OLD | NEW |
1 // Copyright 2011 Google Inc. All Rights Reserved. | 1 // Copyright 2011 Google Inc. All Rights Reserved. |
2 // | 2 // |
3 // Use of this source code is governed by a BSD-style license | 3 // Use of this source code is governed by a BSD-style license |
4 // that can be found in the COPYING file in the root of the source | 4 // that can be found in the COPYING file in the root of the source |
5 // tree. An additional intellectual property rights grant can be found | 5 // tree. An additional intellectual property rights grant can be found |
6 // in the file PATENTS. All contributing project authors may | 6 // in the file PATENTS. All contributing project authors may |
7 // be found in the AUTHORS file in the root of the source tree. | 7 // be found in the AUTHORS file in the root of the source tree. |
8 // ----------------------------------------------------------------------------- | 8 // ----------------------------------------------------------------------------- |
9 // | 9 // |
10 // SSE2 version of speed-critical encoding functions. | 10 // SSE2 version of speed-critical encoding functions. |
11 // | 11 // |
12 // Author: Christian Duvivier (cduvivier@google.com) | 12 // Author: Christian Duvivier (cduvivier@google.com) |
13 | 13 |
14 #include "./dsp.h" | 14 #include "./dsp.h" |
15 | 15 |
16 #if defined(WEBP_USE_SSE2) | 16 #if defined(WEBP_USE_SSE2) |
17 #include <stdlib.h> // for abs() | 17 #include <stdlib.h> // for abs() |
18 #include <emmintrin.h> | 18 #include <emmintrin.h> |
19 | 19 |
20 #include "../enc/cost.h" | 20 #include "../enc/cost.h" |
21 #include "../enc/vp8enci.h" | 21 #include "../enc/vp8enci.h" |
22 #include "../utils/utils.h" | |
23 | 22 |
24 //------------------------------------------------------------------------------ | 23 //------------------------------------------------------------------------------ |
25 // Quite useful macro for debugging. Left here for convenience. | 24 // Quite useful macro for debugging. Left here for convenience. |
26 | 25 |
27 #if 0 | 26 #if 0 |
28 #include <stdio.h> | 27 #include <stdio.h> |
29 static void PrintReg(const __m128i r, const char* const name, int size) { | 28 static void PrintReg(const __m128i r, const char* const name, int size) { |
30 int n; | 29 int n; |
31 union { | 30 union { |
32 __m128i r; | 31 __m128i r; |
33 uint8_t i8[16]; | 32 uint8_t i8[16]; |
34 uint16_t i16[8]; | 33 uint16_t i16[8]; |
35 uint32_t i32[4]; | 34 uint32_t i32[4]; |
36 uint64_t i64[2]; | 35 uint64_t i64[2]; |
37 } tmp; | 36 } tmp; |
38 tmp.r = r; | 37 tmp.r = r; |
39 printf("%s\t: ", name); | 38 fprintf(stderr, "%s\t: ", name); |
40 if (size == 8) { | 39 if (size == 8) { |
41 for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]); | 40 for (n = 0; n < 16; ++n) fprintf(stderr, "%.2x ", tmp.i8[n]); |
42 } else if (size == 16) { | 41 } else if (size == 16) { |
43 for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]); | 42 for (n = 0; n < 8; ++n) fprintf(stderr, "%.4x ", tmp.i16[n]); |
44 } else if (size == 32) { | 43 } else if (size == 32) { |
45 for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]); | 44 for (n = 0; n < 4; ++n) fprintf(stderr, "%.8x ", tmp.i32[n]); |
46 } else { | 45 } else { |
47 for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]); | 46 for (n = 0; n < 2; ++n) fprintf(stderr, "%.16lx ", tmp.i64[n]); |
48 } | 47 } |
49 printf("\n"); | 48 fprintf(stderr, "\n"); |
50 } | 49 } |
51 #endif | 50 #endif |
52 | 51 |
53 //------------------------------------------------------------------------------ | 52 //------------------------------------------------------------------------------ |
54 // Compute susceptibility based on DCT-coeff histograms: | |
55 // the higher, the "easier" the macroblock is to compress. | |
56 | |
57 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred, | |
58 int start_block, int end_block, | |
59 VP8Histogram* const histo) { | |
60 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); | |
61 int j; | |
62 for (j = start_block; j < end_block; ++j) { | |
63 int16_t out[16]; | |
64 int k; | |
65 | |
66 VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); | |
67 | |
68 // Convert coefficients to bin (within out[]). | |
69 { | |
70 // Load. | |
71 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); | |
72 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); | |
73 // sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative) | |
74 const __m128i sign0 = _mm_srai_epi16(out0, 15); | |
75 const __m128i sign1 = _mm_srai_epi16(out1, 15); | |
76 // abs(out) = (out ^ sign) - sign | |
77 const __m128i xor0 = _mm_xor_si128(out0, sign0); | |
78 const __m128i xor1 = _mm_xor_si128(out1, sign1); | |
79 const __m128i abs0 = _mm_sub_epi16(xor0, sign0); | |
80 const __m128i abs1 = _mm_sub_epi16(xor1, sign1); | |
81 // v = abs(out) >> 3 | |
82 const __m128i v0 = _mm_srai_epi16(abs0, 3); | |
83 const __m128i v1 = _mm_srai_epi16(abs1, 3); | |
84 // bin = min(v, MAX_COEFF_THRESH) | |
85 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); | |
86 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); | |
87 // Store. | |
88 _mm_storeu_si128((__m128i*)&out[0], bin0); | |
89 _mm_storeu_si128((__m128i*)&out[8], bin1); | |
90 } | |
91 | |
92 // Convert coefficients to bin. | |
93 for (k = 0; k < 16; ++k) { | |
94 histo->distribution[out[k]]++; | |
95 } | |
96 } | |
97 } | |
98 | |
99 //------------------------------------------------------------------------------ | |
100 // Transforms (Paragraph 14.4) | 53 // Transforms (Paragraph 14.4) |
101 | 54 |
102 // Does one or two inverse transforms. | 55 // Does one or two inverse transforms. |
103 static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst, | 56 static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst, |
104 int do_two) { | 57 int do_two) { |
105 // This implementation makes use of 16-bit fixed point versions of two | 58 // This implementation makes use of 16-bit fixed point versions of two |
106 // multiply constants: | 59 // multiply constants: |
107 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 | 60 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16 |
108 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 | 61 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16 |
109 // | 62 // |
(...skipping 11 matching lines...) Expand all Loading... |
121 const __m128i k1 = _mm_set1_epi16(20091); | 74 const __m128i k1 = _mm_set1_epi16(20091); |
122 const __m128i k2 = _mm_set1_epi16(-30068); | 75 const __m128i k2 = _mm_set1_epi16(-30068); |
123 __m128i T0, T1, T2, T3; | 76 __m128i T0, T1, T2, T3; |
124 | 77 |
125 // Load and concatenate the transform coefficients (we'll do two inverse | 78 // Load and concatenate the transform coefficients (we'll do two inverse |
126 // transforms in parallel). In the case of only one inverse transform, the | 79 // transforms in parallel). In the case of only one inverse transform, the |
127 // second half of the vectors will just contain random value we'll never | 80 // second half of the vectors will just contain random value we'll never |
128 // use nor store. | 81 // use nor store. |
