parent; |
| + less_parent = get_gt(h); |
| + set_gt(h, child); |
| + // num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1 |
| + num_sub <<= 1; |
| + num_sub += 1 - rem[depth]; |
| + if (num_sub & (num_sub - 1)) { |
| + // num_sub is not a power of 2 |
| + set_bf(h, 0); |
| + } else { |
| + // num_sub is a power of 2 |
| + set_bf(h, 1); |
| + } |
| + } |
| + |
| + if (num_sub == num_nodes) { |
| + // We've completed the full tree. |
| + break; |
| + } |
| + |
| + // The subtree we've completed is the less subtree of the |
| + // next node in the sequence. |
| + |
| + child = h; |
| + h = *p; |
| + p++; |
| + set_lt(h, child); |
| + |
| + // Put h into stack of less parents. |
| + set_gt(h, less_parent); |
| + less_parent = h; |
| + |
| + // Proceed to creating greater than subtree of h. |
| + branch[depth] = true; |
| + num_sub += rem[depth++]; |
| + |
| + } // end for (;;) |
| + |
| + abs.root = h; |
| + |
| + return true; |
| + } |
| + |
| + protected: |
| + |
| + friend class Iterator; |
| + |
| + // Create a class whose sole purpose is to take advantage of |
| + // the "empty member" optimization. |
| + struct abs_plus_root : public Abstractor { |
| + // The handle of the root element in the AVL tree. |
| + handle root; |
| + }; |
| + |
| + abs_plus_root abs; |
| + |
| + handle get_lt(handle h) { return abs.get_less(h); } |
| + void set_lt(handle h, handle lh) { abs.set_less(h, lh); } |
| + |
| + handle get_gt(handle h) { return abs.get_greater(h); } |
| + void set_gt(handle h, handle gh) { abs.set_greater(h, gh); } |
| + |
| + int get_bf(handle h) { return abs.get_balance_factor(h); } |
| + void set_bf(handle h, int bf) { abs.set_balance_factor(h, bf); } |
| + |
| + int cmp_k_n(key k, handle h) { return abs.compare_key_node(k, h); } |
| + int cmp_n_n(handle h1, handle h2) { return abs.compare_node_node(h1, h2); } |
| + |
| + handle null() { return abs.null(); } |
| + |
| + private: |
| + |
| + // Balances subtree, returns handle of root node of subtree |
| + // after balancing. |
| + handle balance(handle bal_h) { |
| + handle deep_h; |
| + |
| + // Either the "greater than" or the "less than" subtree of |
| + // this node has to be 2 levels deeper (or else it wouldn't |
| + // need balancing). |
| + |
| + if (get_bf(bal_h) > 0) { |
| + // "Greater than" subtree is deeper. |
| + |
| + deep_h = get_gt(bal_h); |
| + |
| + if (get_bf(deep_h) < 0) { |
| + handle old_h = bal_h; |
| + bal_h = get_lt(deep_h); |
| + |
| + set_gt(old_h, get_lt(bal_h)); |
| + set_lt(deep_h, get_gt(bal_h)); |
| + set_lt(bal_h, old_h); |
| + set_gt(bal_h, deep_h); |
| + |
| + int bf = get_bf(bal_h); |
| + if (bf != 0) { |
| + if (bf > 0) { |
| + set_bf(old_h, -1); |
| + set_bf(deep_h, 0); |
| + } else { |
| + set_bf(deep_h, 1); |
| + set_bf(old_h, 0); |
| + } |
| + set_bf(bal_h, 0); |
| + } else { |
| + set_bf(old_h, 0); |
| + set_bf(deep_h, 0); |
| + } |
| + } else { |
| + set_gt(bal_h, get_lt(deep_h)); |
| + set_lt(deep_h, bal_h); |
| + if (get_bf(deep_h) == 0) { |
| + set_bf(deep_h, -1); |
| + set_bf(bal_h, 1); |
| + } else { |
| + set_bf(deep_h, 0); |
| + set_bf(bal_h, 0); |
| + } |
| + bal_h = deep_h; |
| + } |
| + } else { |
| + // "Less than" subtree is deeper. |
| + |
| + deep_h = get_lt(bal_h); |
| + |
| + if (get_bf(deep_h) > 0) { |
| + handle old_h = bal_h; |
| + bal_h = get_gt(deep_h); |
| + set_lt(old_h, get_gt(bal_h)); |
| + set_gt(deep_h, get_lt(bal_h)); |
| + set_gt(bal_h, old_h); |
| + set_lt(bal_h, deep_h); |
| + |
| + int bf = get_bf(bal_h); |
| + if (bf != 0) { |
| + if (bf < 0) { |
