OLD | NEW |
1 // Copyright 2012 Google Inc. All Rights Reserved. | 1 // Copyright 2012 Google Inc. All Rights Reserved. |
2 // | 2 // |
3 // Use of this source code is governed by a BSD-style license | 3 // Use of this source code is governed by a BSD-style license |
4 // that can be found in the COPYING file in the root of the source | 4 // that can be found in the COPYING file in the root of the source |
5 // tree. An additional intellectual property rights grant can be found | 5 // tree. An additional intellectual property rights grant can be found |
6 // in the file PATENTS. All contributing project authors may | 6 // in the file PATENTS. All contributing project authors may |
7 // be found in the AUTHORS file in the root of the source tree. | 7 // be found in the AUTHORS file in the root of the source tree. |
8 // ----------------------------------------------------------------------------- | 8 // ----------------------------------------------------------------------------- |
9 // | 9 // |
10 // Image transforms and color space conversion methods for lossless decoder. | 10 // Image transforms and color space conversion methods for lossless decoder. |
11 // | 11 // |
12 // Authors: Vikas Arora (vikaas.arora@gmail.com) | 12 // Authors: Vikas Arora (vikaas.arora@gmail.com) |
13 // Jyrki Alakuijala (jyrki@google.com) | 13 // Jyrki Alakuijala (jyrki@google.com) |
14 // Urvang Joshi (urvang@google.com) | 14 // Urvang Joshi (urvang@google.com) |
15 | 15 |
16 #include "./dsp.h" | 16 #include "./dsp.h" |
17 | 17 |
18 #include <math.h> | 18 #include <math.h> |
19 #include <stdlib.h> | 19 #include <stdlib.h> |
20 #include "../dec/vp8li.h" | 20 #include "../dec/vp8li.h" |
21 #include "../utils/endian_inl.h" | 21 #include "../utils/endian_inl.h" |
22 #include "./lossless.h" | 22 #include "./lossless.h" |
23 #include "./yuv.h" | |
24 | 23 |
25 #define MAX_DIFF_COST (1e30f) | 24 #define MAX_DIFF_COST (1e30f) |
26 | 25 |
27 // lookup table for small values of log2(int) | |
28 const float kLog2Table[LOG_LOOKUP_IDX_MAX] = { | |
29 0.0000000000000000f, 0.0000000000000000f, | |
30 1.0000000000000000f, 1.5849625007211560f, | |
31 2.0000000000000000f, 2.3219280948873621f, | |
32 2.5849625007211560f, 2.8073549220576041f, | |
33 3.0000000000000000f, 3.1699250014423121f, | |
34 3.3219280948873621f, 3.4594316186372973f, | |
35 3.5849625007211560f, 3.7004397181410921f, | |
36 3.8073549220576041f, 3.9068905956085187f, | |
37 4.0000000000000000f, 4.0874628412503390f, | |
38 4.1699250014423121f, 4.2479275134435852f, | |
39 4.3219280948873626f, 4.3923174227787606f, | |
40 4.4594316186372973f, 4.5235619560570130f, | |
41 4.5849625007211560f, 4.6438561897747243f, | |
42 4.7004397181410917f, 4.7548875021634682f, | |
43 4.8073549220576037f, 4.8579809951275718f, | |
44 4.9068905956085187f, 4.9541963103868749f, | |
45 5.0000000000000000f, 5.0443941193584533f, | |
46 5.0874628412503390f, 5.1292830169449663f, | |
47 5.1699250014423121f, 5.2094533656289501f, | |
48 5.2479275134435852f, 5.2854022188622487f, | |
49 5.3219280948873626f, 5.3575520046180837f, | |
50 5.3923174227787606f, 5.4262647547020979f, | |
51 5.4594316186372973f, 5.4918530963296747f, | |
52 5.5235619560570130f, 5.5545888516776376f, | |
53 5.5849625007211560f, 5.6147098441152083f, | |
54 5.6438561897747243f, 5.6724253419714951f, | |
55 5.7004397181410917f, 5.7279204545631987f, | |
56 5.7548875021634682f, 5.7813597135246599f, | |
57 5.8073549220576037f, 5.8328900141647412f, | |
58 5.8579809951275718f, 5.8826430493618415f, | |
59 5.9068905956085187f, 5.9307373375628866f, | |
60 5.9541963103868749f, 5.9772799234999167f, | |
61 6.0000000000000000f, 6.0223678130284543f, | |
62 6.0443941193584533f, 6.0660891904577720f, | |
63 6.0874628412503390f, 6.1085244567781691f, | |
64 6.1292830169449663f, 6.1497471195046822f, | |
65 6.1699250014423121f, 6.1898245588800175f, | |
66 6.2094533656289501f, 6.2288186904958804f, | |
67 6.2479275134435852f, 6.2667865406949010f, | |
68 6.2854022188622487f, 6.3037807481771030f, | |
69 6.3219280948873626f, 6.3398500028846243f, | |
70 6.3575520046180837f, 6.3750394313469245f, | |
71 6.3923174227787606f, 6.4093909361377017f, | |
72 6.4262647547020979f, 6.4429434958487279f, | |
73 6.4594316186372973f, 6.4757334309663976f, | |
74 6.4918530963296747f, 6.5077946401986963f, | |
75 6.5235619560570130f, 6.5391588111080309f, | |
76 6.5545888516776376f, 6.5698556083309478f, | |
77 6.5849625007211560f, 6.5999128421871278f, | |
78 6.6147098441152083f, 6.6293566200796094f, | |
79 6.6438561897747243f, 6.6582114827517946f, | |
80 6.6724253419714951f, 6.6865005271832185f, | |
81 6.7004397181410917f, 6.7142455176661224f, | |
82 6.7279204545631987f, 6.7414669864011464f, | |
83 6.7548875021634682f, 6.7681843247769259f, | |
84 6.7813597135246599f, 6.7944158663501061f, | |
85 6.8073549220576037f, 6.8201789624151878f, | |
86 6.8328900141647412f, 6.8454900509443747f, | |
87 6.8579809951275718f, 6.8703647195834047f, | |
88 6.8826430493618415f, 6.8948177633079437f, | |
89 6.9068905956085187f, 6.9188632372745946f, | |
90 6.9307373375628866f, 6.9425145053392398f, | |
91 6.9541963103868749f, 6.9657842846620869f, | |
92 6.9772799234999167f, 6.9886846867721654f, | |
93 7.0000000000000000f, 7.0112272554232539f, | |
94 7.0223678130284543f, 7.0334230015374501f, | |
95 7.0443941193584533f, 7.0552824355011898f, | |
96 7.0660891904577720f, 7.0768155970508308f, | |
97 7.0874628412503390f, 7.0980320829605263f, | |
98 7.1085244567781691f, 7.1189410727235076f, | |
99 7.1292830169449663f, 7.1395513523987936f, | |
100 7.1497471195046822f, 7.1598713367783890f, | |
101 7.1699250014423121f, 7.1799090900149344f, | |
102 7.1898245588800175f, 7.1996723448363644f, | |
103 7.2094533656289501f, 7.2191685204621611f, | |
104 7.2288186904958804f, 7.2384047393250785f, | |
105 7.2479275134435852f, 7.2573878426926521f, | |
106 7.2667865406949010f, 7.2761244052742375f, | |
107 7.2854022188622487f, 7.2946207488916270f, | |
108 7.3037807481771030f, 7.3128829552843557f, | |
109 7.3219280948873626f, 7.3309168781146167f, | |
110 7.3398500028846243f, 7.3487281542310771f, | |
111 7.3575520046180837f, 7.3663222142458160f, | |
112 7.3750394313469245f, 7.3837042924740519f, | |
113 7.3923174227787606f, 7.4008794362821843f, | |
114 7.4093909361377017f, 7.4178525148858982f, | |
115 7.4262647547020979f, 7.4346282276367245f, | |
116 7.4429434958487279f, 7.4512111118323289f, | |
117 7.4594316186372973f, 7.4676055500829976f, | |
118 7.4757334309663976f, 7.4838157772642563f, | |
119 7.4918530963296747f, 7.4998458870832056f, | |
120 7.5077946401986963f, 7.5156998382840427f, | |
121 7.5235619560570130f, 7.5313814605163118f, | |
122 7.5391588111080309f, 7.5468944598876364f, | |
123 7.5545888516776376f, 7.5622424242210728f, | |
124 7.5698556083309478f, 7.5774288280357486f, | |
125 7.5849625007211560f, 7.5924570372680806f, | |
126 7.5999128421871278f, 7.6073303137496104f, | |
127 7.6147098441152083f, 7.6220518194563764f, | |
128 7.6293566200796094f, 7.6366246205436487f, | |
129 7.6438561897747243f, 7.6510516911789281f, | |
130 7.6582114827517946f, 7.6653359171851764f, | |
131 7.6724253419714951f, 7.6794800995054464f, | |
132 7.6865005271832185f, 7.6934869574993252f, | |
133 7.7004397181410917f, 7.7073591320808825f, | |
134 7.7142455176661224f, 7.7210991887071855f, | |
135 7.7279204545631987f, 7.7347096202258383f, | |
136 7.7414669864011464f, 7.7481928495894605f, | |
137 7.7548875021634682f, 7.7615512324444795f, | |
138 7.7681843247769259f, 7.7747870596011736f, | |
139 7.7813597135246599f, 7.7879025593914317f, | |
140 7.7944158663501061f, 7.8008998999203047f, | |
141 7.8073549220576037f, 7.8137811912170374f, | |
142 7.8201789624151878f, 7.8265484872909150f, | |
143 7.8328900141647412f, 7.8392037880969436f, | |
144 7.8454900509443747f, 7.8517490414160571f, | |
145 7.8579809951275718f, 7.8641861446542797f, | |
146 7.8703647195834047f, 7.8765169465649993f, | |
147 7.8826430493618415f, 7.8887432488982591f, | |
148 7.8948177633079437f, 7.9008668079807486f, | |
149 7.9068905956085187f, 7.9128893362299619f, | |
150 7.9188632372745946f, 7.9248125036057812f, | |
151 7.9307373375628866f, 7.9366379390025709f, | |
152 7.9425145053392398f, 7.9483672315846778f, | |
153 7.9541963103868749f, 7.9600019320680805f, | |
154 7.9657842846620869f, 7.9715435539507719f, | |
155 7.9772799234999167f, 7.9829935746943103f, | |
156 7.9886846867721654f, 7.9943534368588577f | |
157 }; | |
158 | |
159 const float kSLog2Table[LOG_LOOKUP_IDX_MAX] = { | |