129 __m128i in0, in1, in2, in3; | 82 __m128i in0, in1, in2, in3; |
130 { | 83 { |
131 in0 = _mm_loadl_epi64((__m128i*)&in[0]); | 84 in0 = _mm_loadl_epi64((const __m128i*)&in[0]); |
132 in1 = _mm_loadl_epi64((__m128i*)&in[4]); | 85 in1 = _mm_loadl_epi64((const __m128i*)&in[4]); |
133 in2 = _mm_loadl_epi64((__m128i*)&in[8]); | 86 in2 = _mm_loadl_epi64((const __m128i*)&in[8]); |
134 in3 = _mm_loadl_epi64((__m128i*)&in[12]); | 87 in3 = _mm_loadl_epi64((const __m128i*)&in[12]); |
135 // a00 a10 a20 a30 x x x x | 88 // a00 a10 a20 a30 x x x x |
136 // a01 a11 a21 a31 x x x x | 89 // a01 a11 a21 a31 x x x x |
137 // a02 a12 a22 a32 x x x x | 90 // a02 a12 a22 a32 x x x x |
138 // a03 a13 a23 a33 x x x x | 91 // a03 a13 a23 a33 x x x x |
139 if (do_two) { | 92 if (do_two) { |
140 const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]); | 93 const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]); |
141 const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]); | 94 const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]); |
142 const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]); | 95 const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]); |
143 const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]); | 96 const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]); |
144 in0 = _mm_unpacklo_epi64(in0, inB0); | 97 in0 = _mm_unpacklo_epi64(in0, inB0); |
145 in1 = _mm_unpacklo_epi64(in1, inB1); | 98 in1 = _mm_unpacklo_epi64(in1, inB1); |
146 in2 = _mm_unpacklo_epi64(in2, inB2); | 99 in2 = _mm_unpacklo_epi64(in2, inB2); |
147 in3 = _mm_unpacklo_epi64(in3, inB3); | 100 in3 = _mm_unpacklo_epi64(in3, inB3); |
148 // a00 a10 a20 a30 b00 b10 b20 b30 | 101 // a00 a10 a20 a30 b00 b10 b20 b30 |
149 // a01 a11 a21 a31 b01 b11 b21 b31 | 102 // a01 a11 a21 a31 b01 b11 b21 b31 |
150 // a02 a12 a22 a32 b02 b12 b22 b32 | 103 // a02 a12 a22 a32 b02 b12 b22 b32 |
151 // a03 a13 a23 a33 b03 b13 b23 b33 | 104 // a03 a13 a23 a33 b03 b13 b23 b33 |
152 } | 105 } |
153 } | 106 } |
(...skipping 116 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
270 // a03 a13 a23 a33 b03 b13 b23 b33 | 223 // a03 a13 a23 a33 b03 b13 b23 b33 |
271 } | 224 } |
272 | 225 |
273 // Add inverse transform to 'ref' and store. | 226 // Add inverse transform to 'ref' and store. |
274 { | 227 { |
275 const __m128i zero = _mm_setzero_si128(); | 228 const __m128i zero = _mm_setzero_si128(); |
276 // Load the reference(s). | 229 // Load the reference(s). |
277 __m128i ref0, ref1, ref2, ref3; | 230 __m128i ref0, ref1, ref2, ref3; |
278 if (do_two) { | 231 if (do_two) { |
279 // Load eight bytes/pixels per line. | 232 // Load eight bytes/pixels per line. |
280 ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]); | 233 ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
281 ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]); | 234 ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
282 ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]); | 235 ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
283 ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]); | 236 ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
284 } else { | 237 } else { |
285 // Load four bytes/pixels per line. | 238 // Load four bytes/pixels per line. |
286 ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]); | 239 ref0 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[0 * BPS])); |
287 ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]); | 240 ref1 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[1 * BPS])); |
288 ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]); | 241 ref2 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[2 * BPS])); |
289 ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]); | 242 ref3 = _mm_cvtsi32_si128(WebPMemToUint32(&ref[3 * BPS])); |
290 } | 243 } |
291 // Convert to 16b. | 244 // Convert to 16b. |
292 ref0 = _mm_unpacklo_epi8(ref0, zero); | 245 ref0 = _mm_unpacklo_epi8(ref0, zero); |
293 ref1 = _mm_unpacklo_epi8(ref1, zero); | 246 ref1 = _mm_unpacklo_epi8(ref1, zero); |
294 ref2 = _mm_unpacklo_epi8(ref2, zero); | 247 ref2 = _mm_unpacklo_epi8(ref2, zero); |
295 ref3 = _mm_unpacklo_epi8(ref3, zero); | 248 ref3 = _mm_unpacklo_epi8(ref3, zero); |
296 // Add the inverse transform(s). | 249 // Add the inverse transform(s). |
297 ref0 = _mm_add_epi16(ref0, T0); | 250 ref0 = _mm_add_epi16(ref0, T0); |
298 ref1 = _mm_add_epi16(ref1, T1); | 251 ref1 = _mm_add_epi16(ref1, T1); |
299 ref2 = _mm_add_epi16(ref2, T2); | 252 ref2 = _mm_add_epi16(ref2, T2); |
300 ref3 = _mm_add_epi16(ref3, T3); | 253 ref3 = _mm_add_epi16(ref3, T3); |
301 // Unsigned saturate to 8b. | 254 // Unsigned saturate to 8b. |
302 ref0 = _mm_packus_epi16(ref0, ref0); | 255 ref0 = _mm_packus_epi16(ref0, ref0); |
303 ref1 = _mm_packus_epi16(ref1, ref1); | 256 ref1 = _mm_packus_epi16(ref1, ref1); |
304 ref2 = _mm_packus_epi16(ref2, ref2); | 257 ref2 = _mm_packus_epi16(ref2, ref2); |
305 ref3 = _mm_packus_epi16(ref3, ref3); | 258 ref3 = _mm_packus_epi16(ref3, ref3); |
306 // Store the results. | 259 // Store the results. |
307 if (do_two) { | 260 if (do_two) { |
308 // Store eight bytes/pixels per line. | 261 // Store eight bytes/pixels per line. |
309 _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0); | 262 _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0); |
310 _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1); | 263 _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1); |
311 _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2); | 264 _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2); |
312 _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3); | 265 _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3); |
313 } else { | 266 } else { |
314 // Store four bytes/pixels per line. | 267 // Store four bytes/pixels per line. |
315 *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0); | 268 WebPUint32ToMem(&dst[0 * BPS], _mm_cvtsi128_si32(ref0)); |
316 *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1); | 269 WebPUint32ToMem(&dst[1 * BPS], _mm_cvtsi128_si32(ref1)); |
317 *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2); | 270 WebPUint32ToMem(&dst[2 * BPS], _mm_cvtsi128_si32(ref2)); |
318 *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3); | 271 WebPUint32ToMem(&dst[3 * BPS], _mm_cvtsi128_si32(ref3)); |
319 } | 272 } |
320 } | 273 } |
321 } | 274 } |
322 | 275 |
323 static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) { | 276 static void FTransformPass1(const __m128i* const in01, |
324 const __m128i zero = _mm_setzero_si128(); | 277 const __m128i* const in23, |
325 const __m128i seven = _mm_set1_epi16(7); | 278 __m128i* const out01, |
| 279 __m128i* const out32) { |
326 const __m128i k937 = _mm_set1_epi32(937); | 280 const __m128i k937 = _mm_set1_epi32(937); |
327 const __m128i k1812 = _mm_set1_epi32(1812); | 281 const __m128i k1812 = _mm_set1_epi32(1812); |
328 const __m128i k51000 = _mm_set1_epi32(51000); | 282 |
329 const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16)); | |
330 const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217, | |
331 5352, 2217, 5352, 2217); | |
