OLD | NEW |
1 // Copyright 2012 Google Inc. All Rights Reserved. | 1 // Copyright 2012 Google Inc. All Rights Reserved. |
2 // | 2 // |
3 // Use of this source code is governed by a BSD-style license | 3 // Use of this source code is governed by a BSD-style license |
4 // that can be found in the COPYING file in the root of the source | 4 // that can be found in the COPYING file in the root of the source |
5 // tree. An additional intellectual property rights grant can be found | 5 // tree. An additional intellectual property rights grant can be found |
6 // in the file PATENTS. All contributing project authors may | 6 // in the file PATENTS. All contributing project authors may |
7 // be found in the AUTHORS file in the root of the source tree. | 7 // be found in the AUTHORS file in the root of the source tree. |
8 // ----------------------------------------------------------------------------- | 8 // ----------------------------------------------------------------------------- |
9 // | 9 // |
10 // Utilities for building and looking up Huffman trees. | 10 // Utilities for building and looking up Huffman trees. |
11 // | 11 // |
12 // Author: Urvang Joshi (urvang@google.com) | 12 // Author: Urvang Joshi (urvang@google.com) |
13 | 13 |
14 #include <assert.h> | 14 #include <assert.h> |
15 #include <stdlib.h> | 15 #include <stdlib.h> |
16 #include <string.h> | 16 #include <string.h> |
17 #include "./huffman.h" | 17 #include "./huffman.h" |
18 #include "../utils/utils.h" | 18 #include "../utils/utils.h" |
19 #include "../webp/format_constants.h" | 19 #include "../webp/format_constants.h" |
20 | 20 |
21 // Uncomment the following to use look-up table for ReverseBits() | |
22 // (might be faster on some platform) | |
23 // #define USE_LUT_REVERSE_BITS | |
24 | |
25 // Huffman data read via DecodeImageStream is represented in two (red and green) | 21 // Huffman data read via DecodeImageStream is represented in two (red and green) |
26 // bytes. | 22 // bytes. |
27 #define MAX_HTREE_GROUPS 0x10000 | 23 #define MAX_HTREE_GROUPS 0x10000 |
28 #define NON_EXISTENT_SYMBOL (-1) | |
29 | |
30 static void TreeNodeInit(HuffmanTreeNode* const node) { | |
31 node->children_ = -1; // means: 'unassigned so far' | |
32 } | |
33 | |
34 static int NodeIsEmpty(const HuffmanTreeNode* const node) { | |
35 return (node->children_ < 0); | |
36 } | |
37 | |
38 static int IsFull(const HuffmanTree* const tree) { | |
39 return (tree->num_nodes_ == tree->max_nodes_); | |
40 } | |
41 | |
42 static void AssignChildren(HuffmanTree* const tree, | |
43 HuffmanTreeNode* const node) { | |
44 HuffmanTreeNode* const children = tree->root_ + tree->num_nodes_; | |
45 node->children_ = (int)(children - node); | |
46 assert(children - node == (int)(children - node)); | |
47 tree->num_nodes_ += 2; | |
48 TreeNodeInit(children + 0); | |
49 TreeNodeInit(children + 1); | |
50 } | |
51 | |
52 // A Huffman tree is a full binary tree; and in a full binary tree with L | |
53 // leaves, the total number of nodes N = 2 * L - 1. | |
54 static int HuffmanTreeMaxNodes(int num_leaves) { | |
55 return (2 * num_leaves - 1); | |
56 } | |
57 | |
58 static int HuffmanTreeAllocate(HuffmanTree* const tree, int num_nodes) { | |
59 assert(tree != NULL); | |
60 tree->root_ = | |
61 (HuffmanTreeNode*)WebPSafeMalloc(num_nodes, sizeof(*tree->root_)); | |
62 return (tree->root_ != NULL); | |
63 } | |
64 | |
65 static int TreeInit(HuffmanTree* const tree, int num_leaves) { | |
66 assert(tree != NULL); | |
67 if (num_leaves == 0) return 0; | |
68 tree->max_nodes_ = HuffmanTreeMaxNodes(num_leaves); | |
69 assert(tree->max_nodes_ < (1 << 16)); // limit for the lut_jump_ table | |