160 0.00000000f, 0.00000000f, 2.00000000f, 4.75488750f, | |
161 8.00000000f, 11.60964047f, 15.50977500f, 19.65148445f, | |
162 24.00000000f, 28.52932501f, 33.21928095f, 38.05374781f, | |
163 43.01955001f, 48.10571634f, 53.30296891f, 58.60335893f, | |
164 64.00000000f, 69.48686830f, 75.05865003f, 80.71062276f, | |
165 86.43856190f, 92.23866588f, 98.10749561f, 104.04192499f, | |
166 110.03910002f, 116.09640474f, 122.21143267f, 128.38196256f, | |
167 134.60593782f, 140.88144886f, 147.20671787f, 153.58008562f, | |
168 160.00000000f, 166.46500594f, 172.97373660f, 179.52490559f, | |
169 186.11730005f, 192.74977453f, 199.42124551f, 206.13068654f, | |
170 212.87712380f, 219.65963219f, 226.47733176f, 233.32938445f, | |
171 240.21499122f, 247.13338933f, 254.08384998f, 261.06567603f, | |
172 268.07820003f, 275.12078236f, 282.19280949f, 289.29369244f, | |
173 296.42286534f, 303.57978409f, 310.76392512f, 317.97478424f, | |
174 325.21187564f, 332.47473081f, 339.76289772f, 347.07593991f, | |
175 354.41343574f, 361.77497759f, 369.16017124f, 376.56863518f, | |
176 384.00000000f, 391.45390785f, 398.93001188f, 406.42797576f, | |
177 413.94747321f, 421.48818752f, 429.04981119f, 436.63204548f, | |
178 444.23460010f, 451.85719280f, 459.49954906f, 467.16140179f, | |
179 474.84249102f, 482.54256363f, 490.26137307f, 497.99867911f, | |
180 505.75424759f, 513.52785023f, 521.31926438f, 529.12827280f, | |
181 536.95466351f, 544.79822957f, 552.65876890f, 560.53608414f, | |
182 568.42998244f, 576.34027536f, 584.26677867f, 592.20931226f, | |
183 600.16769996f, 608.14176943f, 616.13135206f, 624.13628279f, | |
184 632.15640007f, 640.19154569f, 648.24156472f, 656.30630539f, | |
185 664.38561898f, 672.47935976f, 680.58738488f, 688.70955430f, | |
186 696.84573069f, 704.99577935f, 713.15956818f, 721.33696754f, | |
187 729.52785023f, 737.73209140f, 745.94956849f, 754.18016116f, | |
188 762.42375127f, 770.68022275f, 778.94946161f, 787.23135586f, | |
189 795.52579543f, 803.83267219f, 812.15187982f, 820.48331383f, | |
190 828.82687147f, 837.18245171f, 845.54995518f, 853.92928416f, | |
191 862.32034249f, 870.72303558f, 879.13727036f, 887.56295522f, | |
192 896.00000000f, 904.44831595f, 912.90781569f, 921.37841320f, | |
193 929.86002376f, 938.35256392f, 946.85595152f, 955.37010560f, | |
194 963.89494641f, 972.43039537f, 980.97637504f, 989.53280911f, | |
195 998.09962237f, 1006.67674069f, 1015.26409097f, 1023.86160116f, | |
196 1032.46920021f, 1041.08681805f, 1049.71438560f, 1058.35183469f, | |
197 1066.99909811f, 1075.65610955f, 1084.32280357f, 1092.99911564f, | |
198 1101.68498204f, 1110.38033993f, 1119.08512727f, 1127.79928282f, | |
199 1136.52274614f, 1145.25545758f, 1153.99735821f, 1162.74838989f, | |
200 1171.50849518f, 1180.27761738f, 1189.05570047f, 1197.84268914f, | |
201 1206.63852876f, 1215.44316535f, 1224.25654560f, 1233.07861684f, | |
202 1241.90932703f, 1250.74862473f, 1259.59645914f, 1268.45278005f, | |
203 1277.31753781f, 1286.19068338f, 1295.07216828f, 1303.96194457f, | |
204 1312.85996488f, 1321.76618236f, 1330.68055071f, 1339.60302413f, | |
205 1348.53355734f, 1357.47210556f, 1366.41862452f, 1375.37307041f, | |
206 1384.33539991f, 1393.30557020f, 1402.28353887f, 1411.26926400f, | |
207 1420.26270412f, 1429.26381818f, 1438.27256558f, 1447.28890615f, | |
208 1456.31280014f, 1465.34420819f, 1474.38309138f, 1483.42941118f, | |
209 1492.48312945f, 1501.54420843f, 1510.61261078f, 1519.68829949f, | |
210 1528.77123795f, 1537.86138993f, 1546.95871952f, 1556.06319119f, | |
211 1565.17476976f, 1574.29342040f, 1583.41910860f, 1592.55180020f, | |
212 1601.69146137f, 1610.83805860f, 1619.99155871f, 1629.15192882f, | |
213 1638.31913637f, 1647.49314911f, 1656.67393509f, 1665.86146266f, | |
214 1675.05570047f, 1684.25661744f, 1693.46418280f, 1702.67836605f, | |
215 1711.89913698f, 1721.12646563f, 1730.36032233f, 1739.60067768f, | |
216 1748.84750254f, 1758.10076802f, 1767.36044551f, 1776.62650662f, | |
217 1785.89892323f, 1795.17766747f, 1804.46271172f, 1813.75402857f, | |
218 1823.05159087f, 1832.35537170f, 1841.66534438f, 1850.98148244f, | |
219 1860.30375965f, 1869.63214999f, 1878.96662767f, 1888.30716711f, | |
220 1897.65374295f, 1907.00633003f, 1916.36490342f, 1925.72943838f, | |
221 1935.09991037f, 1944.47629506f, 1953.85856831f, 1963.24670620f, | |
222 1972.64068498f, 1982.04048108f, 1991.44607117f, 2000.85743204f, | |
223 2010.27454072f, 2019.69737440f, 2029.12591044f, 2038.56012640f | |
224 }; | |
225 | |
226 const VP8LPrefixCode kPrefixEncodeCode[PREFIX_LOOKUP_IDX_MAX] = { | |
227 { 0, 0}, { 0, 0}, { 1, 0}, { 2, 0}, { 3, 0}, { 4, 1}, { 4, 1}, { 5, 1}, | |
228 { 5, 1}, { 6, 2}, { 6, 2}, { 6, 2}, { 6, 2}, { 7, 2}, { 7, 2}, { 7, 2}, | |
229 { 7, 2}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, { 8, 3}, | |
230 { 8, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, { 9, 3}, | |
231 { 9, 3}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, | |
232 {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, {10, 4}, | |
233 {10, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, | |
234 {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, {11, 4}, | |
235 {11, 4}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, | |
236 {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, | |
237 {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, | |
238 {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, {12, 5}, | |
239 {12, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, | |
240 {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, | |
241 {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, | |
242 {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, {13, 5}, | |
243 {13, 5}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, | |
244 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, | |
245 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, | |
246 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, | |
247 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, | |
248 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, | |
249 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, | |
250 {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, {14, 6}, | |
251 {14, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, | |
252 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, | |
253 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, | |
254 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, | |
255 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, | |
256 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, | |
257 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, | |
258 {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, {15, 6}, | |
259 {15, 6}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
260 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
261 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
262 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
263 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
264 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
265 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
266 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
267 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
268 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
269 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
270 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
271 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
272 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
273 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
274 {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, {16, 7}, | |
275 {16, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
276 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
277 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
278 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
279 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
280 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
281 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
282 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
283 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
284 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
285 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
286 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
287 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
288 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