332 const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352, | |
333 2217, -5352, 2217, -5352); | |
334 const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8); | 283 const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8); |
335 const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8); | 284 const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8); |
336 const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352, | 285 const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352, |
337 2217, 5352, 2217, 5352); | 286 2217, 5352, 2217, 5352); |
338 const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217, | 287 const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217, |
339 -5352, 2217, -5352, 2217); | 288 -5352, 2217, -5352, 2217); |
| 289 |
| 290 // *in01 = 00 01 10 11 02 03 12 13 |
| 291 // *in23 = 20 21 30 31 22 23 32 33 |
| 292 const __m128i shuf01_p = _mm_shufflehi_epi16(*in01, _MM_SHUFFLE(2, 3, 0, 1)); |
| 293 const __m128i shuf23_p = _mm_shufflehi_epi16(*in23, _MM_SHUFFLE(2, 3, 0, 1)); |
| 294 // 00 01 10 11 03 02 13 12 |
| 295 // 20 21 30 31 23 22 33 32 |
| 296 const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p); |
| 297 const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p); |
| 298 // 00 01 10 11 20 21 30 31 |
| 299 // 03 02 13 12 23 22 33 32 |
| 300 const __m128i a01 = _mm_add_epi16(s01, s32); |
| 301 const __m128i a32 = _mm_sub_epi16(s01, s32); |
| 302 // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ] |
| 303 // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ] |
| 304 |
| 305 const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ] |
| 306 const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ] |
| 307 const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p); |
| 308 const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m); |
| 309 const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812); |
| 310 const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937); |
| 311 const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9); |
| 312 const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9); |
| 313 const __m128i s03 = _mm_packs_epi32(tmp0, tmp2); |
| 314 const __m128i s12 = _mm_packs_epi32(tmp1, tmp3); |
| 315 const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1... |
| 316 const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3 |
| 317 const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi); |
| 318 *out01 = _mm_unpacklo_epi32(s_lo, s_hi); |
| 319 *out32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2.. |
| 320 } |
| 321 |
| 322 static void FTransformPass2(const __m128i* const v01, const __m128i* const v32, |
| 323 int16_t* out) { |
| 324 const __m128i zero = _mm_setzero_si128(); |
| 325 const __m128i seven = _mm_set1_epi16(7); |
| 326 const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217, |
| 327 5352, 2217, 5352, 2217); |
| 328 const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352, |
| 329 2217, -5352, 2217, -5352); |
| 330 const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16)); |
| 331 const __m128i k51000 = _mm_set1_epi32(51000); |
| 332 |
| 333 // Same operations are done on the (0,3) and (1,2) pairs. |
| 334 // a0 = v0 + v3 |
| 335 // a1 = v1 + v2 |
| 336 // a3 = v0 - v3 |
| 337 // a2 = v1 - v2 |
| 338 const __m128i a01 = _mm_add_epi16(*v01, *v32); |
| 339 const __m128i a32 = _mm_sub_epi16(*v01, *v32); |
| 340 const __m128i a11 = _mm_unpackhi_epi64(a01, a01); |
| 341 const __m128i a22 = _mm_unpackhi_epi64(a32, a32); |
| 342 const __m128i a01_plus_7 = _mm_add_epi16(a01, seven); |
| 343 |
| 344 // d0 = (a0 + a1 + 7) >> 4; |
| 345 // d2 = (a0 - a1 + 7) >> 4; |
| 346 const __m128i c0 = _mm_add_epi16(a01_plus_7, a11); |
| 347 const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11); |
| 348 const __m128i d0 = _mm_srai_epi16(c0, 4); |
| 349 const __m128i d2 = _mm_srai_epi16(c2, 4); |
| 350 |
| 351 // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16) |
| 352 // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16) |
| 353 const __m128i b23 = _mm_unpacklo_epi16(a22, a32); |
| 354 const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); |
| 355 const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); |
| 356 const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one); |
| 357 const __m128i d3 = _mm_add_epi32(c3, k51000); |
| 358 const __m128i e1 = _mm_srai_epi32(d1, 16); |
| 359 const __m128i e3 = _mm_srai_epi32(d3, 16); |
| 360 const __m128i f1 = _mm_packs_epi32(e1, e1); |
| 361 const __m128i f3 = _mm_packs_epi32(e3, e3); |
| 362 // f1 = f1 + (a3 != 0); |
| 363 // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the |
| 364 // desired (0, 1), we add one earlier through k12000_plus_one. |
| 365 // -> f1 = f1 + 1 - (a3 == 0) |
| 366 const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero)); |
| 367 |
| 368 const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1); |
| 369 const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3); |
| 370 _mm_storeu_si128((__m128i*)&out[0], d0_g1); |
| 371 _mm_storeu_si128((__m128i*)&out[8], d2_f3); |
| 372 } |
| 373 |
| 374 static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) { |
| 375 const __m128i zero = _mm_setzero_si128(); |
| 376 |
| 377 // Load src and convert to 16b. |
| 378 const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); |
| 379 const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); |
| 380 const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); |
| 381 const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); |
| 382 const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); |
| 383 const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); |
| 384 const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); |
| 385 const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); |
| 386 // Load ref and convert to 16b. |
| 387 const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
| 388 const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
| 389 const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
| 390 const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
| 391 const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); |
| 392 const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); |
| 393 const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); |
| 394 const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); |
| 395 // Compute difference. -> 00 01 02 03 00 00 00 00 |
| 396 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); |
| 397 const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); |
| 398 const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); |
| 399 const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); |
| 400 |
| 401 // Unpack and shuffle |
| 402 // 00 01 02 03 0 0 0 0 |
| 403 // 10 11 12 13 0 0 0 0 |
| 404 // 20 21 22 23 0 0 0 0 |
| 405 // 30 31 32 33 0 0 0 0 |
| 406 const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1); |
| 407 const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3); |
340 __m128i v01, v32; | 408 __m128i v01, v32; |
341 | 409 |
342 | 410 // First pass |