70 if (!HuffmanTreeAllocate(tree, tree->max_nodes_)) return 0; | |
71 TreeNodeInit(tree->root_); // Initialize root. | |
72 tree->num_nodes_ = 1; | |
73 memset(tree->lut_bits_, 255, sizeof(tree->lut_bits_)); | |
74 memset(tree->lut_jump_, 0, sizeof(tree->lut_jump_)); | |
75 return 1; | |
76 } | |
77 | |
78 void VP8LHuffmanTreeFree(HuffmanTree* const tree) { | |
79 if (tree != NULL) { | |
80 WebPSafeFree(tree->root_); | |
81 tree->root_ = NULL; | |
82 tree->max_nodes_ = 0; | |
83 tree->num_nodes_ = 0; | |
84 } | |
85 } | |
86 | 24 |
87 HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) { | 25 HTreeGroup* VP8LHtreeGroupsNew(int num_htree_groups) { |
88 HTreeGroup* const htree_groups = | 26 HTreeGroup* const htree_groups = |
89 (HTreeGroup*)WebPSafeCalloc(num_htree_groups, sizeof(*htree_groups)); | 27 (HTreeGroup*)WebPSafeMalloc(num_htree_groups, sizeof(*htree_groups)); |
90 assert(num_htree_groups <= MAX_HTREE_GROUPS); | |
91 if (htree_groups == NULL) { | 28 if (htree_groups == NULL) { |
92 return NULL; | 29 return NULL; |
93 } | 30 } |
| 31 assert(num_htree_groups <= MAX_HTREE_GROUPS); |
94 return htree_groups; | 32 return htree_groups; |
95 } | 33 } |
96 | 34 |
97 void VP8LHtreeGroupsFree(HTreeGroup* htree_groups, int num_htree_groups) { | 35 void VP8LHtreeGroupsFree(HTreeGroup* const htree_groups) { |
98 if (htree_groups != NULL) { | 36 if (htree_groups != NULL) { |
99 int i, j; | |
100 for (i = 0; i < num_htree_groups; ++i) { | |
101 HuffmanTree* const htrees = htree_groups[i].htrees_; | |
102 for (j = 0; j < HUFFMAN_CODES_PER_META_CODE; ++j) { | |
103 VP8LHuffmanTreeFree(&htrees[j]); | |
104 } | |
105 } | |
106 WebPSafeFree(htree_groups); | 37 WebPSafeFree(htree_groups); |
107 } | 38 } |
108 } | 39 } |
109 | 40 |
110 int VP8LHuffmanCodeLengthsToCodes( | 41 // Returns reverse(reverse(key, len) + 1, len), where reverse(key, len) is the |
111 const int* const code_lengths, int code_lengths_size, | 42 // bit-wise reversal of the len least significant bits of key. |
112 int* const huff_codes) { | 43 static WEBP_INLINE uint32_t GetNextKey(uint32_t key, int len) { |
113 int symbol; | 44 uint32_t step = 1 << (len - 1); |
114 int code_len; | 45 while (key & step) { |
115 int code_length_hist[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; | 46 step >>= 1; |
116 int curr_code; | 47 } |
117 int next_codes[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; | 48 return (key & (step - 1)) + step; |
118 int max_code_length = 0; | 49 } |
119 | 50 |
| 51 // Stores code in table[0], table[step], table[2*step], ..., table[end]. |
| 52 // Assumes that end is an integer multiple of step. |
| 53 static WEBP_INLINE void ReplicateValue(HuffmanCode* table, |
| 54 int step, int end, |
| 55 HuffmanCode code) { |
| 56 assert(end % step == 0); |
| 57 do { |
| 58 end -= step; |
| 59 table[end] = code; |
| 60 } while (end > 0); |
| 61 } |
| 62 |
| 63 // Returns the table width of the next 2nd level table. count is the histogram |
| 64 // of bit lengths for the remaining symbols, len is the code length of the next |
| 65 // processed symbol |
| 66 static WEBP_INLINE int NextTableBitSize(const int* const count, |
| 67 int len, int root_bits) { |
| 68 int left = 1 << (len - root_bits); |
| 69 while (len < MAX_ALLOWED_CODE_LENGTH) { |
| 70 left -= count[len]; |
| 71 if (left <= 0) break; |
| 72 ++len; |
| 73 left <<= 1; |
| 74 } |
| 75 return len - root_bits; |
| 76 } |
| 77 |
| 78 int VP8LBuildHuffmanTable(HuffmanCode* const root_table, int root_bits, |
| 79 const int code_lengths[], int code_lengths_size) { |
| 80 HuffmanCode* table = root_table; // next available space in table |