289 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
290 {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, {17, 7}, | |
291 }; | |
292 | |
293 const uint8_t kPrefixEncodeExtraBitsValue[PREFIX_LOOKUP_IDX_MAX] = { | |
294 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, | |
295 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, | |
296 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
297 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
298 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
299 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, | |
300 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
301 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, | |
302 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
303 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, | |
304 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, | |
305 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, | |
306 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
307 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, | |
308 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, | |
309 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, | |
310 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
311 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, | |
312 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, | |
313 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, | |
314 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | |
315 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, | |
316 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, | |
317 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, | |
318 127, | |
319 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, | |
320 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, | |
321 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, | |
322 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, | |
323 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, | |
324 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, | |
325 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, | |
326 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126 | |
327 }; | |
328 | |
329 // The threshold till approximate version of log_2 can be used. | |
330 // Practically, we can get rid of the call to log() as the two values match to | |
331 // very high degree (the ratio of these two is 0.99999x). | |
332 // Keeping a high threshold for now. | |
333 #define APPROX_LOG_WITH_CORRECTION_MAX 65536 | |
334 #define APPROX_LOG_MAX 4096 | |
335 #define LOG_2_RECIPROCAL 1.44269504088896338700465094007086 | |
336 static float FastSLog2Slow(uint32_t v) { | |
337 assert(v >= LOG_LOOKUP_IDX_MAX); | |
338 if (v < APPROX_LOG_WITH_CORRECTION_MAX) { | |
339 int log_cnt = 0; | |
340 uint32_t y = 1; | |
341 int correction = 0; | |
342 const float v_f = (float)v; | |
343 const uint32_t orig_v = v; | |
344 do { | |
345 ++log_cnt; | |
346 v = v >> 1; | |
347 y = y << 1; | |
348 } while (v >= LOG_LOOKUP_IDX_MAX); | |
349 // vf = (2^log_cnt) * Xf; where y = 2^log_cnt and Xf < 256 | |
350 // Xf = floor(Xf) * (1 + (v % y) / v) | |
351 // log2(Xf) = log2(floor(Xf)) + log2(1 + (v % y) / v) | |
352 // The correction factor: log(1 + d) ~ d; for very small d values, so | |
353 // log2(1 + (v % y) / v) ~ LOG_2_RECIPROCAL * (v % y)/v | |
354 // LOG_2_RECIPROCAL ~ 23/16 | |
355 correction = (23 * (orig_v & (y - 1))) >> 4; | |
356 return v_f * (kLog2Table[v] + log_cnt) + correction; | |
357 } else { | |
358 return (float)(LOG_2_RECIPROCAL * v * log((double)v)); | |
359 } | |
360 } | |
361 | |
362 static float FastLog2Slow(uint32_t v) { | |
363 assert(v >= LOG_LOOKUP_IDX_MAX); | |
364 if (v < APPROX_LOG_WITH_CORRECTION_MAX) { | |
365 int log_cnt = 0; | |
366 uint32_t y = 1; | |
367 const uint32_t orig_v = v; | |
368 double log_2; | |
369 do { | |
370 ++log_cnt; | |
371 v = v >> 1; | |
372 y = y << 1; | |
373 } while (v >= LOG_LOOKUP_IDX_MAX); | |
374 log_2 = kLog2Table[v] + log_cnt; | |
375 if (orig_v >= APPROX_LOG_MAX) { | |
376 // Since the division is still expensive, add this correction factor only | |
377 // for large values of 'v'. | |
378 const int correction = (23 * (orig_v & (y - 1))) >> 4; | |
379 log_2 += (double)correction / orig_v; | |
380 } | |
381 return (float)log_2; | |
382 } else { | |
383 return (float)(LOG_2_RECIPROCAL * log((double)v)); | |
384 } | |
385 } | |
386 | |
387 //------------------------------------------------------------------------------ | 26 //------------------------------------------------------------------------------ |
388 // Image transforms. | 27 // Image transforms. |
389 | 28 |
390 // Mostly used to reduce code size + readability | |
391 static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; } | |
392 | |
393 // In-place sum of each component with mod 256. | 29 // In-place sum of each component with mod 256. |
394 static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) { | 30 static WEBP_INLINE void AddPixelsEq(uint32_t* a, uint32_t b) { |
395 const uint32_t alpha_and_green = (*a & 0xff00ff00u) + (b & 0xff00ff00u); | 31 const uint32_t alpha_and_green = (*a & 0xff00ff00u) + (b & 0xff00ff00u); |
396 const uint32_t red_and_blue = (*a & 0x00ff00ffu) + (b & 0x00ff00ffu); | 32 const uint32_t red_and_blue = (*a & 0x00ff00ffu) + (b & 0x00ff00ffu); |
397 *a = (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu); | 33 *a = (alpha_and_green & 0xff00ff00u) | (red_and_blue & 0x00ff00ffu); |
398 } | 34 } |
399 | 35 |
400 static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { | 36 static WEBP_INLINE uint32_t Average2(uint32_t a0, uint32_t a1) { |
401 return (((a0 ^ a1) & 0xfefefefeL) >> 1) + (a0 & a1); | 37 return (((a0 ^ a1) & 0xfefefefeu) >> 1) + (a0 & a1); |
402 } | 38 } |
403 | 39 |
404 static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { | 40 static WEBP_INLINE uint32_t Average3(uint32_t a0, uint32_t a1, uint32_t a2) { |
405 return Average2(Average2(a0, a2), a1); | 41 return Average2(Average2(a0, a2), a1); |
406 } | 42 } |
407 | 43 |
408 static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, | 44 static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, |
409 uint32_t a2, uint32_t a3) { | 45 uint32_t a2, uint32_t a3) { |
410 return Average2(Average2(a0, a1), Average2(a2, a3)); | 46 return Average2(Average2(a0, a1), Average2(a2, a3)); |
411 } | 47 } |
(...skipping 118 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
530 } | 166 } |
531 static uint32_t Predictor12(uint32_t left, const uint32_t* const top) { | 167 static uint32_t Predictor12(uint32_t left, const uint32_t* const top) { |
532 const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); | 168 const uint32_t pred = ClampedAddSubtractFull(left, top[0], top[-1]); |
533 return pred; | 169 return pred; |
534 } | 170 } |
535 static uint32_t Predictor13(uint32_t left, const uint32_t* const top) { | 171 static uint32_t Predictor13(uint32_t left, const uint32_t* const top) { |
536 const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); | 172 const uint32_t pred = ClampedAddSubtractHalf(left, top[0], top[-1]); |
537 return pred; | 173 return pred; |
538 } | 174 } |
539 | 175 |
540 static const VP8LPredictorFunc kPredictorsC[16] = { | 176 //------------------------------------------------------------------------------ |
541 Predictor0, Predictor1, Predictor2, Predictor3, | |
542 Predictor4, Predictor5, Predictor6, Predictor7, | |
543 Predictor8, Predictor9, Predictor10, Predictor11, | |
544 Predictor12, Predictor13, | |
545 Predictor0, Predictor0 // <- padding security sentinels | |
546 }; | |
547 | |
548 static float PredictionCostSpatial(const int counts[256], int weight_0, | |
549 double exp_val) { | |
550 const int significant_symbols = 256 >> 4; | |
551 const double exp_decay_factor = 0.6; | |
552 double bits = weight_0 * counts[0]; | |
553 int i; | |
554 for (i = 1; i < significant_symbols; ++i) { | |
555 bits += exp_val * (counts[i] + counts[256 - i]); | |
556 exp_val *= exp_decay_factor; | |
557 } | |
558 return (float)(-0.1 * bits); | |
559 } | |
560 | |
561 // Compute the combined Shanon's entropy for distribution {X} and {X+Y} | |
562 static float CombinedShannonEntropy(const int X[256], const int Y[256]) { | |
563 int i; | |
564 double retval = 0.; | |
565 int sumX = 0, sumXY = 0; | |
566 for (i = 0; i < 256; ++i) { | |
567 const int x = X[i]; | |