343 // Difference between src and ref and initial transpose. | 411 FTransformPass1(&shuf01, &shuf23, &v01, &v32); |
| 412 |
| 413 // Second pass |
| 414 FTransformPass2(&v01, &v32, out); |
| 415 } |
| 416 |
| 417 static void FTransform2(const uint8_t* src, const uint8_t* ref, int16_t* out) { |
| 418 const __m128i zero = _mm_setzero_si128(); |
| 419 |
| 420 // Load src and convert to 16b. |
| 421 const __m128i src0 = _mm_loadl_epi64((const __m128i*)&src[0 * BPS]); |
| 422 const __m128i src1 = _mm_loadl_epi64((const __m128i*)&src[1 * BPS]); |
| 423 const __m128i src2 = _mm_loadl_epi64((const __m128i*)&src[2 * BPS]); |
| 424 const __m128i src3 = _mm_loadl_epi64((const __m128i*)&src[3 * BPS]); |
| 425 const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); |
| 426 const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); |
| 427 const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); |
| 428 const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); |
| 429 // Load ref and convert to 16b. |
| 430 const __m128i ref0 = _mm_loadl_epi64((const __m128i*)&ref[0 * BPS]); |
| 431 const __m128i ref1 = _mm_loadl_epi64((const __m128i*)&ref[1 * BPS]); |
| 432 const __m128i ref2 = _mm_loadl_epi64((const __m128i*)&ref[2 * BPS]); |
| 433 const __m128i ref3 = _mm_loadl_epi64((const __m128i*)&ref[3 * BPS]); |
| 434 const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); |
| 435 const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); |
| 436 const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); |
| 437 const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); |
| 438 // Compute difference. -> 00 01 02 03 00' 01' 02' 03' |
| 439 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); |
| 440 const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); |
| 441 const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); |
| 442 const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); |
| 443 |
| 444 // Unpack and shuffle |
| 445 // 00 01 02 03 0 0 0 0 |
| 446 // 10 11 12 13 0 0 0 0 |
| 447 // 20 21 22 23 0 0 0 0 |
| 448 // 30 31 32 33 0 0 0 0 |
| 449 const __m128i shuf01l = _mm_unpacklo_epi32(diff0, diff1); |
| 450 const __m128i shuf23l = _mm_unpacklo_epi32(diff2, diff3); |
| 451 const __m128i shuf01h = _mm_unpackhi_epi32(diff0, diff1); |
| 452 const __m128i shuf23h = _mm_unpackhi_epi32(diff2, diff3); |
| 453 __m128i v01l, v32l; |
| 454 __m128i v01h, v32h; |
| 455 |
| 456 // First pass |
| 457 FTransformPass1(&shuf01l, &shuf23l, &v01l, &v32l); |
| 458 FTransformPass1(&shuf01h, &shuf23h, &v01h, &v32h); |
| 459 |
| 460 // Second pass |
| 461 FTransformPass2(&v01l, &v32l, out + 0); |
| 462 FTransformPass2(&v01h, &v32h, out + 16); |
| 463 } |
| 464 |
| 465 static void FTransformWHTRow(const int16_t* const in, __m128i* const out) { |
| 466 const __m128i kMult1 = _mm_set_epi16(0, 0, 0, 0, 1, 1, 1, 1); |
| 467 const __m128i kMult2 = _mm_set_epi16(0, 0, 0, 0, -1, 1, -1, 1); |
| 468 const __m128i src0 = _mm_loadl_epi64((__m128i*)&in[0 * 16]); |
| 469 const __m128i src1 = _mm_loadl_epi64((__m128i*)&in[1 * 16]); |
| 470 const __m128i src2 = _mm_loadl_epi64((__m128i*)&in[2 * 16]); |
| 471 const __m128i src3 = _mm_loadl_epi64((__m128i*)&in[3 * 16]); |
| 472 const __m128i A01 = _mm_unpacklo_epi16(src0, src1); // A0 A1 | ... |
| 473 const __m128i A23 = _mm_unpacklo_epi16(src2, src3); // A2 A3 | ... |
| 474 const __m128i B0 = _mm_adds_epi16(A01, A23); // a0 | a1 | ... |
| 475 const __m128i B1 = _mm_subs_epi16(A01, A23); // a3 | a2 | ... |
| 476 const __m128i C0 = _mm_unpacklo_epi32(B0, B1); // a0 | a1 | a3 | a2 |
| 477 const __m128i C1 = _mm_unpacklo_epi32(B1, B0); // a3 | a2 | a0 | a1 |
| 478 const __m128i D0 = _mm_madd_epi16(C0, kMult1); // out0, out1 |
| 479 const __m128i D1 = _mm_madd_epi16(C1, kMult2); // out2, out3 |
| 480 *out = _mm_unpacklo_epi64(D0, D1); |
| 481 } |
| 482 |
| 483 static void FTransformWHT(const int16_t* in, int16_t* out) { |
| 484 __m128i row0, row1, row2, row3; |
| 485 FTransformWHTRow(in + 0 * 64, &row0); |
| 486 FTransformWHTRow(in + 1 * 64, &row1); |
| 487 FTransformWHTRow(in + 2 * 64, &row2); |
| 488 FTransformWHTRow(in + 3 * 64, &row3); |
| 489 |
344 { | 490 { |
345 // Load src and convert to 16b. | 491 const __m128i a0 = _mm_add_epi32(row0, row2); |
346 const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]); | 492 const __m128i a1 = _mm_add_epi32(row1, row3); |
347 const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]); | 493 const __m128i a2 = _mm_sub_epi32(row1, row3); |
348 const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]); | 494 const __m128i a3 = _mm_sub_epi32(row0, row2); |
349 const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]); | |
350 const __m128i src_0 = _mm_unpacklo_epi8(src0, zero); | |
351 const __m128i src_1 = _mm_unpacklo_epi8(src1, zero); | |
352 const __m128i src_2 = _mm_unpacklo_epi8(src2, zero); | |
353 const __m128i src_3 = _mm_unpacklo_epi8(src3, zero); | |
354 // Load ref and convert to 16b. | |
355 const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]); | |
356 const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]); | |
357 const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]); | |
358 const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]); | |
359 const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero); | |
360 const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero); | |
361 const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero); | |
362 const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero); | |
363 // Compute difference. -> 00 01 02 03 00 00 00 00 | |
364 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0); | |
365 const __m128i diff1 = _mm_sub_epi16(src_1, ref_1); | |
366 const __m128i diff2 = _mm_sub_epi16(src_2, ref_2); | |
367 const __m128i diff3 = _mm_sub_epi16(src_3, ref_3); | |
368 | |
369 | |
370 // Unpack and shuffle | |
371 // 00 01 02 03 0 0 0 0 | |
372 // 10 11 12 13 0 0 0 0 | |
373 // 20 21 22 23 0 0 0 0 | |
374 // 30 31 32 33 0 0 0 0 | |
375 const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1); | |
376 const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3); | |
377 // 00 01 10 11 02 03 12 13 | |
378 // 20 21 30 31 22 23 32 33 | |
379 const __m128i shuf01_p = | |
380 _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1)); | |
381 const __m128i shuf23_p = | |
382 _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1)); | |
383 // 00 01 10 11 03 02 13 12 | |
384 // 20 21 30 31 23 22 33 32 | |
385 const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p); | |
386 const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p); | |
387 // 00 01 10 11 20 21 30 31 | |
388 // 03 02 13 12 23 22 33 32 | |
389 const __m128i a01 = _mm_add_epi16(s01, s32); | |
390 const __m128i a32 = _mm_sub_epi16(s01, s32); | |
391 // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ] | |
392 // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ] | |
393 | |
394 const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ] | |
395 const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ] | |
396 const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p); | |
397 const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m); | |