| + set_bf(old_h, 1); |
| + set_bf(deep_h, 0); |
| + } else { |
| + set_bf(deep_h, -1); |
| + set_bf(old_h, 0); |
| + } |
| + set_bf(bal_h, 0); |
| + } else { |
| + set_bf(old_h, 0); |
| + set_bf(deep_h, 0); |
| + } |
| + } else { |
| + set_lt(bal_h, get_gt(deep_h)); |
| + set_gt(deep_h, bal_h); |
| + if (get_bf(deep_h) == 0) { |
| + set_bf(deep_h, 1); |
| + set_bf(bal_h, -1); |
| + } else { |
| + set_bf(deep_h, 0); |
| + set_bf(bal_h, 0); |
| + } |
| + bal_h = deep_h; |
| + } |
| + } |
| + |
| + return bal_h; |
| + } |
| + |
| +}; |
| + |
| +template <class Abstractor, unsigned maxDepth, class BSet> |
| +inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| +AVLTree<Abstractor, maxDepth, BSet>::insert(handle h) { |
| + set_lt(h, null()); |
| + set_gt(h, null()); |
| + set_bf(h, 0); |
| + |
| + if (abs.root == null()) { |
| + abs.root = h; |
| + } else { |
| + // Last unbalanced node encountered in search for insertion point. |
| + handle unbal = null(); |
| + // Parent of last unbalanced node. |
| + handle parent_unbal = null(); |
| + // Balance factor of last unbalanced node. |
| + int unbal_bf; |
| + |
| + // Zero-based depth in tree. |
| + unsigned depth = 0, unbal_depth = 0; |
| + |
| + // Records a path into the tree. If branch[n] is true, indicates |
| + // take greater branch from the nth node in the path, otherwise |
| + // take the less branch. branch[0] gives branch from root, and |
| + // so on. |
| + BSet branch; |
| + |
| + handle hh = abs.root; |
| + handle parent = null(); |
| + int cmp; |
| + |
| + do { |
| + if (get_bf(hh) != 0) { |
| + unbal = hh; |
| + parent_unbal = parent; |
| + unbal_depth = depth; |
| + } |
| + cmp = cmp_n_n(h, hh); |
| + if (cmp == 0) { |
| + // Duplicate key. |
| + return hh; |
| + } |
| + parent = hh; |
| + hh = cmp < 0 ? get_lt(hh) : get_gt(hh); |
| + branch[depth++] = cmp > 0; |
| + } while (hh != null()); |
| + |
| + // Add node to insert as leaf of tree. |
| + if (cmp < 0) |
| + set_lt(parent, h); |
| + else |
| + set_gt(parent, h); |
| + |
| + depth = unbal_depth; |
| + |
| + if (unbal == null()) { |
| + hh = abs.root; |
| + } else { |
| + cmp = branch[depth++] ? 1 : -1; |
| + unbal_bf = get_bf(unbal); |
| + if (cmp < 0) |
| + unbal_bf--; |
| + else // cmp > 0 |
| + unbal_bf++; |
| + hh = cmp < 0 ? get_lt(unbal) : get_gt(unbal); |
| + if ((unbal_bf != -2) && (unbal_bf != 2)) { |
| + // No rebalancing of tree is necessary. |
| + set_bf(unbal, unbal_bf); |
| + unbal = null(); |
| + } |
| + } |
| + |
| + if (hh != null()) { |
| + while (h != hh) { |
| + cmp = branch[depth++] ? 1 : -1; |
| + if (cmp < 0) { |
| + set_bf(hh, -1); |
| + hh = get_lt(hh); |
| + } else { // cmp > 0 |
| + set_bf(hh, 1); |
| + hh = get_gt(hh); |
| + } |
| + } |
| + } |
| + |
| + if (unbal != null()) { |
| + unbal = balance(unbal); |
| + if (parent_unbal == null()) { |
| + abs.root = unbal; |
| + } else { |
| + depth = unbal_depth - 1; |
| + cmp = branch[depth] ? 1 : -1; |
| + if (cmp < 0) |
| + set_lt(parent_unbal, unbal); |
| + else // cmp > 0 |
| + set_gt(parent_unbal, unbal); |
| + } |
| + } |
| + } |
| + |
| + return h; |
| +} |
| + |
| +template <class Abstractor, unsigned maxDepth, class BSet> |
| +inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| +AVLTree<Abstractor, maxDepth, BSet>::search( |
| + key k, |
| + typename AVLTree<Abstractor, maxDepth, BSet>::SearchType st) { |
| + const int kMaskHighBit = (int) ~((~(unsigned) 0) >> 1); |
| + |
| + int cmp, target_cmp; |
| + handle match_h = null(); |
| + handle h = abs.root; |
| + |
| + if (st & LESS) |