568 const int xy = x + Y[i]; | |
569 if (x != 0) { | |
570 sumX += x; | |
571 retval -= VP8LFastSLog2(x); | |
572 sumXY += xy; | |
573 retval -= VP8LFastSLog2(xy); | |
574 } else if (xy != 0) { | |
575 sumXY += xy; | |
576 retval -= VP8LFastSLog2(xy); | |
577 } | |
578 } | |
579 retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY); | |
580 return (float)retval; | |
581 } | |
582 | |
583 static float PredictionCostSpatialHistogram(const int accumulated[4][256], | |
584 const int tile[4][256]) { | |
585 int i; | |
586 double retval = 0; | |
587 for (i = 0; i < 4; ++i) { | |
588 const double kExpValue = 0.94; | |
589 retval += PredictionCostSpatial(tile[i], 1, kExpValue); | |
590 retval += CombinedShannonEntropy(tile[i], accumulated[i]); | |
591 } | |
592 return (float)retval; | |
593 } | |
594 | |
595 static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) { | |
596 ++histo_argb[0][argb >> 24]; | |
597 ++histo_argb[1][(argb >> 16) & 0xff]; | |
598 ++histo_argb[2][(argb >> 8) & 0xff]; | |
599 ++histo_argb[3][argb & 0xff]; | |
600 } | |
601 | |
602 static int GetBestPredictorForTile(int width, int height, | |
603 int tile_x, int tile_y, int bits, | |
604 const int accumulated[4][256], | |
605 const uint32_t* const argb_scratch) { | |
606 const int kNumPredModes = 14; | |
607 const int col_start = tile_x << bits; | |
608 const int row_start = tile_y << bits; | |
609 const int tile_size = 1 << bits; | |
610 const int max_y = GetMin(tile_size, height - row_start); | |
611 const int max_x = GetMin(tile_size, width - col_start); | |
612 float best_diff = MAX_DIFF_COST; | |
613 int best_mode = 0; | |
614 int mode; | |
615 for (mode = 0; mode < kNumPredModes; ++mode) { | |
616 const uint32_t* current_row = argb_scratch; | |
617 const VP8LPredictorFunc pred_func = VP8LPredictors[mode]; | |
618 float cur_diff; | |
619 int y; | |
620 int histo_argb[4][256]; | |
621 memset(histo_argb, 0, sizeof(histo_argb)); | |
622 for (y = 0; y < max_y; ++y) { | |
623 int x; | |
624 const int row = row_start + y; | |
625 const uint32_t* const upper_row = current_row; | |
626 current_row = upper_row + width; | |
627 for (x = 0; x < max_x; ++x) { | |
628 const int col = col_start + x; | |
629 uint32_t predict; | |
630 if (row == 0) { | |
631 predict = (col == 0) ? ARGB_BLACK : current_row[col - 1]; // Left. | |
632 } else if (col == 0) { | |
633 predict = upper_row[col]; // Top. | |
634 } else { | |
635 predict = pred_func(current_row[col - 1], upper_row + col); | |
636 } | |
637 UpdateHisto(histo_argb, VP8LSubPixels(current_row[col], predict)); | |
638 } | |
639 } | |
640 cur_diff = PredictionCostSpatialHistogram( | |
641 accumulated, (const int (*)[256])histo_argb); | |
642 if (cur_diff < best_diff) { | |
643 best_diff = cur_diff; | |
644 best_mode = mode; | |
645 } | |
646 } | |
647 | |
648 return best_mode; | |
649 } | |
650 | |
651 static void CopyTileWithPrediction(int width, int height, | |
652 int tile_x, int tile_y, int bits, int mode, | |
653 const uint32_t* const argb_scratch, | |
654 uint32_t* const argb) { | |
655 const int col_start = tile_x << bits; | |
656 const int row_start = tile_y << bits; | |
657 const int tile_size = 1 << bits; | |
658 const int max_y = GetMin(tile_size, height - row_start); | |
659 const int max_x = GetMin(tile_size, width - col_start); | |
660 const VP8LPredictorFunc pred_func = VP8LPredictors[mode]; | |
661 const uint32_t* current_row = argb_scratch; | |
662 | |
663 int y; | |
664 for (y = 0; y < max_y; ++y) { | |
665 int x; | |
666 const int row = row_start + y; | |
667 const uint32_t* const upper_row = current_row; | |
668 current_row = upper_row + width; | |
669 for (x = 0; x < max_x; ++x) { | |
670 const int col = col_start + x; | |
671 const int pix = row * width + col; | |
672 uint32_t predict; | |
673 if (row == 0) { | |
674 predict = (col == 0) ? ARGB_BLACK : current_row[col - 1]; // Left. | |
675 } else if (col == 0) { | |
676 predict = upper_row[col]; // Top. | |
677 } else { | |
678 predict = pred_func(current_row[col - 1], upper_row + col); | |
679 } | |
680 argb[pix] = VP8LSubPixels(current_row[col], predict); | |
681 } | |
682 } | |
683 } | |
684 | |
685 void VP8LResidualImage(int width, int height, int bits, | |
686 uint32_t* const argb, uint32_t* const argb_scratch, | |
687 uint32_t* const image) { | |
688 const int max_tile_size = 1 << bits; | |
689 const int tiles_per_row = VP8LSubSampleSize(width, bits); | |
690 const int tiles_per_col = VP8LSubSampleSize(height, bits); | |
691 uint32_t* const upper_row = argb_scratch; | |
692 uint32_t* const current_tile_rows = argb_scratch + width; | |
693 int tile_y; | |
694 int histo[4][256]; | |
695 memset(histo, 0, sizeof(histo)); | |
696 for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) { | |
697 const int tile_y_offset = tile_y * max_tile_size; | |
698 const int this_tile_height = | |
699 (tile_y < tiles_per_col - 1) ? max_tile_size : height - tile_y_offset; | |
700 int tile_x; | |
701 if (tile_y > 0) { | |
702 memcpy(upper_row, current_tile_rows + (max_tile_size - 1) * width, | |
703 width * sizeof(*upper_row)); | |
704 } | |
705 memcpy(current_tile_rows, &argb[tile_y_offset * width], | |
706 this_tile_height * width * sizeof(*current_tile_rows)); | |
707 for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) { | |
708 int pred; | |
709 int y; | |
710 const int tile_x_offset = tile_x * max_tile_size; | |
711 int all_x_max = tile_x_offset + max_tile_size; | |
712 if (all_x_max > width) { | |
713 all_x_max = width; | |
714 } | |
715 pred = GetBestPredictorForTile(width, height, tile_x, tile_y, bits, | |
716 (const int (*)[256])histo, | |
717 argb_scratch); | |
718 image[tile_y * tiles_per_row + tile_x] = 0xff000000u | (pred << 8); | |
719 CopyTileWithPrediction(width, height, tile_x, tile_y, bits, pred, | |
720 argb_scratch, argb); | |
721 for (y = 0; y < max_tile_size; ++y) { | |
722 int ix; | |
723 int all_x; | |
724 int all_y = tile_y_offset + y; | |
725 if (all_y >= height) { | |
726 break; | |
727 } | |
728 ix = all_y * width + tile_x_offset; | |
729 for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { | |
730 UpdateHisto(histo, argb[ix]); | |
731 } | |
732 } | |
733 } | |
734 } | |
735 } | |
736 | 177 |
737 // Inverse prediction. | 178 // Inverse prediction. |
738 static void PredictorInverseTransform(const VP8LTransform* const transform, | 179 static void PredictorInverseTransform(const VP8LTransform* const transform, |
739 int y_start, int y_end, uint32_t* data) { | 180 int y_start, int y_end, uint32_t* data) { |
740 const int width = transform->xsize_; | 181 const int width = transform->xsize_; |
741 if (y_start == 0) { // First Row follows the L (mode=1) mode. | 182 if (y_start == 0) { // First Row follows the L (mode=1) mode. |
742 int x; | 183 int x; |
743 const uint32_t pred0 = Predictor0(data[-1], NULL); | 184 const uint32_t pred0 = Predictor0(data[-1], NULL); |
744 AddPixelsEq(data, pred0); | 185 AddPixelsEq(data, pred0); |
745 for (x = 1; x < width; ++x) { | 186 for (x = 1; x < width; ++x) { |
(...skipping 39 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
785 } | 226 } |
786 data += width; | 227 data += width; |
787 ++y; | 228 ++y; |
788 if ((y & mask) == 0) { // Use the same mask, since tiles are squares. | 229 if ((y & mask) == 0) { // Use the same mask, since tiles are squares. |
789 pred_mode_base += tiles_per_row; | 230 pred_mode_base += tiles_per_row; |
790 } | 231 } |
791 } | 232 } |
792 } | 233 } |
793 } | 234 } |
794 | 235 |
795 void VP8LSubtractGreenFromBlueAndRed_C(uint32_t* argb_data, int num_pixels) { | |
796 int i; | |
797 for (i = 0; i < num_pixels; ++i) { | |
798 const uint32_t argb = argb_data[i]; | |
799 const uint32_t green = (argb >> 8) & 0xff; | |
800 const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff; | |
801 const uint32_t new_b = ((argb & 0xff) - green) & 0xff; | |
802 argb_data[i] = (argb & 0xff00ff00) | (new_r << 16) | new_b; | |
803 } | |
804 } | |
805 | |
806 // Add green to blue and red channels (i.e. perform the inverse transform of | 236 // Add green to blue and red channels (i.e. perform the inverse transform of |
807 // 'subtract green'). | 237 // 'subtract green'). |
808 void VP8LAddGreenToBlueAndRed_C(uint32_t* data, int num_pixels) { | 238 void VP8LAddGreenToBlueAndRed_C(uint32_t* data, int num_pixels) { |
809 int i; | 239 int i; |
810 for (i = 0; i < num_pixels; ++i) { | 240 for (i = 0; i < num_pixels; ++i) { |