398 const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812); | |
399 const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937); | |
400 const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9); | |
401 const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9); | |
402 const __m128i s03 = _mm_packs_epi32(tmp0, tmp2); | |
403 const __m128i s12 = _mm_packs_epi32(tmp1, tmp3); | |
404 const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1... | |
405 const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3 | |
406 const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi); | |
407 v01 = _mm_unpacklo_epi32(s_lo, s_hi); | |
408 v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2.. | |
409 } | |
410 | |
411 // Second pass | |
412 { | |
413 // Same operations are done on the (0,3) and (1,2) pairs. | |
414 // a0 = v0 + v3 | |
415 // a1 = v1 + v2 | |
416 // a3 = v0 - v3 | |
417 // a2 = v1 - v2 | |
418 const __m128i a01 = _mm_add_epi16(v01, v32); | |
419 const __m128i a32 = _mm_sub_epi16(v01, v32); | |
420 const __m128i a11 = _mm_unpackhi_epi64(a01, a01); | |
421 const __m128i a22 = _mm_unpackhi_epi64(a32, a32); | |
422 const __m128i a01_plus_7 = _mm_add_epi16(a01, seven); | |
423 | |
424 // d0 = (a0 + a1 + 7) >> 4; | |
425 // d2 = (a0 - a1 + 7) >> 4; | |
426 const __m128i c0 = _mm_add_epi16(a01_plus_7, a11); | |
427 const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11); | |
428 const __m128i d0 = _mm_srai_epi16(c0, 4); | |
429 const __m128i d2 = _mm_srai_epi16(c2, 4); | |
430 | |
431 // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16) | |
432 // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16) | |
433 const __m128i b23 = _mm_unpacklo_epi16(a22, a32); | |
434 const __m128i c1 = _mm_madd_epi16(b23, k5352_2217); | |
435 const __m128i c3 = _mm_madd_epi16(b23, k2217_5352); | |
436 const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one); | |
437 const __m128i d3 = _mm_add_epi32(c3, k51000); | |
438 const __m128i e1 = _mm_srai_epi32(d1, 16); | |
439 const __m128i e3 = _mm_srai_epi32(d3, 16); | |
440 const __m128i f1 = _mm_packs_epi32(e1, e1); | |
441 const __m128i f3 = _mm_packs_epi32(e3, e3); | |
442 // f1 = f1 + (a3 != 0); | |
443 // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the | |
444 // desired (0, 1), we add one earlier through k12000_plus_one. | |
445 // -> f1 = f1 + 1 - (a3 == 0) | |
446 const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero)); | |
447 | |
448 const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1); | |
449 const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3); | |
450 _mm_storeu_si128((__m128i*)&out[0], d0_g1); | |
451 _mm_storeu_si128((__m128i*)&out[8], d2_f3); | |
452 } | |
453 } | |
454 | |
455 static void FTransformWHT(const int16_t* in, int16_t* out) { | |
456 int32_t tmp[16]; | |
457 int i; | |
458 for (i = 0; i < 4; ++i, in += 64) { | |
459 const int a0 = (in[0 * 16] + in[2 * 16]); | |
460 const int a1 = (in[1 * 16] + in[3 * 16]); | |
461 const int a2 = (in[1 * 16] - in[3 * 16]); | |
462 const int a3 = (in[0 * 16] - in[2 * 16]); | |
463 tmp[0 + i * 4] = a0 + a1; | |
464 tmp[1 + i * 4] = a3 + a2; | |
465 tmp[2 + i * 4] = a3 - a2; | |
466 tmp[3 + i * 4] = a0 - a1; | |
467 } | |
468 { | |
469 const __m128i src0 = _mm_loadu_si128((__m128i*)&tmp[0]); | |
470 const __m128i src1 = _mm_loadu_si128((__m128i*)&tmp[4]); | |
471 const __m128i src2 = _mm_loadu_si128((__m128i*)&tmp[8]); | |
472 const __m128i src3 = _mm_loadu_si128((__m128i*)&tmp[12]); | |
473 const __m128i a0 = _mm_add_epi32(src0, src2); | |
474 const __m128i a1 = _mm_add_epi32(src1, src3); | |
475 const __m128i a2 = _mm_sub_epi32(src1, src3); | |
476 const __m128i a3 = _mm_sub_epi32(src0, src2); | |
477 const __m128i b0 = _mm_srai_epi32(_mm_add_epi32(a0, a1), 1); | 495 const __m128i b0 = _mm_srai_epi32(_mm_add_epi32(a0, a1), 1); |
478 const __m128i b1 = _mm_srai_epi32(_mm_add_epi32(a3, a2), 1); | 496 const __m128i b1 = _mm_srai_epi32(_mm_add_epi32(a3, a2), 1); |
479 const __m128i b2 = _mm_srai_epi32(_mm_sub_epi32(a3, a2), 1); | 497 const __m128i b2 = _mm_srai_epi32(_mm_sub_epi32(a3, a2), 1); |
480 const __m128i b3 = _mm_srai_epi32(_mm_sub_epi32(a0, a1), 1); | 498 const __m128i b3 = _mm_srai_epi32(_mm_sub_epi32(a0, a1), 1); |
481 const __m128i out0 = _mm_packs_epi32(b0, b1); | 499 const __m128i out0 = _mm_packs_epi32(b0, b1); |
482 const __m128i out1 = _mm_packs_epi32(b2, b3); | 500 const __m128i out1 = _mm_packs_epi32(b2, b3); |
483 _mm_storeu_si128((__m128i*)&out[0], out0); | 501 _mm_storeu_si128((__m128i*)&out[0], out0); |
484 _mm_storeu_si128((__m128i*)&out[8], out1); | 502 _mm_storeu_si128((__m128i*)&out[8], out1); |
485 } | 503 } |
486 } | 504 } |
487 | 505 |
488 //------------------------------------------------------------------------------ | 506 //------------------------------------------------------------------------------ |
| 507 // Compute susceptibility based on DCT-coeff histograms: |
| 508 // the higher, the "easier" the macroblock is to compress. |
| 509 |
| 510 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred, |
| 511 int start_block, int end_block, |
| 512 VP8Histogram* const histo) { |
| 513 const __m128i zero = _mm_setzero_si128(); |
| 514 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH); |
| 515 int j; |
| 516 int distribution[MAX_COEFF_THRESH + 1] = { 0 }; |
| 517 for (j = start_block; j < end_block; ++j) { |
| 518 int16_t out[16]; |
| 519 int k; |
| 520 |
| 521 FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out); |
| 522 |
| 523 // Convert coefficients to bin (within out[]). |
| 524 { |
| 525 // Load. |
| 526 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]); |
| 527 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]); |
| 528 const __m128i d0 = _mm_sub_epi16(zero, out0); |
| 529 const __m128i d1 = _mm_sub_epi16(zero, out1); |
| 530 const __m128i abs0 = _mm_max_epi16(out0, d0); // abs(v), 16b |
| 531 const __m128i abs1 = _mm_max_epi16(out1, d1); |
| 532 // v = abs(out) >> 3 |
| 533 const __m128i v0 = _mm_srai_epi16(abs0, 3); |
| 534 const __m128i v1 = _mm_srai_epi16(abs1, 3); |
| 535 // bin = min(v, MAX_COEFF_THRESH) |
| 536 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh); |
| 537 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh); |
| 538 // Store. |
| 539 _mm_storeu_si128((__m128i*)&out[0], bin0); |
| 540 _mm_storeu_si128((__m128i*)&out[8], bin1); |
| 541 } |
| 542 |
| 543 // Convert coefficients to bin. |
| 544 for (k = 0; k < 16; ++k) { |
| 545 ++distribution[out[k]]; |
| 546 } |
| 547 } |
| 548 VP8SetHistogramData(distribution, histo); |
| 549 } |
| 550 |
| 551 //------------------------------------------------------------------------------ |
| 552 // Intra predictions |
| 553 |
| 554 // helper for chroma-DC predictions |
| 555 static WEBP_INLINE void Put8x8uv(uint8_t v, uint8_t* dst) { |
| 556 int j; |
| 557 const __m128i values = _mm_set1_epi8(v); |
| 558 for (j = 0; j < 8; ++j) { |
| 559 _mm_storel_epi64((__m128i*)(dst + j * BPS), values); |
| 560 } |
| 561 } |
| 562 |
| 563 static WEBP_INLINE void Put16(uint8_t v, uint8_t* dst) { |
| 564 int j; |
| 565 const __m128i values = _mm_set1_epi8(v); |
