Index: src/codec/SkJpegCodec.cpp |
diff --git a/src/codec/SkJpegCodec.cpp b/src/codec/SkJpegCodec.cpp |
index 7db772da6386ad9a3b0002d5334598a625fd6fa2..46cb13974805616c929a858ae9d77afa041f3b36 100644 |
--- a/src/codec/SkJpegCodec.cpp |
+++ b/src/codec/SkJpegCodec.cpp |
@@ -452,3 +452,196 @@ bool SkJpegCodec::onSkipScanlines(int count) { |
return (uint32_t) count == jpeg_skip_scanlines(fDecoderMgr->dinfo(), count); |
} |
+ |
+static bool is_yuv_supported(jpeg_decompress_struct* dinfo) { |
+ // Scaling is not supported in raw data mode. |
+ SkASSERT(dinfo->scale_num == dinfo->scale_denom); |
+ |
+ // I can't imagine that this would ever change, but we do depend on it. |
+ static_assert(8 == DCTSIZE, "DCTSIZE (defined in jpeg library) should always be 8."); |
+ |
+ if (JCS_YCbCr != dinfo->jpeg_color_space) { |
+ return false; |
+ } |
+ |
+ SkASSERT(3 == dinfo->num_components); |
+ SkASSERT(dinfo->comp_info); |
+ |
+ // It is possible to perform a YUV decode for any combination of |
+ // horizontal and vertical sampling that is supported by |
+ // libjpeg/libjpeg-turbo. However, we will start by supporting only the |
+ // common cases (where U and V have samp_factors of one). |
+ // |
+ // The definition of samp_factor is kind of the opposite of what SkCodec |
+ // thinks of as a sampling factor. samp_factor is essentially a |
+ // multiplier, and the larger the samp_factor is, the more samples that |
+ // there will be. Ex: |
+ // U_plane_width = image_width * (U_h_samp_factor / max_h_samp_factor) |
+ // |
+ // Supporting cases where the samp_factors for U or V were larger than |
+ // that of Y would be an extremely difficult change, given that clients |
+ // allocate memory as if the size of the Y plane is always the size of the |
+ // image. However, this case is very, very rare. |
+ if (!(1 == dinfo->comp_info[1].h_samp_factor) && |
+ (1 == dinfo->comp_info[1].v_samp_factor) && |
+ (1 == dinfo->comp_info[2].h_samp_factor) && |
+ (1 == dinfo->comp_info[2].v_samp_factor)) { |
+ return false; |
+ } |
+ |
+ // Support all common cases of Y samp_factors. |
+ // TODO (msarett): As mentioned above, it would be possible to support |
+ // more combinations of samp_factors. The issues are: |
+ // (1) Are there actually any images that are not covered |
+ // by these cases? |
+ // (2) How much complexity would be added to the |
+ // implementation in order to support these rare |
+ // cases? |
+ int hSampY = dinfo->comp_info[0].h_samp_factor; |
+ int vSampY = dinfo->comp_info[0].v_samp_factor; |
+ return (1 == hSampY && 1 == vSampY) || |
+ (2 == hSampY && 1 == vSampY) || |
+ (2 == hSampY && 2 == vSampY) || |
+ (1 == hSampY && 2 == vSampY) || |
+ (4 == hSampY && 1 == vSampY) || |
+ (4 == hSampY && 2 == vSampY); |
+} |
+ |
+bool SkJpegCodec::onQueryYUV8(YUVSizeInfo* sizeInfo, SkYUVColorSpace* colorSpace) const { |
+ jpeg_decompress_struct* dinfo = fDecoderMgr->dinfo(); |