811 const uint32_t argb = data[i]; | 241 const uint32_t argb = data[i]; |
812 const uint32_t green = ((argb >> 8) & 0xff); | 242 const uint32_t green = ((argb >> 8) & 0xff); |
813 uint32_t red_blue = (argb & 0x00ff00ffu); | 243 uint32_t red_blue = (argb & 0x00ff00ffu); |
814 red_blue += (green << 16) | green; | 244 red_blue += (green << 16) | green; |
815 red_blue &= 0x00ff00ffu; | 245 red_blue &= 0x00ff00ffu; |
816 data[i] = (argb & 0xff00ff00u) | red_blue; | 246 data[i] = (argb & 0xff00ff00u) | red_blue; |
817 } | 247 } |
818 } | 248 } |
819 | 249 |
820 static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) { | |
821 m->green_to_red_ = 0; | |
822 m->green_to_blue_ = 0; | |
823 m->red_to_blue_ = 0; | |
824 } | |
825 | |
826 static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred, | 250 static WEBP_INLINE uint32_t ColorTransformDelta(int8_t color_pred, |
827 int8_t color) { | 251 int8_t color) { |
828 return (uint32_t)((int)(color_pred) * color) >> 5; | 252 return (uint32_t)((int)(color_pred) * color) >> 5; |
829 } | 253 } |
830 | 254 |
831 static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, | 255 static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code, |
832 VP8LMultipliers* const m) { | 256 VP8LMultipliers* const m) { |
833 m->green_to_red_ = (color_code >> 0) & 0xff; | 257 m->green_to_red_ = (color_code >> 0) & 0xff; |
834 m->green_to_blue_ = (color_code >> 8) & 0xff; | 258 m->green_to_blue_ = (color_code >> 8) & 0xff; |
835 m->red_to_blue_ = (color_code >> 16) & 0xff; | 259 m->red_to_blue_ = (color_code >> 16) & 0xff; |
836 } | 260 } |
837 | 261 |
838 static WEBP_INLINE uint32_t MultipliersToColorCode( | |
839 const VP8LMultipliers* const m) { | |
840 return 0xff000000u | | |
841 ((uint32_t)(m->red_to_blue_) << 16) | | |
842 ((uint32_t)(m->green_to_blue_) << 8) | | |
843 m->green_to_red_; | |
844 } | |
845 | |
846 void VP8LTransformColor_C(const VP8LMultipliers* const m, uint32_t* data, | |
847 int num_pixels) { | |
848 int i; | |
849 for (i = 0; i < num_pixels; ++i) { | |
850 const uint32_t argb = data[i]; | |
851 const uint32_t green = argb >> 8; | |
852 const uint32_t red = argb >> 16; | |
853 uint32_t new_red = red; | |
854 uint32_t new_blue = argb; | |
855 new_red -= ColorTransformDelta(m->green_to_red_, green); | |
856 new_red &= 0xff; | |
857 new_blue -= ColorTransformDelta(m->green_to_blue_, green); | |
858 new_blue -= ColorTransformDelta(m->red_to_blue_, red); | |
859 new_blue &= 0xff; | |
860 data[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); | |
861 } | |
862 } | |
863 | |
864 void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, uint32_t* data, | 262 void VP8LTransformColorInverse_C(const VP8LMultipliers* const m, uint32_t* data, |
865 int num_pixels) { | 263 int num_pixels) { |
866 int i; | 264 int i; |
867 for (i = 0; i < num_pixels; ++i) { | 265 for (i = 0; i < num_pixels; ++i) { |
868 const uint32_t argb = data[i]; | 266 const uint32_t argb = data[i]; |
869 const uint32_t green = argb >> 8; | 267 const uint32_t green = argb >> 8; |
870 const uint32_t red = argb >> 16; | 268 const uint32_t red = argb >> 16; |
871 uint32_t new_red = red; | 269 uint32_t new_red = red; |
872 uint32_t new_blue = argb; | 270 uint32_t new_blue = argb; |
873 new_red += ColorTransformDelta(m->green_to_red_, green); | 271 new_red += ColorTransformDelta(m->green_to_red_, green); |
874 new_red &= 0xff; | 272 new_red &= 0xff; |
875 new_blue += ColorTransformDelta(m->green_to_blue_, green); | 273 new_blue += ColorTransformDelta(m->green_to_blue_, green); |
876 new_blue += ColorTransformDelta(m->red_to_blue_, new_red); | 274 new_blue += ColorTransformDelta(m->red_to_blue_, new_red); |
877 new_blue &= 0xff; | 275 new_blue &= 0xff; |
878 data[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); | 276 data[i] = (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); |
879 } | 277 } |
880 } | 278 } |
881 | 279 |
882 static WEBP_INLINE uint8_t TransformColorRed(uint8_t green_to_red, | |
883 uint32_t argb) { | |
884 const uint32_t green = argb >> 8; | |
885 uint32_t new_red = argb >> 16; | |
886 new_red -= ColorTransformDelta(green_to_red, green); | |
887 return (new_red & 0xff); | |
888 } | |
889 | |
890 static WEBP_INLINE uint8_t TransformColorBlue(uint8_t green_to_blue, | |
891 uint8_t red_to_blue, | |
892 uint32_t argb) { | |
893 const uint32_t green = argb >> 8; | |
894 const uint32_t red = argb >> 16; | |
895 uint8_t new_blue = argb; | |
896 new_blue -= ColorTransformDelta(green_to_blue, green); | |
897 new_blue -= ColorTransformDelta(red_to_blue, red); | |
898 return (new_blue & 0xff); | |
899 } | |
900 | |
901 static float PredictionCostCrossColor(const int accumulated[256], | |
902 const int counts[256]) { | |
903 // Favor low entropy, locally and globally. | |
904 // Favor small absolute values for PredictionCostSpatial | |
905 static const double kExpValue = 2.4; | |
906 return CombinedShannonEntropy(counts, accumulated) + | |
907 PredictionCostSpatial(counts, 3, kExpValue); | |
908 } | |
909 | |
910 static float GetPredictionCostCrossColorRed( | |
911 int tile_x_offset, int tile_y_offset, int all_x_max, int all_y_max, | |
912 int xsize, VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red, | |
913 const int accumulated_red_histo[256], const uint32_t* const argb) { | |
914 int all_y; | |
915 int histo[256] = { 0 }; | |
916 float cur_diff; | |
917 for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) { | |
918 int ix = all_y * xsize + tile_x_offset; | |
919 int all_x; | |
920 for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { | |
921 ++histo[TransformColorRed(green_to_red, argb[ix])]; // red. | |
922 } | |
923 } | |
924 cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo); | |
925 if ((uint8_t)green_to_red == prev_x.green_to_red_) { | |
926 cur_diff -= 3; // favor keeping the areas locally similar | |
927 } | |
928 if ((uint8_t)green_to_red == prev_y.green_to_red_) { | |
929 cur_diff -= 3; // favor keeping the areas locally similar | |
930 } | |
931 if (green_to_red == 0) { | |
932 cur_diff -= 3; | |
933 } | |
934 return cur_diff; | |
935 } | |
936 | |
937 static void GetBestGreenToRed( | |
938 int tile_x_offset, int tile_y_offset, int all_x_max, int all_y_max, | |
939 int xsize, VP8LMultipliers prev_x, VP8LMultipliers prev_y, | |
940 const int accumulated_red_histo[256], const uint32_t* const argb, | |
941 VP8LMultipliers* const best_tx) { | |
942 int min_green_to_red = -64; | |
943 int max_green_to_red = 64; | |
944 int green_to_red = 0; | |
945 int eval_min = 1; | |
946 int eval_max = 1; | |
947 float cur_diff_min = MAX_DIFF_COST; | |
948 float cur_diff_max = MAX_DIFF_COST; | |
949 // Do a binary search to find the optimal green_to_red color transform. | |
950 while (max_green_to_red - min_green_to_red > 2) { | |
951 if (eval_min) { | |
952 cur_diff_min = GetPredictionCostCrossColorRed( | |
953 tile_x_offset, tile_y_offset, all_x_max, all_y_max, xsize, | |
954 prev_x, prev_y, min_green_to_red, accumulated_red_histo, argb); | |
955 eval_min = 0; | |
956 } | |
957 if (eval_max) { | |
958 cur_diff_max = GetPredictionCostCrossColorRed( | |
959 tile_x_offset, tile_y_offset, all_x_max, all_y_max, xsize, | |
960 prev_x, prev_y, max_green_to_red, accumulated_red_histo, argb); | |
961 eval_max = 0; | |
962 } | |
963 if (cur_diff_min < cur_diff_max) { | |
964 green_to_red = min_green_to_red; | |
965 max_green_to_red = (max_green_to_red + min_green_to_red) / 2; | |
966 eval_max = 1; | |
967 } else { | |
968 green_to_red = max_green_to_red; | |
969 min_green_to_red = (max_green_to_red + min_green_to_red) / 2; | |
970 eval_min = 1; | |
971 } | |
972 } | |
973 best_tx->green_to_red_ = green_to_red; | |
974 } | |
975 | |
976 static float GetPredictionCostCrossColorBlue( | |
977 int tile_x_offset, int tile_y_offset, int all_x_max, int all_y_max, | |
978 int xsize, VP8LMultipliers prev_x, VP8LMultipliers prev_y, | |
979 int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256], | |
980 const uint32_t* const argb) { | |
981 int all_y; | |
982 int histo[256] = { 0 }; | |
983 float cur_diff; | |
984 for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) { | |
985 int all_x; | |
986 int ix = all_y * xsize + tile_x_offset; | |
987 for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { | |
988 ++histo[TransformColorBlue(green_to_blue, red_to_blue, argb[ix])]; | |
989 } | |
990 } | |
991 cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo); | |