| + target_cmp = 1; |
| + else if (st & GREATER) |
| + target_cmp = -1; |
| + else |
| + target_cmp = 0; |
| + |
| + while (h != null()) { |
| + cmp = cmp_k_n(k, h); |
| + if (cmp == 0) { |
| + if (st & EQUAL) { |
| + match_h = h; |
| + break; |
| + } |
| + cmp = -target_cmp; |
| + } else if (target_cmp != 0) { |
| + if (!((cmp ^ target_cmp) & kMaskHighBit)) { |
| + // cmp and target_cmp are both positive or both negative. |
| + match_h = h; |
| + } |
| + } |
| + h = cmp < 0 ? get_lt(h) : get_gt(h); |
| + } |
| + |
| + return match_h; |
| +} |
| + |
| +template <class Abstractor, unsigned maxDepth, class BSet> |
| +inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| +AVLTree<Abstractor, maxDepth, BSet>::search_least() { |
| + handle h = abs.root, parent = null(); |
| + |
| + while (h != null()) { |
| + parent = h; |
| + h = get_lt(h); |
| + } |
| + |
| + return parent; |
| +} |
| + |
| +template <class Abstractor, unsigned maxDepth, class BSet> |
| +inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| +AVLTree<Abstractor, maxDepth, BSet>::search_greatest() { |
| + handle h = abs.root, parent = null(); |
| + |
| + while (h != null()) { |
| + parent = h; |
| + h = get_gt(h); |
| + } |
| + |
| + return parent; |
| +} |
| + |
| +template <class Abstractor, unsigned maxDepth, class BSet> |
| +inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| +AVLTree<Abstractor, maxDepth, BSet>::remove(key k) { |
| + // Zero-based depth in tree. |
| + unsigned depth = 0, rm_depth; |
| + |
| + // Records a path into the tree. If branch[n] is true, indicates |
| + // take greater branch from the nth node in the path, otherwise |
| + // take the less branch. branch[0] gives branch from root, and |
| + // so on. |
| + BSet branch; |
| + |
| + handle h = abs.root; |
| + handle parent = null(), child; |
| + int cmp, cmp_shortened_sub_with_path = 0; |
| + |
| + for (;;) { |
| + if (h == null()) { |
| + // No node in tree with given key. |
| + return null(); |
| + } |
| + cmp = cmp_k_n(k, h); |
| + if (cmp == 0) { |
| + // Found node to remove. |
| + break; |
| + } |
| + parent = h; |
| + h = cmp < 0 ? get_lt(h) : get_gt(h); |
| + branch[depth++] = cmp > 0; |
| + cmp_shortened_sub_with_path = cmp; |
| + } |
| + handle rm = h; |
| + handle parent_rm = parent; |
| + rm_depth = depth; |
| + |
| + // If the node to remove is not a leaf node, we need to get a |
| + // leaf node, or a node with a single leaf as its child, to put |
| + // in the place of the node to remove. We will get the greatest |
| + // node in the less subtree (of the node to remove), or the least |
| + // node in the greater subtree. We take the leaf node from the |
| + // deeper subtree, if there is one. |
| + |
| + if (get_bf(h) < 0) { |
| + child = get_lt(h); |
| + branch[depth] = false; |
| + cmp = -1; |
| + } else { |
| + child = get_gt(h); |
| + branch[depth] = true; |
| + cmp = 1; |
| + } |
| + depth++; |
| + |
| + if (child != null()) { |
| + cmp = -cmp; |
| + do { |
| + parent = h; |
| + h = child; |
| + if (cmp < 0) { |
| + child = get_lt(h); |
| + branch[depth] = false; |
| + } else { |
| + child = get_gt(h); |
| + branch[depth] = true; |
| + } |
| + depth++; |
| + } while (child != null()); |
| + |
| + if (parent == rm) { |
| + // Only went through do loop once. Deleted node will be replaced |
| + // in the tree structure by one of its immediate children. |
| + cmp_shortened_sub_with_path = -cmp; |
| + } else { |
| + cmp_shortened_sub_with_path = cmp; |
| + } |
| + |
| + // Get the handle of the opposite child, which may not be null. |