| 81 int total_size = 1 << root_bits; // total size root table + 2nd level table |
| 82 int* sorted = NULL; // symbols sorted by code length |
| 83 int len; // current code length |
| 84 int symbol; // symbol index in original or sorted table |
| 85 // number of codes of each length: |
| 86 int count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 }; |
| 87 // offsets in sorted table for each length: |
| 88 int offset[MAX_ALLOWED_CODE_LENGTH + 1]; |
| 89 |
| 90 assert(code_lengths_size != 0); |
120 assert(code_lengths != NULL); | 91 assert(code_lengths != NULL); |
121 assert(code_lengths_size > 0); | 92 assert(root_table != NULL); |
122 assert(huff_codes != NULL); | 93 assert(root_bits > 0); |
123 | 94 |
124 // Calculate max code length. | 95 // Build histogram of code lengths. |
125 for (symbol = 0; symbol < code_lengths_size; ++symbol) { | 96 for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
126 if (code_lengths[symbol] > max_code_length) { | 97 if (code_lengths[symbol] > MAX_ALLOWED_CODE_LENGTH) { |
127 max_code_length = code_lengths[symbol]; | 98 return 0; |
128 } | 99 } |
129 } | 100 ++count[code_lengths[symbol]]; |
130 if (max_code_length > MAX_ALLOWED_CODE_LENGTH) return 0; | |
131 | |
132 // Calculate code length histogram. | |
133 for (symbol = 0; symbol < code_lengths_size; ++symbol) { | |
134 ++code_length_hist[code_lengths[symbol]]; | |
135 } | |
136 code_length_hist[0] = 0; | |
137 | |
138 // Calculate the initial values of 'next_codes' for each code length. | |
139 // next_codes[code_len] denotes the code to be assigned to the next symbol | |
140 // of code length 'code_len'. | |
141 curr_code = 0; | |
142 next_codes[0] = -1; // Unused, as code length = 0 implies code doesn't exist. | |
143 for (code_len = 1; code_len <= max_code_length; ++code_len) { | |
144 curr_code = (curr_code + code_length_hist[code_len - 1]) << 1; | |
145 next_codes[code_len] = curr_code; | |
146 } | 101 } |
147 | 102 |
148 // Get symbols. | 103 // Error, all code lengths are zeros. |
149 for (symbol = 0; symbol < code_lengths_size; ++symbol) { | 104 if (count[0] == code_lengths_size) { |
150 if (code_lengths[symbol] > 0) { | 105 return 0; |
151 huff_codes[symbol] = next_codes[code_lengths[symbol]]++; | |
152 } else { | |
153 huff_codes[symbol] = NON_EXISTENT_SYMBOL; | |
154 } | |
155 } | 106 } |
156 return 1; | |
157 } | |
158 | 107 |
159 #ifndef USE_LUT_REVERSE_BITS | 108 // Generate offsets into sorted symbol table by code length. |
160 | 109 offset[1] = 0; |
161 static int ReverseBitsShort(int bits, int num_bits) { | 110 for (len = 1; len < MAX_ALLOWED_CODE_LENGTH; ++len) { |
162 int retval = 0; | 111 if (count[len] > (1 << len)) { |
163 int i; | |
164 assert(num_bits <= 8); // Not a hard requirement, just for coherency. | |
165 for (i = 0; i < num_bits; ++i) { | |
166 retval <<= 1; | |
167 retval |= bits & 1; | |
168 bits >>= 1; | |
169 } | |
170 return retval; | |
171 } | |
172 | |
173 #else | |
174 | |
175 static const uint8_t kReversedBits[16] = { // Pre-reversed 4-bit values. | |
176 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, | |
177 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf | |
178 }; | |
179 | |
180 static int ReverseBitsShort(int bits, int num_bits) { | |
181 const uint8_t v = (kReversedBits[bits & 0xf] << 4) | kReversedBits[bits >> 4]; | |
182 assert(num_bits <= 8); | |
183 return v >> (8 - num_bits); | |
184 } | |
185 | |
186 #endif | |
187 | |
188 static int TreeAddSymbol(HuffmanTree* const tree, | |
189 int symbol, int code, int code_length) { | |
190 int step = HUFF_LUT_BITS; | |
191 int base_code; | |
192 HuffmanTreeNode* node = tree->root_; | |