992 if ((uint8_t)green_to_blue == prev_x.green_to_blue_) { | |
993 cur_diff -= 3; // favor keeping the areas locally similar | |
994 } | |
995 if ((uint8_t)green_to_blue == prev_y.green_to_blue_) { | |
996 cur_diff -= 3; // favor keeping the areas locally similar | |
997 } | |
998 if ((uint8_t)red_to_blue == prev_x.red_to_blue_) { | |
999 cur_diff -= 3; // favor keeping the areas locally similar | |
1000 } | |
1001 if ((uint8_t)red_to_blue == prev_y.red_to_blue_) { | |
1002 cur_diff -= 3; // favor keeping the areas locally similar | |
1003 } | |
1004 if (green_to_blue == 0) { | |
1005 cur_diff -= 3; | |
1006 } | |
1007 if (red_to_blue == 0) { | |
1008 cur_diff -= 3; | |
1009 } | |
1010 return cur_diff; | |
1011 } | |
1012 | |
1013 static void GetBestGreenRedToBlue( | |
1014 int tile_x_offset, int tile_y_offset, int all_x_max, int all_y_max, | |
1015 int xsize, VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality, | |
1016 const int accumulated_blue_histo[256], const uint32_t* const argb, | |
1017 VP8LMultipliers* const best_tx) { | |
1018 float best_diff = MAX_DIFF_COST; | |
1019 float cur_diff; | |
1020 const int step = (quality < 25) ? 32 : (quality > 50) ? 8 : 16; | |
1021 const int min_green_to_blue = -32; | |
1022 const int max_green_to_blue = 32; | |
1023 const int min_red_to_blue = -32; | |
1024 const int max_red_to_blue = 32; | |
1025 const int num_iters = | |
1026 (1 + (max_green_to_blue - min_green_to_blue) / step) * | |
1027 (1 + (max_red_to_blue - min_red_to_blue) / step); | |
1028 // Number of tries to get optimal green_to_blue & red_to_blue color transforms | |
1029 // after finding a local minima. | |
1030 const int max_tries_after_min = 4 + (num_iters >> 2); | |
1031 int num_tries_after_min = 0; | |
1032 int green_to_blue; | |
1033 for (green_to_blue = min_green_to_blue; | |
1034 green_to_blue <= max_green_to_blue && | |
1035 num_tries_after_min < max_tries_after_min; | |
1036 green_to_blue += step) { | |
1037 int red_to_blue; | |
1038 for (red_to_blue = min_red_to_blue; | |
1039 red_to_blue <= max_red_to_blue && | |
1040 num_tries_after_min < max_tries_after_min; | |
1041 red_to_blue += step) { | |
1042 cur_diff = GetPredictionCostCrossColorBlue( | |
1043 tile_x_offset, tile_y_offset, all_x_max, all_y_max, xsize, prev_x, | |
1044 prev_y, green_to_blue, red_to_blue, accumulated_blue_histo, argb); | |
1045 if (cur_diff < best_diff) { | |
1046 best_diff = cur_diff; | |
1047 best_tx->green_to_blue_ = green_to_blue; | |
1048 best_tx->red_to_blue_ = red_to_blue; | |
1049 num_tries_after_min = 0; | |
1050 } else { | |
1051 ++num_tries_after_min; | |
1052 } | |
1053 } | |
1054 } | |
1055 } | |
1056 | |
1057 static VP8LMultipliers GetBestColorTransformForTile( | |
1058 int tile_x, int tile_y, int bits, | |
1059 VP8LMultipliers prev_x, | |
1060 VP8LMultipliers prev_y, | |
1061 int quality, int xsize, int ysize, | |
1062 const int accumulated_red_histo[256], | |
1063 const int accumulated_blue_histo[256], | |
1064 const uint32_t* const argb) { | |
1065 const int max_tile_size = 1 << bits; | |
1066 const int tile_y_offset = tile_y * max_tile_size; | |
1067 const int tile_x_offset = tile_x * max_tile_size; | |
1068 const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize); | |
1069 const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize); | |
1070 VP8LMultipliers best_tx; | |
1071 MultipliersClear(&best_tx); | |
1072 | |
1073 GetBestGreenToRed(tile_x_offset, tile_y_offset, all_x_max, all_y_max, xsize, | |
1074 prev_x, prev_y, accumulated_red_histo, argb, &best_tx); | |
1075 GetBestGreenRedToBlue(tile_x_offset, tile_y_offset, all_x_max, all_y_max, | |
1076 xsize, prev_x, prev_y, quality, accumulated_blue_histo, | |
1077 argb, &best_tx); | |
1078 return best_tx; | |
1079 } | |
1080 | |
1081 static void CopyTileWithColorTransform(int xsize, int ysize, | |
1082 int tile_x, int tile_y, | |
1083 int max_tile_size, | |
1084 VP8LMultipliers color_transform, | |
1085 uint32_t* argb) { | |
1086 const int xscan = GetMin(max_tile_size, xsize - tile_x); | |
1087 int yscan = GetMin(max_tile_size, ysize - tile_y); | |
1088 argb += tile_y * xsize + tile_x; | |
1089 while (yscan-- > 0) { | |
1090 VP8LTransformColor(&color_transform, argb, xscan); | |
1091 argb += xsize; | |
1092 } | |
1093 } | |
1094 | |
1095 void VP8LColorSpaceTransform(int width, int height, int bits, int quality, | |
1096 uint32_t* const argb, uint32_t* image) { | |
1097 const int max_tile_size = 1 << bits; | |
1098 const int tile_xsize = VP8LSubSampleSize(width, bits); | |
1099 const int tile_ysize = VP8LSubSampleSize(height, bits); | |
1100 int accumulated_red_histo[256] = { 0 }; | |
1101 int accumulated_blue_histo[256] = { 0 }; | |
1102 int tile_x, tile_y; | |
1103 VP8LMultipliers prev_x, prev_y; | |
1104 MultipliersClear(&prev_y); | |
1105 MultipliersClear(&prev_x); | |
1106 for (tile_y = 0; tile_y < tile_ysize; ++tile_y) { | |
1107 for (tile_x = 0; tile_x < tile_xsize; ++tile_x) { | |
1108 int y; | |
1109 const int tile_x_offset = tile_x * max_tile_size; | |
1110 const int tile_y_offset = tile_y * max_tile_size; | |
1111 const int all_x_max = GetMin(tile_x_offset + max_tile_size, width); | |
1112 const int all_y_max = GetMin(tile_y_offset + max_tile_size, height); | |
1113 const int offset = tile_y * tile_xsize + tile_x; | |
1114 if (tile_y != 0) { | |
1115 ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y); | |
1116 } | |
1117 prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits, | |
1118 prev_x, prev_y, | |
1119 quality, width, height, | |
1120 accumulated_red_histo, | |
1121 accumulated_blue_histo, | |
1122 argb); | |
1123 image[offset] = MultipliersToColorCode(&prev_x); | |
1124 CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset, | |
1125 max_tile_size, prev_x, argb); | |
1126 | |
1127 // Gather accumulated histogram data. | |
1128 for (y = tile_y_offset; y < all_y_max; ++y) { | |
1129 int ix = y * width + tile_x_offset; | |
1130 const int ix_end = ix + all_x_max - tile_x_offset; | |
1131 for (; ix < ix_end; ++ix) { | |
1132 const uint32_t pix = argb[ix]; | |
1133 if (ix >= 2 && | |
1134 pix == argb[ix - 2] && | |
1135 pix == argb[ix - 1]) { | |
1136 continue; // repeated pixels are handled by backward references | |
1137 } | |
1138 if (ix >= width + 2 && | |
1139 argb[ix - 2] == argb[ix - width - 2] && | |
1140 argb[ix - 1] == argb[ix - width - 1] && | |
1141 pix == argb[ix - width]) { | |
1142 continue; // repeated pixels are handled by backward references | |
1143 } | |
1144 ++accumulated_red_histo[(pix >> 16) & 0xff]; | |
1145 ++accumulated_blue_histo[(pix >> 0) & 0xff]; | |
1146 } | |
1147 } | |
1148 } | |
1149 } | |
1150 } | |
1151 | |
1152 // Color space inverse transform. | 280 // Color space inverse transform. |
1153 static void ColorSpaceInverseTransform(const VP8LTransform* const transform, | 281 static void ColorSpaceInverseTransform(const VP8LTransform* const transform, |
1154 int y_start, int y_end, uint32_t* data) { | 282 int y_start, int y_end, uint32_t* data) { |
1155 const int width = transform->xsize_; | 283 const int width = transform->xsize_; |
1156 const int tile_width = 1 << transform->bits_; | 284 const int tile_width = 1 << transform->bits_; |
1157 const int mask = tile_width - 1; | 285 const int mask = tile_width - 1; |
1158 const int safe_width = width & ~mask; | 286 const int safe_width = width & ~mask; |
1159 const int remaining_width = width - safe_width; | 287 const int remaining_width = width - safe_width; |
1160 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); | 288 const int tiles_per_row = VP8LSubSampleSize(width, transform->bits_); |
1161 int y = y_start; | 289 int y = y_start; |
(...skipping 15 matching lines...) Expand all Loading... |
1177 VP8LTransformColorInverse(&m, data, remaining_width); | 305 VP8LTransformColorInverse(&m, data, remaining_width); |
1178 data += remaining_width; | 306 data += remaining_width; |
1179 } | 307 } |
1180 ++y; | 308 ++y; |
1181 if ((y & mask) == 0) pred_row += tiles_per_row; | 309 if ((y & mask) == 0) pred_row += tiles_per_row; |
1182 } | 310 } |
1183 } | 311 } |
1184 | 312 |
1185 // Separate out pixels packed together using pixel-bundling. | 313 // Separate out pixels packed together using pixel-bundling. |
1186 // We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t). | 314 // We define two methods for ARGB data (uint32_t) and alpha-only data (uint8_t). |
1187 #define COLOR_INDEX_INVERSE(FUNC_NAME, TYPE, GET_INDEX, GET_VALUE) \ | 315 #define COLOR_INDEX_INVERSE(FUNC_NAME, F_NAME, STATIC_DECL, TYPE, BIT_SUFFIX, \ |