| 566 for (j = 0; j < 16; ++j) { |
| 567 _mm_store_si128((__m128i*)(dst + j * BPS), values); |
| 568 } |
| 569 } |
| 570 |
| 571 static WEBP_INLINE void Fill(uint8_t* dst, int value, int size) { |
| 572 if (size == 4) { |
| 573 int j; |
| 574 for (j = 0; j < 4; ++j) { |
| 575 memset(dst + j * BPS, value, 4); |
| 576 } |
| 577 } else if (size == 8) { |
| 578 Put8x8uv(value, dst); |
| 579 } else { |
| 580 Put16(value, dst); |
| 581 } |
| 582 } |
| 583 |
| 584 static WEBP_INLINE void VE8uv(uint8_t* dst, const uint8_t* top) { |
| 585 int j; |
| 586 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
| 587 for (j = 0; j < 8; ++j) { |
| 588 _mm_storel_epi64((__m128i*)(dst + j * BPS), top_values); |
| 589 } |
| 590 } |
| 591 |
| 592 static WEBP_INLINE void VE16(uint8_t* dst, const uint8_t* top) { |
| 593 const __m128i top_values = _mm_load_si128((const __m128i*)top); |
| 594 int j; |
| 595 for (j = 0; j < 16; ++j) { |
| 596 _mm_store_si128((__m128i*)(dst + j * BPS), top_values); |
| 597 } |
| 598 } |
| 599 |
| 600 static WEBP_INLINE void VerticalPred(uint8_t* dst, |
| 601 const uint8_t* top, int size) { |
| 602 if (top != NULL) { |
| 603 if (size == 8) { |
| 604 VE8uv(dst, top); |
| 605 } else { |
| 606 VE16(dst, top); |
| 607 } |
| 608 } else { |
| 609 Fill(dst, 127, size); |
| 610 } |
| 611 } |
| 612 |
| 613 static WEBP_INLINE void HE8uv(uint8_t* dst, const uint8_t* left) { |
| 614 int j; |
| 615 for (j = 0; j < 8; ++j) { |
| 616 const __m128i values = _mm_set1_epi8(left[j]); |
| 617 _mm_storel_epi64((__m128i*)dst, values); |
| 618 dst += BPS; |
| 619 } |
| 620 } |
| 621 |
| 622 static WEBP_INLINE void HE16(uint8_t* dst, const uint8_t* left) { |
| 623 int j; |
| 624 for (j = 0; j < 16; ++j) { |
| 625 const __m128i values = _mm_set1_epi8(left[j]); |
| 626 _mm_store_si128((__m128i*)dst, values); |
| 627 dst += BPS; |
| 628 } |
| 629 } |
| 630 |
| 631 static WEBP_INLINE void HorizontalPred(uint8_t* dst, |
| 632 const uint8_t* left, int size) { |
| 633 if (left != NULL) { |
| 634 if (size == 8) { |
| 635 HE8uv(dst, left); |
| 636 } else { |
| 637 HE16(dst, left); |
| 638 } |
| 639 } else { |
| 640 Fill(dst, 129, size); |
| 641 } |
| 642 } |
| 643 |
| 644 static WEBP_INLINE void TM(uint8_t* dst, const uint8_t* left, |
| 645 const uint8_t* top, int size) { |
| 646 const __m128i zero = _mm_setzero_si128(); |
| 647 int y; |
| 648 if (size == 8) { |
| 649 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
| 650 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
| 651 for (y = 0; y < 8; ++y, dst += BPS) { |
| 652 const int val = left[y] - left[-1]; |
| 653 const __m128i base = _mm_set1_epi16(val); |
| 654 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
| 655 _mm_storel_epi64((__m128i*)dst, out); |
| 656 } |
| 657 } else { |
| 658 const __m128i top_values = _mm_load_si128((const __m128i*)top); |
| 659 const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero); |
| 660 const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero); |
| 661 for (y = 0; y < 16; ++y, dst += BPS) { |
| 662 const int val = left[y] - left[-1]; |
| 663 const __m128i base = _mm_set1_epi16(val); |
| 664 const __m128i out_0 = _mm_add_epi16(base, top_base_0); |
| 665 const __m128i out_1 = _mm_add_epi16(base, top_base_1); |
| 666 const __m128i out = _mm_packus_epi16(out_0, out_1); |
| 667 _mm_store_si128((__m128i*)dst, out); |
| 668 } |
| 669 } |
| 670 } |
| 671 |
| 672 static WEBP_INLINE void TrueMotion(uint8_t* dst, const uint8_t* left, |
| 673 const uint8_t* top, int size) { |
| 674 if (left != NULL) { |
| 675 if (top != NULL) { |
| 676 TM(dst, left, top, size); |
| 677 } else { |
| 678 HorizontalPred(dst, left, size); |
| 679 } |
| 680 } else { |
| 681 // true motion without left samples (hence: with default 129 value) |
| 682 // is equivalent to VE prediction where you just copy the top samples. |
| 683 // Note that if top samples are not available, the default value is |
| 684 // then 129, and not 127 as in the VerticalPred case. |
| 685 if (top != NULL) { |
| 686 VerticalPred(dst, top, size); |
| 687 } else { |
| 688 Fill(dst, 129, size); |
| 689 } |
| 690 } |
| 691 } |
| 692 |
| 693 static WEBP_INLINE void DC8uv(uint8_t* dst, const uint8_t* left, |
| 694 const uint8_t* top) { |
| 695 const __m128i zero = _mm_setzero_si128(); |
| 696 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
| 697 const __m128i left_values = _mm_loadl_epi64((const __m128i*)left); |
| 698 const __m128i sum_top = _mm_sad_epu8(top_values, zero); |
| 699 const __m128i sum_left = _mm_sad_epu8(left_values, zero); |
| 700 const int DC = _mm_cvtsi128_si32(sum_top) + _mm_cvtsi128_si32(sum_left) + 8; |
| 701 Put8x8uv(DC >> 4, dst); |
| 702 } |
| 703 |
| 704 static WEBP_INLINE void DC8uvNoLeft(uint8_t* dst, const uint8_t* top) { |
| 705 const __m128i zero = _mm_setzero_si128(); |
| 706 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top); |
| 707 const __m128i sum = _mm_sad_epu8(top_values, zero); |
| 708 const int DC = _mm_cvtsi128_si32(sum) + 4; |
| 709 Put8x8uv(DC >> 3, dst); |
| 710 } |
| 711 |
| 712 static WEBP_INLINE void DC8uvNoTop(uint8_t* dst, const uint8_t* left) { |
| 713 // 'left' is contiguous so we can reuse the top summation. |
| 714 DC8uvNoLeft(dst, left); |
| 715 } |
| 716 |
| 717 static WEBP_INLINE void DC8uvNoTopLeft(uint8_t* dst) { |
| 718 Put8x8uv(0x80, dst); |
| 719 } |
| 720 |
| 721 static WEBP_INLINE void DC8uvMode(uint8_t* dst, const uint8_t* left, |
| 722 const uint8_t* top) { |
| 723 if (top != NULL) { |
| 724 if (left != NULL) { // top and left present |
| 725 DC8uv(dst, left, top); |
| 726 } else { // top, but no left |
| 727 DC8uvNoLeft(dst, top); |
| 728 } |
| 729 } else if (left != NULL) { // left but no top |
| 730 DC8uvNoTop(dst, left); |
| 731 } else { // no top, no left, nothing. |
| 732 DC8uvNoTopLeft(dst); |
| 733 } |
| 734 } |
| 735 |
| 736 static WEBP_INLINE void DC16(uint8_t* dst, const uint8_t* left, |
| 737 const uint8_t* top) { |
| 738 const __m128i zero = _mm_setzero_si128(); |
| 739 const __m128i top_row = _mm_load_si128((const __m128i*)top); |
| 740 const __m128i left_row = _mm_load_si128((const __m128i*)left); |
| 741 const __m128i sad8x2 = _mm_sad_epu8(top_row, zero); |
| 742 // sum the two sads: sad8x2[0:1] + sad8x2[8:9] |
| 743 const __m128i sum_top = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); |
| 744 const __m128i sad8x2_left = _mm_sad_epu8(left_row, zero); |
| 745 // sum the two sads: sad8x2[0:1] + sad8x2[8:9] |
| 746 const __m128i sum_left = |
| 747 _mm_add_epi16(sad8x2_left, _mm_shuffle_epi32(sad8x2_left, 2)); |
| 748 const int DC = _mm_cvtsi128_si32(sum_top) + _mm_cvtsi128_si32(sum_left) + 16; |
| 749 Put16(DC >> 5, dst); |
| 750 } |
| 751 |
| 752 static WEBP_INLINE void DC16NoLeft(uint8_t* dst, const uint8_t* top) { |
| 753 const __m128i zero = _mm_setzero_si128(); |
| 754 const __m128i top_row = _mm_load_si128((const __m128i*)top); |
| 755 const __m128i sad8x2 = _mm_sad_epu8(top_row, zero); |
| 756 // sum the two sads: sad8x2[0:1] + sad8x2[8:9] |
| 757 const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2)); |
| 758 const int DC = _mm_cvtsi128_si32(sum) + 8; |
| 759 Put16(DC >> 4, dst); |