193 const HuffmanTreeNode* const max_node = tree->root_ + tree->max_nodes_; | |
194 assert(symbol == (int16_t)symbol); | |
195 if (code_length <= HUFF_LUT_BITS) { | |
196 int i; | |
197 base_code = ReverseBitsShort(code, code_length); | |
198 for (i = 0; i < (1 << (HUFF_LUT_BITS - code_length)); ++i) { | |
199 const int idx = base_code | (i << code_length); | |
200 tree->lut_symbol_[idx] = (int16_t)symbol; | |
201 tree->lut_bits_[idx] = code_length; | |
202 } | |
203 } else { | |
204 base_code = ReverseBitsShort((code >> (code_length - HUFF_LUT_BITS)), | |
205 HUFF_LUT_BITS); | |
206 } | |
207 while (code_length-- > 0) { | |
208 if (node >= max_node) { | |
209 return 0; | 112 return 0; |
210 } | 113 } |
211 if (NodeIsEmpty(node)) { | 114 offset[len + 1] = offset[len] + count[len]; |
212 if (IsFull(tree)) return 0; // error: too many symbols. | |
213 AssignChildren(tree, node); | |
214 } else if (!HuffmanTreeNodeIsNotLeaf(node)) { | |
215 return 0; // leaf is already occupied. | |
216 } | |
217 node += node->children_ + ((code >> code_length) & 1); | |
218 if (--step == 0) { | |
219 tree->lut_jump_[base_code] = (int16_t)(node - tree->root_); | |
220 } | |
221 } | 115 } |
222 if (NodeIsEmpty(node)) { | 116 |
223 node->children_ = 0; // turn newly created node into a leaf. | 117 sorted = (int*)WebPSafeMalloc(code_lengths_size, sizeof(*sorted)); |
224 } else if (HuffmanTreeNodeIsNotLeaf(node)) { | 118 if (sorted == NULL) { |
225 return 0; // trying to assign a symbol to already used code. | 119 return 0; |
226 } | 120 } |
227 node->symbol_ = symbol; // Add symbol in this node. | |
228 return 1; | |
229 } | |
230 | 121 |
231 int VP8LHuffmanTreeBuildImplicit(HuffmanTree* const tree, | 122 // Sort symbols by length, by symbol order within each length. |
232 const int* const code_lengths, | |
233 int* const codes, | |
234 int code_lengths_size) { | |
235 int symbol; | |
236 int num_symbols = 0; | |
237 int root_symbol = 0; | |
238 | |
239 assert(tree != NULL); | |
240 assert(code_lengths != NULL); | |
241 | |
242 // Find out number of symbols and the root symbol. | |
243 for (symbol = 0; symbol < code_lengths_size; ++symbol) { | 123 for (symbol = 0; symbol < code_lengths_size; ++symbol) { |
| 124 const int symbol_code_length = code_lengths[symbol]; |
244 if (code_lengths[symbol] > 0) { | 125 if (code_lengths[symbol] > 0) { |
245 // Note: code length = 0 indicates non-existent symbol. | 126 sorted[offset[symbol_code_length]++] = symbol; |
246 ++num_symbols; | |
247 root_symbol = symbol; | |
248 } | 127 } |
249 } | 128 } |
250 | 129 |
251 // Initialize the tree. Will fail for num_symbols = 0 | 130 // Special case code with only one value. |
252 if (!TreeInit(tree, num_symbols)) return 0; | 131 if (offset[MAX_ALLOWED_CODE_LENGTH] == 1) { |
| 132 HuffmanCode code; |
| 133 code.bits = 0; |
| 134 code.value = (uint16_t)sorted[0]; |
| 135 ReplicateValue(table, 1, total_size, code); |
| 136 WebPSafeFree(sorted); |
| 137 return total_size; |
| 138 } |
253 | 139 |
254 // Build tree. | 140 { |
255 if (num_symbols == 1) { // Trivial case. | 141 int step; // step size to replicate values in current table |
256 const int max_symbol = code_lengths_size; | 142 uint32_t low = -1; // low bits for current root entry |
257 if (root_symbol < 0 || root_symbol >= max_symbol) { | 143 uint32_t mask = total_size - 1; // mask for low bits |
258 VP8LHuffmanTreeFree(tree); | 144 uint32_t key = 0; // reversed prefix code |
| 145 int num_nodes = 1; // number of Huffman tree nodes |
| 146 int num_open = 1; // number of open branches in current tree level |
| 147 int table_bits = root_bits; // key length of current table |