1188 void FUNC_NAME(const VP8LTransform* const transform, \ | 316 GET_INDEX, GET_VALUE) \ |
1189 int y_start, int y_end, const TYPE* src, TYPE* dst) { \ | 317 static void F_NAME(const TYPE* src, const uint32_t* const color_map, \ |
| 318 TYPE* dst, int y_start, int y_end, int width) { \ |
| 319 int y; \ |
| 320 for (y = y_start; y < y_end; ++y) { \ |
| 321 int x; \ |
| 322 for (x = 0; x < width; ++x) { \ |
| 323 *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \ |
| 324 } \ |
| 325 } \ |
| 326 } \ |
| 327 STATIC_DECL void FUNC_NAME(const VP8LTransform* const transform, \ |
| 328 int y_start, int y_end, const TYPE* src, \ |
| 329 TYPE* dst) { \ |
1190 int y; \ | 330 int y; \ |
1191 const int bits_per_pixel = 8 >> transform->bits_; \ | 331 const int bits_per_pixel = 8 >> transform->bits_; \ |
1192 const int width = transform->xsize_; \ | 332 const int width = transform->xsize_; \ |
1193 const uint32_t* const color_map = transform->data_; \ | 333 const uint32_t* const color_map = transform->data_; \ |
1194 if (bits_per_pixel < 8) { \ | 334 if (bits_per_pixel < 8) { \ |
1195 const int pixels_per_byte = 1 << transform->bits_; \ | 335 const int pixels_per_byte = 1 << transform->bits_; \ |
1196 const int count_mask = pixels_per_byte - 1; \ | 336 const int count_mask = pixels_per_byte - 1; \ |
1197 const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \ | 337 const uint32_t bit_mask = (1 << bits_per_pixel) - 1; \ |
1198 for (y = y_start; y < y_end; ++y) { \ | 338 for (y = y_start; y < y_end; ++y) { \ |
1199 uint32_t packed_pixels = 0; \ | 339 uint32_t packed_pixels = 0; \ |
1200 int x; \ | 340 int x; \ |
1201 for (x = 0; x < width; ++x) { \ | 341 for (x = 0; x < width; ++x) { \ |
1202 /* We need to load fresh 'packed_pixels' once every */ \ | 342 /* We need to load fresh 'packed_pixels' once every */ \ |
1203 /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \ | 343 /* 'pixels_per_byte' increments of x. Fortunately, pixels_per_byte */ \ |
1204 /* is a power of 2, so can just use a mask for that, instead of */ \ | 344 /* is a power of 2, so can just use a mask for that, instead of */ \ |
1205 /* decrementing a counter. */ \ | 345 /* decrementing a counter. */ \ |
1206 if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \ | 346 if ((x & count_mask) == 0) packed_pixels = GET_INDEX(*src++); \ |
1207 *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \ | 347 *dst++ = GET_VALUE(color_map[packed_pixels & bit_mask]); \ |
1208 packed_pixels >>= bits_per_pixel; \ | 348 packed_pixels >>= bits_per_pixel; \ |
1209 } \ | 349 } \ |
1210 } \ | 350 } \ |
1211 } else { \ | 351 } else { \ |
1212 for (y = y_start; y < y_end; ++y) { \ | 352 VP8LMapColor##BIT_SUFFIX(src, color_map, dst, y_start, y_end, width); \ |
1213 int x; \ | |
1214 for (x = 0; x < width; ++x) { \ | |
1215 *dst++ = GET_VALUE(color_map[GET_INDEX(*src++)]); \ | |
1216 } \ | |
1217 } \ | |
1218 } \ | 353 } \ |
1219 } | 354 } |
1220 | 355 |
1221 static WEBP_INLINE uint32_t GetARGBIndex(uint32_t idx) { | 356 COLOR_INDEX_INVERSE(ColorIndexInverseTransform, MapARGB, static, uint32_t, 32b, |
1222 return (idx >> 8) & 0xff; | 357 VP8GetARGBIndex, VP8GetARGBValue) |
1223 } | 358 COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, MapAlpha, , uint8_t, |
1224 | 359 8b, VP8GetAlphaIndex, VP8GetAlphaValue) |
1225 static WEBP_INLINE uint8_t GetAlphaIndex(uint8_t idx) { | |
1226 return idx; | |
1227 } | |
1228 | |
1229 static WEBP_INLINE uint32_t GetARGBValue(uint32_t val) { | |
1230 return val; | |
1231 } | |
1232 | |
1233 static WEBP_INLINE uint8_t GetAlphaValue(uint32_t val) { | |
1234 return (val >> 8) & 0xff; | |
1235 } | |
1236 | |
1237 static COLOR_INDEX_INVERSE(ColorIndexInverseTransform, uint32_t, GetARGBIndex, | |
1238 GetARGBValue) | |
1239 COLOR_INDEX_INVERSE(VP8LColorIndexInverseTransformAlpha, uint8_t, GetAlphaIndex, | |
1240 GetAlphaValue) | |
1241 | 360 |
1242 #undef COLOR_INDEX_INVERSE | 361 #undef COLOR_INDEX_INVERSE |
1243 | 362 |
1244 void VP8LInverseTransform(const VP8LTransform* const transform, | 363 void VP8LInverseTransform(const VP8LTransform* const transform, |
1245 int row_start, int row_end, | 364 int row_start, int row_end, |
1246 const uint32_t* const in, uint32_t* const out) { | 365 const uint32_t* const in, uint32_t* const out) { |
1247 const int width = transform->xsize_; | 366 const int width = transform->xsize_; |
1248 assert(row_start < row_end); | 367 assert(row_start < row_end); |
1249 assert(row_end <= transform->ysize_); | 368 assert(row_end <= transform->ysize_); |
1250 switch (transform->type_) { | 369 switch (transform->type_) { |
(...skipping 113 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1364 | 483 |
1365 static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, | 484 static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, |
1366 int swap_on_big_endian) { | 485 int swap_on_big_endian) { |
1367 if (is_big_endian() == swap_on_big_endian) { | 486 if (is_big_endian() == swap_on_big_endian) { |
1368 const uint32_t* const src_end = src + num_pixels; | 487 const uint32_t* const src_end = src + num_pixels; |
1369 while (src < src_end) { | 488 while (src < src_end) { |
1370 const uint32_t argb = *src++; | 489 const uint32_t argb = *src++; |
1371 | 490 |
1372 #if !defined(WORDS_BIGENDIAN) | 491 #if !defined(WORDS_BIGENDIAN) |
1373 #if !defined(WEBP_REFERENCE_IMPLEMENTATION) | 492 #if !defined(WEBP_REFERENCE_IMPLEMENTATION) |
1374 *(uint32_t*)dst = BSwap32(argb); | 493 WebPUint32ToMem(dst, BSwap32(argb)); |
1375 #else // WEBP_REFERENCE_IMPLEMENTATION | 494 #else // WEBP_REFERENCE_IMPLEMENTATION |
1376 dst[0] = (argb >> 24) & 0xff; | 495 dst[0] = (argb >> 24) & 0xff; |
1377 dst[1] = (argb >> 16) & 0xff; | 496 dst[1] = (argb >> 16) & 0xff; |
1378 dst[2] = (argb >> 8) & 0xff; | 497 dst[2] = (argb >> 8) & 0xff; |
1379 dst[3] = (argb >> 0) & 0xff; | 498 dst[3] = (argb >> 0) & 0xff; |
1380 #endif | 499 #endif |
1381 #else // WORDS_BIGENDIAN | 500 #else // WORDS_BIGENDIAN |
1382 dst[0] = (argb >> 0) & 0xff; | 501 dst[0] = (argb >> 0) & 0xff; |
1383 dst[1] = (argb >> 8) & 0xff; | 502 dst[1] = (argb >> 8) & 0xff; |
1384 dst[2] = (argb >> 16) & 0xff; | 503 dst[2] = (argb >> 16) & 0xff; |
(...skipping 45 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1430 break; | 549 break; |
1431 case MODE_RGB_565: | 550 case MODE_RGB_565: |
1432 VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba); | 551 VP8LConvertBGRAToRGB565(in_data, num_pixels, rgba); |
1433 break; | 552 break; |
1434 default: | 553 default: |
1435 assert(0); // Code flow should not reach here. | 554 assert(0); // Code flow should not reach here. |
1436 } | 555 } |
1437 } | 556 } |
1438 | 557 |
1439 //------------------------------------------------------------------------------ | 558 //------------------------------------------------------------------------------ |
1440 // Bundles multiple (1, 2, 4 or 8) pixels into a single pixel. | |
1441 void VP8LBundleColorMap(const uint8_t* const row, int width, | |
1442 int xbits, uint32_t* const dst) { | |
1443 int x; | |
1444 if (xbits > 0) { | |
1445 const int bit_depth = 1 << (3 - xbits); | |
1446 const int mask = (1 << xbits) - 1; | |
1447 uint32_t code = 0xff000000; | |
1448 for (x = 0; x < width; ++x) { | |
1449 const int xsub = x & mask; | |
1450 if (xsub == 0) { | |
1451 code = 0xff000000; | |
1452 } | |
1453 code |= row[x] << (8 + bit_depth * xsub); | |
1454 dst[x >> xbits] = code; | |
1455 } | |
1456 } else { | |
1457 for (x = 0; x < width; ++x) dst[x] = 0xff000000 | (row[x] << 8); | |
1458 } | |
1459 } | |
1460 | |
1461 //------------------------------------------------------------------------------ | |
1462 | 559 |
1463 static double ExtraCost(const uint32_t* population, int length) { | |
1464 int i; | |
1465 double cost = 0.; | |
1466 for (i = 2; i < length - 2; ++i) cost += (i >> 1) * population[i + 2]; | |
1467 return cost; | |
1468 } | |
1469 | |
1470 static double ExtraCostCombined(const uint32_t* X, const uint32_t* Y, | |
1471 int length) { | |
1472 int i; | |
1473 double cost = 0.; | |
1474 for (i = 2; i < length - 2; ++i) { | |
1475 const int xy = X[i + 2] + Y[i + 2]; | |
1476 cost += (i >> 1) * xy; | |
1477 } | |
1478 return cost; | |
1479 } | |
1480 | |
1481 // Returns the various RLE counts | |
1482 static VP8LStreaks HuffmanCostCount(const uint32_t* population, int length) { | |
1483 int i; | |