| 760 } |
| 761 |
| 762 static WEBP_INLINE void DC16NoTop(uint8_t* dst, const uint8_t* left) { |
| 763 // 'left' is contiguous so we can reuse the top summation. |
| 764 DC16NoLeft(dst, left); |
| 765 } |
| 766 |
| 767 static WEBP_INLINE void DC16NoTopLeft(uint8_t* dst) { |
| 768 Put16(0x80, dst); |
| 769 } |
| 770 |
| 771 static WEBP_INLINE void DC16Mode(uint8_t* dst, const uint8_t* left, |
| 772 const uint8_t* top) { |
| 773 if (top != NULL) { |
| 774 if (left != NULL) { // top and left present |
| 775 DC16(dst, left, top); |
| 776 } else { // top, but no left |
| 777 DC16NoLeft(dst, top); |
| 778 } |
| 779 } else if (left != NULL) { // left but no top |
| 780 DC16NoTop(dst, left); |
| 781 } else { // no top, no left, nothing. |
| 782 DC16NoTopLeft(dst); |
| 783 } |
| 784 } |
| 785 |
| 786 //------------------------------------------------------------------------------ |
| 787 // 4x4 predictions |
| 788 |
| 789 #define DST(x, y) dst[(x) + (y) * BPS] |
| 790 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2) |
| 791 #define AVG2(a, b) (((a) + (b) + 1) >> 1) |
| 792 |
| 793 // We use the following 8b-arithmetic tricks: |
| 794 // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1 |
| 795 // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1] |
| 796 // and: |
| 797 // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb |
| 798 // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1 |
| 799 // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1 |
| 800 |
| 801 static WEBP_INLINE void VE4(uint8_t* dst, const uint8_t* top) { // vertical |
| 802 const __m128i one = _mm_set1_epi8(1); |
| 803 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(top - 1)); |
| 804 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
| 805 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
| 806 const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00); |
| 807 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one); |
| 808 const __m128i b = _mm_subs_epu8(a, lsb); |
| 809 const __m128i avg = _mm_avg_epu8(b, BCDEFGH0); |
| 810 const uint32_t vals = _mm_cvtsi128_si32(avg); |
| 811 int i; |
| 812 for (i = 0; i < 4; ++i) { |
| 813 WebPUint32ToMem(dst + i * BPS, vals); |
| 814 } |
| 815 } |
| 816 |
| 817 static WEBP_INLINE void HE4(uint8_t* dst, const uint8_t* top) { // horizontal |
| 818 const int X = top[-1]; |
| 819 const int I = top[-2]; |
| 820 const int J = top[-3]; |
| 821 const int K = top[-4]; |
| 822 const int L = top[-5]; |
| 823 WebPUint32ToMem(dst + 0 * BPS, 0x01010101U * AVG3(X, I, J)); |
| 824 WebPUint32ToMem(dst + 1 * BPS, 0x01010101U * AVG3(I, J, K)); |
| 825 WebPUint32ToMem(dst + 2 * BPS, 0x01010101U * AVG3(J, K, L)); |
| 826 WebPUint32ToMem(dst + 3 * BPS, 0x01010101U * AVG3(K, L, L)); |
| 827 } |
| 828 |
| 829 static WEBP_INLINE void DC4(uint8_t* dst, const uint8_t* top) { |
| 830 uint32_t dc = 4; |
| 831 int i; |
| 832 for (i = 0; i < 4; ++i) dc += top[i] + top[-5 + i]; |
| 833 Fill(dst, dc >> 3, 4); |
| 834 } |
| 835 |
| 836 static WEBP_INLINE void LD4(uint8_t* dst, const uint8_t* top) { // Down-Left |
| 837 const __m128i one = _mm_set1_epi8(1); |
| 838 const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); |
| 839 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1); |
| 840 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2); |
| 841 const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, top[7], 3); |
| 842 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0); |
| 843 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one); |
| 844 const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
| 845 const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0); |
| 846 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg )); |
| 847 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
| 848 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
| 849 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
| 850 } |
| 851 |
| 852 static WEBP_INLINE void VR4(uint8_t* dst, |
| 853 const uint8_t* top) { // Vertical-Right |
| 854 const __m128i one = _mm_set1_epi8(1); |
| 855 const int I = top[-2]; |
| 856 const int J = top[-3]; |
| 857 const int K = top[-4]; |
| 858 const int X = top[-1]; |
| 859 const __m128i XABCD = _mm_loadl_epi64((const __m128i*)(top - 1)); |
| 860 const __m128i ABCD0 = _mm_srli_si128(XABCD, 1); |
| 861 const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0); |
| 862 const __m128i _XABCD = _mm_slli_si128(XABCD, 1); |
| 863 const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0); |
| 864 const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0); |
| 865 const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one); |
| 866 const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
| 867 const __m128i efgh = _mm_avg_epu8(avg2, XABCD); |
| 868 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd )); |
| 869 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh )); |
| 870 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1))); |
| 871 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1))); |
| 872 |
| 873 // these two are hard to implement in SSE2, so we keep the C-version: |
| 874 DST(0, 2) = AVG3(J, I, X); |
| 875 DST(0, 3) = AVG3(K, J, I); |
| 876 } |
| 877 |
| 878 static WEBP_INLINE void VL4(uint8_t* dst, |
| 879 const uint8_t* top) { // Vertical-Left |
| 880 const __m128i one = _mm_set1_epi8(1); |
| 881 const __m128i ABCDEFGH = _mm_loadl_epi64((const __m128i*)top); |
| 882 const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1); |
| 883 const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2); |
| 884 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_); |
| 885 const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_); |
| 886 const __m128i avg3 = _mm_avg_epu8(avg1, avg2); |
| 887 const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one); |
| 888 const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_); |
| 889 const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_); |
| 890 const __m128i abbc = _mm_or_si128(ab, bc); |
| 891 const __m128i lsb2 = _mm_and_si128(abbc, lsb1); |
| 892 const __m128i avg4 = _mm_subs_epu8(avg3, lsb2); |
| 893 const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4)); |
| 894 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 )); |
| 895 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 )); |
| 896 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1))); |
| 897 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1))); |
| 898 |
| 899 // these two are hard to get and irregular |
| 900 DST(3, 2) = (extra_out >> 0) & 0xff; |
| 901 DST(3, 3) = (extra_out >> 8) & 0xff; |
| 902 } |
| 903 |
| 904 static WEBP_INLINE void RD4(uint8_t* dst, const uint8_t* top) { // Down-right |
| 905 const __m128i one = _mm_set1_epi8(1); |
| 906 const __m128i LKJIXABC = _mm_loadl_epi64((const __m128i*)(top - 5)); |
| 907 const __m128i LKJIXABCD = _mm_insert_epi16(LKJIXABC, top[3], 4); |
| 908 const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1); |
| 909 const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2); |
| 910 const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD); |