+ if (!is_yuv_supported(dinfo)) { |
+ return false; |
+ } |
+ |
+ sizeInfo->fYSize.set(dinfo->comp_info[0].downsampled_width, |
+ dinfo->comp_info[0].downsampled_height); |
+ sizeInfo->fUSize.set(dinfo->comp_info[1].downsampled_width, |
+ dinfo->comp_info[1].downsampled_height); |
+ sizeInfo->fVSize.set(dinfo->comp_info[2].downsampled_width, |
+ dinfo->comp_info[2].downsampled_height); |
+ sizeInfo->fYWidthBytes = dinfo->comp_info[0].width_in_blocks * DCTSIZE; |
+ sizeInfo->fUWidthBytes = dinfo->comp_info[1].width_in_blocks * DCTSIZE; |
+ sizeInfo->fVWidthBytes = dinfo->comp_info[2].width_in_blocks * DCTSIZE; |
+ |
+ if (colorSpace) { |
+ *colorSpace = kJPEG_SkYUVColorSpace; |
+ } |
+ |
+ return true; |
+} |
+ |
+SkCodec::Result SkJpegCodec::onGetYUV8Planes(const YUVSizeInfo& sizeInfo, void* pixels[3]) { |
+ YUVSizeInfo defaultInfo; |
+ |
+ // This will check is_yuv_supported(), so we don't need to here. |
+ bool supportsYUV = this->onQueryYUV8(&defaultInfo, nullptr); |
+ if (!supportsYUV || sizeInfo.fYSize != defaultInfo.fYSize || |
+ sizeInfo.fUSize != defaultInfo.fUSize || |
+ sizeInfo.fVSize != defaultInfo.fVSize || |
+ sizeInfo.fYWidthBytes < defaultInfo.fYWidthBytes || |
+ sizeInfo.fUWidthBytes < defaultInfo.fUWidthBytes || |
+ sizeInfo.fVWidthBytes < defaultInfo.fVWidthBytes) { |
+ return fDecoderMgr->returnFailure("onGetYUV8Planes", kInvalidInput); |
+ } |
+ |
+ // Set the jump location for libjpeg errors |
+ if (setjmp(fDecoderMgr->getJmpBuf())) { |
+ return fDecoderMgr->returnFailure("setjmp", kInvalidInput); |
+ } |
+ |
+ // Get a pointer to the decompress info since we will use it quite frequently |
+ jpeg_decompress_struct* dinfo = fDecoderMgr->dinfo(); |
+ |
+ dinfo->raw_data_out = TRUE; |
+ if (!jpeg_start_decompress(dinfo)) { |
+ return fDecoderMgr->returnFailure("startDecompress", kInvalidInput); |
+ } |
+ |
+ // A previous implementation claims that the return value of is_yuv_supported() |
+ // may change after calling jpeg_start_decompress(). It looks to me like this |
+ // was caused by a bug in the old code, but we'll be safe and check here. |
+ SkASSERT(is_yuv_supported(dinfo)); |
+ |
+ // Currently, we require that the Y plane dimensions match the image dimensions |
+ // and that the U and V planes are the same dimensions. |
+ SkASSERT(sizeInfo.fUSize == sizeInfo.fVSize); |
+ SkASSERT((uint32_t) sizeInfo.fYSize.width() == dinfo->output_width && |
+ (uint32_t) sizeInfo.fYSize.height() == dinfo->output_height); |
+ |
+ // Build a JSAMPIMAGE to handle output from libjpeg-turbo. A JSAMPIMAGE has |
+ // a 2-D array of pixels for each of the components (Y, U, V) in the image. |
+ // Cheat Sheet: |
+ // JSAMPIMAGE == JSAMPLEARRAY* == JSAMPROW** == JSAMPLE*** |
+ JSAMPARRAY yuv[3]; |
+ |
+ // Set aside enough space for pointers to rows of Y, U, and V. |
+ JSAMPROW rowptrs[2 * DCTSIZE + DCTSIZE + DCTSIZE]; |
+ yuv[0] = &rowptrs[0]; // Y rows (DCTSIZE or 2 * DCTSIZE) |