1484 int streak = 0; | |
1485 VP8LStreaks stats; | |
1486 memset(&stats, 0, sizeof(stats)); | |
1487 for (i = 0; i < length - 1; ++i) { | |
1488 ++streak; | |
1489 if (population[i] == population[i + 1]) { | |
1490 continue; | |
1491 } | |
1492 stats.counts[population[i] != 0] += (streak > 3); | |
1493 stats.streaks[population[i] != 0][(streak > 3)] += streak; | |
1494 streak = 0; | |
1495 } | |
1496 ++streak; | |
1497 stats.counts[population[i] != 0] += (streak > 3); | |
1498 stats.streaks[population[i] != 0][(streak > 3)] += streak; | |
1499 return stats; | |
1500 } | |
1501 | |
1502 static VP8LStreaks HuffmanCostCombinedCount(const uint32_t* X, | |
1503 const uint32_t* Y, int length) { | |
1504 int i; | |
1505 int streak = 0; | |
1506 VP8LStreaks stats; | |
1507 memset(&stats, 0, sizeof(stats)); | |
1508 for (i = 0; i < length - 1; ++i) { | |
1509 const int xy = X[i] + Y[i]; | |
1510 const int xy_next = X[i + 1] + Y[i + 1]; | |
1511 ++streak; | |
1512 if (xy == xy_next) { | |
1513 continue; | |
1514 } | |
1515 stats.counts[xy != 0] += (streak > 3); | |
1516 stats.streaks[xy != 0][(streak > 3)] += streak; | |
1517 streak = 0; | |
1518 } | |
1519 { | |
1520 const int xy = X[i] + Y[i]; | |
1521 ++streak; | |
1522 stats.counts[xy != 0] += (streak > 3); | |
1523 stats.streaks[xy != 0][(streak > 3)] += streak; | |
1524 } | |
1525 return stats; | |
1526 } | |
1527 | |
1528 //------------------------------------------------------------------------------ | |
1529 | |
1530 static void HistogramAdd(const VP8LHistogram* const a, | |
1531 const VP8LHistogram* const b, | |
1532 VP8LHistogram* const out) { | |
1533 int i; | |
1534 const int literal_size = VP8LHistogramNumCodes(a->palette_code_bits_); | |
1535 assert(a->palette_code_bits_ == b->palette_code_bits_); | |
1536 if (b != out) { | |
1537 for (i = 0; i < literal_size; ++i) { | |
1538 out->literal_[i] = a->literal_[i] + b->literal_[i]; | |
1539 } | |
1540 for (i = 0; i < NUM_DISTANCE_CODES; ++i) { | |
1541 out->distance_[i] = a->distance_[i] + b->distance_[i]; | |
1542 } | |
1543 for (i = 0; i < NUM_LITERAL_CODES; ++i) { | |
1544 out->red_[i] = a->red_[i] + b->red_[i]; | |
1545 out->blue_[i] = a->blue_[i] + b->blue_[i]; | |
1546 out->alpha_[i] = a->alpha_[i] + b->alpha_[i]; | |
1547 } | |
1548 } else { | |
1549 for (i = 0; i < literal_size; ++i) { | |
1550 out->literal_[i] += a->literal_[i]; | |
1551 } | |
1552 for (i = 0; i < NUM_DISTANCE_CODES; ++i) { | |
1553 out->distance_[i] += a->distance_[i]; | |
1554 } | |
1555 for (i = 0; i < NUM_LITERAL_CODES; ++i) { | |
1556 out->red_[i] += a->red_[i]; | |
1557 out->blue_[i] += a->blue_[i]; | |
1558 out->alpha_[i] += a->alpha_[i]; | |
1559 } | |
1560 } | |
1561 } | |
1562 | |
1563 //------------------------------------------------------------------------------ | |
1564 | |
1565 VP8LProcessBlueAndRedFunc VP8LSubtractGreenFromBlueAndRed; | |
1566 VP8LProcessBlueAndRedFunc VP8LAddGreenToBlueAndRed; | 560 VP8LProcessBlueAndRedFunc VP8LAddGreenToBlueAndRed; |
1567 VP8LPredictorFunc VP8LPredictors[16]; | 561 VP8LPredictorFunc VP8LPredictors[16]; |
1568 | 562 |
1569 VP8LTransformColorFunc VP8LTransformColor; | |
1570 VP8LTransformColorFunc VP8LTransformColorInverse; | 563 VP8LTransformColorFunc VP8LTransformColorInverse; |
1571 | 564 |
1572 VP8LConvertFunc VP8LConvertBGRAToRGB; | 565 VP8LConvertFunc VP8LConvertBGRAToRGB; |
1573 VP8LConvertFunc VP8LConvertBGRAToRGBA; | 566 VP8LConvertFunc VP8LConvertBGRAToRGBA; |
1574 VP8LConvertFunc VP8LConvertBGRAToRGBA4444; | 567 VP8LConvertFunc VP8LConvertBGRAToRGBA4444; |
1575 VP8LConvertFunc VP8LConvertBGRAToRGB565; | 568 VP8LConvertFunc VP8LConvertBGRAToRGB565; |
1576 VP8LConvertFunc VP8LConvertBGRAToBGR; | 569 VP8LConvertFunc VP8LConvertBGRAToBGR; |
1577 | 570 |
1578 VP8LFastLog2SlowFunc VP8LFastLog2Slow; | 571 VP8LMapARGBFunc VP8LMapColor32b; |
1579 VP8LFastLog2SlowFunc VP8LFastSLog2Slow; | 572 VP8LMapAlphaFunc VP8LMapColor8b; |
1580 | |
1581 VP8LCostFunc VP8LExtraCost; | |
1582 VP8LCostCombinedFunc VP8LExtraCostCombined; | |
1583 | |
1584 VP8LCostCountFunc VP8LHuffmanCostCount; | |
1585 VP8LCostCombinedCountFunc VP8LHuffmanCostCombinedCount; | |
1586 | |
1587 VP8LHistogramAddFunc VP8LHistogramAdd; | |
1588 | 573 |
1589 extern void VP8LDspInitSSE2(void); | 574 extern void VP8LDspInitSSE2(void); |
1590 extern void VP8LDspInitNEON(void); | 575 extern void VP8LDspInitNEON(void); |
1591 extern void VP8LDspInitMIPS32(void); | 576 extern void VP8LDspInitMIPSdspR2(void); |
1592 | 577 |
1593 static volatile VP8CPUInfo lossless_last_cpuinfo_used = | 578 static volatile VP8CPUInfo lossless_last_cpuinfo_used = |
1594 (VP8CPUInfo)&lossless_last_cpuinfo_used; | 579 (VP8CPUInfo)&lossless_last_cpuinfo_used; |
1595 | 580 |
1596 void VP8LDspInit(void) { | 581 WEBP_TSAN_IGNORE_FUNCTION void VP8LDspInit(void) { |
1597 if (lossless_last_cpuinfo_used == VP8GetCPUInfo) return; | 582 if (lossless_last_cpuinfo_used == VP8GetCPUInfo) return; |
1598 | 583 |
1599 memcpy(VP8LPredictors, kPredictorsC, sizeof(VP8LPredictors)); | 584 VP8LPredictors[0] = Predictor0; |
| 585 VP8LPredictors[1] = Predictor1; |
| 586 VP8LPredictors[2] = Predictor2; |
| 587 VP8LPredictors[3] = Predictor3; |
| 588 VP8LPredictors[4] = Predictor4; |
| 589 VP8LPredictors[5] = Predictor5; |
| 590 VP8LPredictors[6] = Predictor6; |
| 591 VP8LPredictors[7] = Predictor7; |
| 592 VP8LPredictors[8] = Predictor8; |
| 593 VP8LPredictors[9] = Predictor9; |
| 594 VP8LPredictors[10] = Predictor10; |
| 595 VP8LPredictors[11] = Predictor11; |
| 596 VP8LPredictors[12] = Predictor12; |
| 597 VP8LPredictors[13] = Predictor13; |
| 598 VP8LPredictors[14] = Predictor0; // <- padding security sentinels |
| 599 VP8LPredictors[15] = Predictor0; |
1600 | 600 |
1601 VP8LSubtractGreenFromBlueAndRed = VP8LSubtractGreenFromBlueAndRed_C; | |
1602 VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C; | 601 VP8LAddGreenToBlueAndRed = VP8LAddGreenToBlueAndRed_C; |
1603 | 602 |
1604 VP8LTransformColor = VP8LTransformColor_C; | |
1605 VP8LTransformColorInverse = VP8LTransformColorInverse_C; | 603 VP8LTransformColorInverse = VP8LTransformColorInverse_C; |
1606 | 604 |
1607 VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C; | 605 VP8LConvertBGRAToRGB = VP8LConvertBGRAToRGB_C; |
1608 VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C; | 606 VP8LConvertBGRAToRGBA = VP8LConvertBGRAToRGBA_C; |
1609 VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C; | 607 VP8LConvertBGRAToRGBA4444 = VP8LConvertBGRAToRGBA4444_C; |
1610 VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C; | 608 VP8LConvertBGRAToRGB565 = VP8LConvertBGRAToRGB565_C; |
1611 VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C; | 609 VP8LConvertBGRAToBGR = VP8LConvertBGRAToBGR_C; |
1612 | 610 |
1613 VP8LFastLog2Slow = FastLog2Slow; | 611 VP8LMapColor32b = MapARGB; |
1614 VP8LFastSLog2Slow = FastSLog2Slow; | 612 VP8LMapColor8b = MapAlpha; |
1615 | |
1616 VP8LExtraCost = ExtraCost; | |
1617 VP8LExtraCostCombined = ExtraCostCombined; | |
1618 | |
1619 VP8LHuffmanCostCount = HuffmanCostCount; | |
1620 VP8LHuffmanCostCombinedCount = HuffmanCostCombinedCount; | |
1621 | |
1622 VP8LHistogramAdd = HistogramAdd; | |
1623 | 613 |
1624 // If defined, use CPUInfo() to overwrite some pointers with faster versions. | 614 // If defined, use CPUInfo() to overwrite some pointers with faster versions. |
1625 if (VP8GetCPUInfo != NULL) { | 615 if (VP8GetCPUInfo != NULL) { |
1626 #if defined(WEBP_USE_SSE2) | 616 #if defined(WEBP_USE_SSE2) |
1627 if (VP8GetCPUInfo(kSSE2)) { | 617 if (VP8GetCPUInfo(kSSE2)) { |
1628 VP8LDspInitSSE2(); | 618 VP8LDspInitSSE2(); |
1629 } | 619 } |
1630 #endif | 620 #endif |
1631 #if defined(WEBP_USE_NEON) | 621 #if defined(WEBP_USE_NEON) |
1632 if (VP8GetCPUInfo(kNEON)) { | 622 if (VP8GetCPUInfo(kNEON)) { |
1633 VP8LDspInitNEON(); | 623 VP8LDspInitNEON(); |
1634 } | 624 } |
1635 #endif | 625 #endif |
1636 #if defined(WEBP_USE_MIPS32) | 626 #if defined(WEBP_USE_MIPS_DSP_R2) |
1637 if (VP8GetCPUInfo(kMIPS32)) { | 627 if (VP8GetCPUInfo(kMIPSdspR2)) { |
1638 VP8LDspInitMIPS32(); | 628 VP8LDspInitMIPSdspR2(); |
1639 } | 629 } |
1640 #endif | 630 #endif |
1641 } | 631 } |
1642 lossless_last_cpuinfo_used = VP8GetCPUInfo; | 632 lossless_last_cpuinfo_used = VP8GetCPUInfo; |
1643 } | 633 } |
1644 | 634 |
1645 //------------------------------------------------------------------------------ | 635 //------------------------------------------------------------------------------ |
OLD | NEW |