| 148 int table_size = 1 << table_bits; // size of current table |
| 149 symbol = 0; |
| 150 // Fill in root table. |
| 151 for (len = 1, step = 2; len <= root_bits; ++len, step <<= 1) { |
| 152 num_open <<= 1; |
| 153 num_nodes += num_open; |
| 154 num_open -= count[len]; |
| 155 if (num_open < 0) { |
| 156 WebPSafeFree(sorted); |
| 157 return 0; |
| 158 } |
| 159 for (; count[len] > 0; --count[len]) { |
| 160 HuffmanCode code; |
| 161 code.bits = (uint8_t)len; |
| 162 code.value = (uint16_t)sorted[symbol++]; |
| 163 ReplicateValue(&table[key], step, table_size, code); |
| 164 key = GetNextKey(key, len); |
| 165 } |
| 166 } |
| 167 |
| 168 // Fill in 2nd level tables and add pointers to root table. |
| 169 for (len = root_bits + 1, step = 2; len <= MAX_ALLOWED_CODE_LENGTH; |
| 170 ++len, step <<= 1) { |
| 171 num_open <<= 1; |
| 172 num_nodes += num_open; |
| 173 num_open -= count[len]; |
| 174 if (num_open < 0) { |
| 175 WebPSafeFree(sorted); |
| 176 return 0; |
| 177 } |
| 178 for (; count[len] > 0; --count[len]) { |
| 179 HuffmanCode code; |
| 180 if ((key & mask) != low) { |
| 181 table += table_size; |
| 182 table_bits = NextTableBitSize(count, len, root_bits); |
| 183 table_size = 1 << table_bits; |
| 184 total_size += table_size; |
| 185 low = key & mask; |
| 186 root_table[low].bits = (uint8_t)(table_bits + root_bits); |
| 187 root_table[low].value = (uint16_t)((table - root_table) - low); |
| 188 } |
| 189 code.bits = (uint8_t)(len - root_bits); |
| 190 code.value = (uint16_t)sorted[symbol++]; |
| 191 ReplicateValue(&table[key >> root_bits], step, table_size, code); |
| 192 key = GetNextKey(key, len); |
| 193 } |
| 194 } |
| 195 |
| 196 // Check if tree is full. |
| 197 if (num_nodes != 2 * offset[MAX_ALLOWED_CODE_LENGTH] - 1) { |
| 198 WebPSafeFree(sorted); |
259 return 0; | 199 return 0; |
260 } | 200 } |
261 return TreeAddSymbol(tree, root_symbol, 0, 0); | 201 } |
262 } else { // Normal case. | |
263 int ok = 0; | |
264 memset(codes, 0, code_lengths_size * sizeof(*codes)); | |
265 | 202 |
266 if (!VP8LHuffmanCodeLengthsToCodes(code_lengths, code_lengths_size, | 203 WebPSafeFree(sorted); |
267 codes)) { | 204 return total_size; |
268 goto End; | |
269 } | |
270 | |
271 // Add symbols one-by-one. | |
272 for (symbol = 0; symbol < code_lengths_size; ++symbol) { | |
273 if (code_lengths[symbol] > 0) { | |
274 if (!TreeAddSymbol(tree, symbol, codes[symbol], | |
275 code_lengths[symbol])) { | |
276 goto End; | |
277 } | |
278 } | |
279 } | |
280 ok = 1; | |
281 End: | |
282 ok = ok && IsFull(tree); | |
283 if (!ok) VP8LHuffmanTreeFree(tree); | |
284 return ok; | |
285 } | |
286 } | 205 } |
287 | |
288 int VP8LHuffmanTreeBuildExplicit(HuffmanTree* const tree, | |
289 const int* const code_lengths, | |
290 const int* const codes, | |
291 const int* const symbols, int max_symbol, | |
292 int num_symbols) { | |
293 int ok = 0; | |
294 int i; | |
295 assert(tree != NULL); | |
296 assert(code_lengths != NULL); | |
297 assert(codes != NULL); | |
298 assert(symbols != NULL); | |
299 | |
300 // Initialize the tree. Will fail if num_symbols = 0. | |
301 if (!TreeInit(tree, num_symbols)) return 0; | |
302 | |
303 // Add symbols one-by-one. | |
304 for (i = 0; i < num_symbols; ++i) { | |
305 if (codes[i] != NON_EXISTENT_SYMBOL) { | |
306 if (symbols[i] < 0 || symbols[i] >= max_symbol) { | |
307 goto End; | |
308 } | |
309 if (!TreeAddSymbol(tree, symbols[i], codes[i], code_lengths[i])) { | |
310 goto End; | |
311 } | |
312 } | |
313 } | |
314 ok = 1; | |
315 End: | |
316 ok = ok && IsFull(tree); | |
317 if (!ok) VP8LHuffmanTreeFree(tree); | |
318 return ok; | |
319 } | |
OLD | NEW |