+ yuv[1] = &rowptrs[2 * DCTSIZE]; // U rows (DCTSIZE) |
+ yuv[2] = &rowptrs[3 * DCTSIZE]; // V rows (DCTSIZE) |
+ |
+ // Initialize rowptrs. |
+ int numYRowsPerBlock = DCTSIZE * dinfo->comp_info[0].v_samp_factor; |
+ for (int i = 0; i < numYRowsPerBlock; i++) { |
+ rowptrs[i] = SkTAddOffset<JSAMPLE>(pixels[0], i * sizeInfo.fYWidthBytes); |
+ } |
+ for (int i = 0; i < DCTSIZE; i++) { |
+ rowptrs[i + 2 * DCTSIZE] = SkTAddOffset<JSAMPLE>(pixels[1], i * sizeInfo.fUWidthBytes); |
+ rowptrs[i + 3 * DCTSIZE] = SkTAddOffset<JSAMPLE>(pixels[2], i * sizeInfo.fVWidthBytes); |
+ } |
+ |
+ // After each loop iteration, we will increment pointers to Y, U, and V. |
+ size_t blockIncrementY = numYRowsPerBlock * sizeInfo.fYWidthBytes; |
+ size_t blockIncrementU = DCTSIZE * sizeInfo.fUWidthBytes; |
+ size_t blockIncrementV = DCTSIZE * sizeInfo.fVWidthBytes; |
+ |
+ uint32_t numRowsPerBlock = numYRowsPerBlock; |
+ |
+ // We intentionally round down here, as this first loop will only handle |
+ // full block rows. As a special case at the end, we will handle any |
+ // remaining rows that do not make up a full block. |
+ const int numIters = dinfo->output_height / numRowsPerBlock; |
+ for (int i = 0; i < numIters; i++) { |
+ JDIMENSION linesRead = jpeg_read_raw_data(dinfo, yuv, numRowsPerBlock); |
+ if (linesRead < numRowsPerBlock) { |
+ // FIXME: Handle incomplete YUV decodes without signalling an error. |
+ return kInvalidInput; |
+ } |
+ |
+ // Update rowptrs. |
+ for (int i = 0; i < numYRowsPerBlock; i++) { |
+ rowptrs[i] += blockIncrementY; |
+ } |
+ for (int i = 0; i < DCTSIZE; i++) { |
+ rowptrs[i + 2 * DCTSIZE] += blockIncrementU; |
+ rowptrs[i + 3 * DCTSIZE] += blockIncrementV; |
+ } |
+ } |
+ |
+ uint32_t remainingRows = dinfo->output_height - dinfo->output_scanline; |
+ SkASSERT(remainingRows == dinfo->output_height % numRowsPerBlock); |
+ SkASSERT(dinfo->output_scanline == numIters * numRowsPerBlock); |
+ if (remainingRows > 0) { |
+ // libjpeg-turbo needs memory to be padded by the block sizes. We will fulfill |
+ // this requirement using a dummy row buffer. |
+ // FIXME: Should SkCodec have an extra memory buffer that can be shared among |
+ // all of the implementations that use temporary/garbage memory? |
+ SkAutoTMalloc<JSAMPLE> dummyRow(sizeInfo.fYWidthBytes); |
+ for (int i = remainingRows; i < numYRowsPerBlock; i++) { |
+ rowptrs[i] = dummyRow.get(); |
+ } |
+ int remainingUVRows = dinfo->comp_info[1].downsampled_height - DCTSIZE * numIters; |
+ for (int i = remainingUVRows; i < DCTSIZE; i++) { |
+ rowptrs[i + 2 * DCTSIZE] = dummyRow.get(); |
+ rowptrs[i + 3 * DCTSIZE] = dummyRow.get(); |
+ } |
+ |
+ JDIMENSION linesRead = jpeg_read_raw_data(dinfo, yuv, numRowsPerBlock); |
+ if (linesRead < remainingRows) { |
+ // FIXME: Handle incomplete YUV decodes without signalling an error. |
+ return kInvalidInput; |
+ } |
+ } |
+ |
+ return kSuccess; |
+} |