| + child = cmp > 0 ? get_lt(h) : get_gt(h); |
| + } |
| + |
| + if (parent == null()) { |
| + // There were only 1 or 2 nodes in this tree. |
| + abs.root = child; |
| + } else if (cmp_shortened_sub_with_path < 0) { |
| + set_lt(parent, child); |
| + } else { |
| + set_gt(parent, child); |
| + } |
| + |
| + // "path" is the parent of the subtree being eliminated or reduced |
| + // from a depth of 2 to 1. If "path" is the node to be removed, we |
| + // set path to the node we're about to poke into the position of the |
| + // node to be removed. |
| + handle path = parent == rm ? h : parent; |
| + |
| + if (h != rm) { |
| + // Poke in the replacement for the node to be removed. |
| + set_lt(h, get_lt(rm)); |
| + set_gt(h, get_gt(rm)); |
| + set_bf(h, get_bf(rm)); |
| + if (parent_rm == null()) { |
| + abs.root = h; |
| + } else { |
| + depth = rm_depth - 1; |
| + if (branch[depth]) |
| + set_gt(parent_rm, h); |
| + else |
| + set_lt(parent_rm, h); |
| + } |
| + } |
| + |
| + if (path != null()) { |
| + // Create a temporary linked list from the parent of the path node |
| + // to the root node. |
| + h = abs.root; |
| + parent = null(); |
| + depth = 0; |
| + while (h != path) { |
| + if (branch[depth++]) { |
| + child = get_gt(h); |
| + set_gt(h, parent); |
| + } else { |
| + child = get_lt(h); |
| + set_lt(h, parent); |
| + } |
| + parent = h; |
| + h = child; |
| + } |
| + |
| + // Climb from the path node to the root node using the linked |
| + // list, restoring the tree structure and rebalancing as necessary. |
| + bool reduced_depth = true; |
| + int bf; |
| + cmp = cmp_shortened_sub_with_path; |
| + for (;;) { |
| + if (reduced_depth) { |
| + bf = get_bf(h); |
| + if (cmp < 0) |
| + bf++; |
| + else // cmp > 0 |
| + bf--; |
| + if ((bf == -2) || (bf == 2)) { |
| + h = balance(h); |
| + bf = get_bf(h); |
| + } else { |
| + set_bf(h, bf); |
| + } |
| + reduced_depth = (bf == 0); |
| + } |
| + if (parent == null()) |
| + break; |
| + child = h; |
| + h = parent; |
| + cmp = branch[--depth] ? 1 : -1; |
| + if (cmp < 0) { |
| + parent = get_lt(h); |
| + set_lt(h, child); |
| + } else { |
| + parent = get_gt(h); |
| + set_gt(h, child); |
| + } |
| + } |
| + abs.root = h; |
| + } |
| + |
| + return rm; |
| +} |
| + |
| +template <class Abstractor, unsigned maxDepth, class BSet> |
| +inline typename AVLTree<Abstractor, maxDepth, BSet>::handle |
| +AVLTree<Abstractor, maxDepth, BSet>::subst(handle new_node) { |
| + handle h = abs.root; |
| + handle parent = null(); |
| + int cmp, last_cmp; |
| + |
| + // Search for node already in tree with same key. |
| + for (;;) { |
| + if (h == null()) { |
| + // No node in tree with same key as new node. |
| + return null(); |
| + } |
| + cmp = cmp_n_n(new_node, h); |
| + if (cmp == 0) { |
| + // Found the node to substitute new one for. |
| + break; |
| + } |
| + last_cmp = cmp; |
| + parent = h; |
| + h = cmp < 0 ? get_lt(h) : get_gt(h); |
| + } |
| + |
| + // Copy tree housekeeping fields from node in tree to new node. |
| + set_lt(new_node, get_lt(h)); |
| + set_gt(new_node, get_gt(h)); |
| + set_bf(new_node, get_bf(h)); |
| + |
| + if (parent == null()) { |
| + // New node is also new root. |
| + abs.root = new_node; |
| + } else { |
| + // Make parent point to new node. |
| + if (last_cmp < 0) |
| + set_lt(parent, new_node); |
| + else |
| + set_gt(parent, new_node); |
| + } |
| + |
| + return h; |
| +} |
| + |
| +} // namespace content |
| + |
| +#endif // CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_ |