| 911 const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one); |
| 912 const __m128i avg2 = _mm_subs_epu8(avg1, lsb); |
| 913 const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_); |
| 914 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg )); |
| 915 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1))); |
| 916 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2))); |
| 917 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3))); |
| 918 } |
| 919 |
| 920 static WEBP_INLINE void HU4(uint8_t* dst, const uint8_t* top) { |
| 921 const int I = top[-2]; |
| 922 const int J = top[-3]; |
| 923 const int K = top[-4]; |
| 924 const int L = top[-5]; |
| 925 DST(0, 0) = AVG2(I, J); |
| 926 DST(2, 0) = DST(0, 1) = AVG2(J, K); |
| 927 DST(2, 1) = DST(0, 2) = AVG2(K, L); |
| 928 DST(1, 0) = AVG3(I, J, K); |
| 929 DST(3, 0) = DST(1, 1) = AVG3(J, K, L); |
| 930 DST(3, 1) = DST(1, 2) = AVG3(K, L, L); |
| 931 DST(3, 2) = DST(2, 2) = |
| 932 DST(0, 3) = DST(1, 3) = DST(2, 3) = DST(3, 3) = L; |
| 933 } |
| 934 |
| 935 static WEBP_INLINE void HD4(uint8_t* dst, const uint8_t* top) { |
| 936 const int X = top[-1]; |
| 937 const int I = top[-2]; |
| 938 const int J = top[-3]; |
| 939 const int K = top[-4]; |
| 940 const int L = top[-5]; |
| 941 const int A = top[0]; |
| 942 const int B = top[1]; |
| 943 const int C = top[2]; |
| 944 |
| 945 DST(0, 0) = DST(2, 1) = AVG2(I, X); |
| 946 DST(0, 1) = DST(2, 2) = AVG2(J, I); |
| 947 DST(0, 2) = DST(2, 3) = AVG2(K, J); |
| 948 DST(0, 3) = AVG2(L, K); |
| 949 |
| 950 DST(3, 0) = AVG3(A, B, C); |
| 951 DST(2, 0) = AVG3(X, A, B); |
| 952 DST(1, 0) = DST(3, 1) = AVG3(I, X, A); |
| 953 DST(1, 1) = DST(3, 2) = AVG3(J, I, X); |
| 954 DST(1, 2) = DST(3, 3) = AVG3(K, J, I); |
| 955 DST(1, 3) = AVG3(L, K, J); |
| 956 } |
| 957 |
| 958 static WEBP_INLINE void TM4(uint8_t* dst, const uint8_t* top) { |
| 959 const __m128i zero = _mm_setzero_si128(); |
| 960 const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top)); |
| 961 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero); |
| 962 int y; |
| 963 for (y = 0; y < 4; ++y, dst += BPS) { |
| 964 const int val = top[-2 - y] - top[-1]; |
| 965 const __m128i base = _mm_set1_epi16(val); |
| 966 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero); |
| 967 WebPUint32ToMem(dst, _mm_cvtsi128_si32(out)); |
| 968 } |
| 969 } |
| 970 |
| 971 #undef DST |
| 972 #undef AVG3 |
| 973 #undef AVG2 |
| 974 |
| 975 //------------------------------------------------------------------------------ |
| 976 // luma 4x4 prediction |
| 977 |
| 978 // Left samples are top[-5 .. -2], top_left is top[-1], top are |
| 979 // located at top[0..3], and top right is top[4..7] |
| 980 static void Intra4Preds(uint8_t* dst, const uint8_t* top) { |
| 981 DC4(I4DC4 + dst, top); |
| 982 TM4(I4TM4 + dst, top); |
| 983 VE4(I4VE4 + dst, top); |
| 984 HE4(I4HE4 + dst, top); |
| 985 RD4(I4RD4 + dst, top); |
| 986 VR4(I4VR4 + dst, top); |
| 987 LD4(I4LD4 + dst, top); |
| 988 VL4(I4VL4 + dst, top); |
| 989 HD4(I4HD4 + dst, top); |
| 990 HU4(I4HU4 + dst, top); |
| 991 } |
| 992 |
| 993 //------------------------------------------------------------------------------ |
| 994 // Chroma 8x8 prediction (paragraph 12.2) |
| 995 |
| 996 static void IntraChromaPreds(uint8_t* dst, const uint8_t* left, |
| 997 const uint8_t* top) { |
| 998 // U block |
| 999 DC8uvMode(C8DC8 + dst, left, top); |
| 1000 VerticalPred(C8VE8 + dst, top, 8); |
| 1001 HorizontalPred(C8HE8 + dst, left, 8); |
| 1002 TrueMotion(C8TM8 + dst, left, top, 8); |
| 1003 // V block |
| 1004 dst += 8; |
| 1005 if (top != NULL) top += 8; |
| 1006 if (left != NULL) left += 16; |
| 1007 DC8uvMode(C8DC8 + dst, left, top); |
| 1008 VerticalPred(C8VE8 + dst, top, 8); |
| 1009 HorizontalPred(C8HE8 + dst, left, 8); |
| 1010 TrueMotion(C8TM8 + dst, left, top, 8); |
| 1011 } |
| 1012 |
| 1013 //------------------------------------------------------------------------------ |
| 1014 // luma 16x16 prediction (paragraph 12.3) |
| 1015 |
| 1016 static void Intra16Preds(uint8_t* dst, |
| 1017 const uint8_t* left, const uint8_t* top) { |
| 1018 DC16Mode(I16DC16 + dst, left, top); |
| 1019 VerticalPred(I16VE16 + dst, top, 16); |
| 1020 HorizontalPred(I16HE16 + dst, left, 16); |
| 1021 TrueMotion(I16TM16 + dst, left, top, 16); |
| 1022 } |
| 1023 |
| 1024 //------------------------------------------------------------------------------ |
489 // Metric | 1025 // Metric |
490 | 1026 |
491 static int SSE_Nx4(const uint8_t* a, const uint8_t* b, | 1027 static WEBP_INLINE void SubtractAndAccumulate(const __m128i a, const __m128i b, |
492 int num_quads, int do_16) { | 1028 __m128i* const sum) { |
493 const __m128i zero = _mm_setzero_si128(); | 1029 // take abs(a-b) in 8b |
494 __m128i sum1 = zero; | 1030 const __m128i a_b = _mm_subs_epu8(a, b); |
495 __m128i sum2 = zero; | 1031 const __m128i b_a = _mm_subs_epu8(b, a); |
496 | 1032 const __m128i abs_a_b = _mm_or_si128(a_b, b_a); |
497 while (num_quads-- > 0) { | 1033 // zero-extend to 16b |
498 // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok, | 1034 const __m128i zero = _mm_setzero_si128(); |
499 // thanks to buffer over-allocation to that effect. | 1035 const __m128i C0 = _mm_unpacklo_epi8(abs_a_b, zero); |
500 const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]); | 1036 const __m128i C1 = _mm_unpackhi_epi8(abs_a_b, zero); |
501 const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]); | 1037 // multiply with self |
502 const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]); | 1038 const __m128i sum1 = _mm_madd_epi16(C0, C0); |
503 const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]); | 1039 const __m128i sum2 = _mm_madd_epi16(C1, C1); |
504 const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]); | 1040 *sum = _mm_add_epi32(sum1, sum2); |
505 const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]); | 1041 } |
506 const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]); | 1042 |
507 const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]); | 1043 static WEBP_INLINE int SSE_16xN(const uint8_t* a, const uint8_t* b, |
508 | 1044 int num_pairs) { |
509 // compute clip0(a-b) and clip0(b-a) | 1045 __m128i sum = _mm_setzero_si128(); |
510 const __m128i a0p = _mm_subs_epu8(a0, b0); | 1046 int32_t tmp[4]; |
511 const __m128i a0m = _mm_subs_epu8(b0, a0); | 1047 int i; |
512 const __m128i a1p = _mm_subs_epu8(a1, b1); | 1048 |
513 const __m128i a1m = _mm_subs_epu8(b1, a1); | 1049 for (i = 0; i < num_pairs; ++i) { |
514 const __m128i a2p = _mm_subs_epu8(a2, b2); | 1050 const __m128i a0 = _mm_loadu_si128((const __m128i*)&a[BPS * 0]); |
515 const __m128i a2m = _mm_subs_epu8(b2, a2); | 1051 const __m128i b0 = _mm_loadu_si128((const __m128i*)&b[BPS * 0]); |
516 const __m128i a3p = _mm_subs_epu8(a3, b3); | 1052 const __m128i a1 = _mm_loadu_si128((const __m128i*)&a[BPS * 1]); |
517 const __m128i a3m = _mm_subs_epu8(b3, a3); | 1053 const __m128i b1 = _mm_loadu_si128((const __m128i*)&b[BPS * 1]); |
518 | 1054 __m128i sum1, sum2; |
519 // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a) | 1055 SubtractAndAccumulate(a0, b0, &sum1); |
520 const __m128i diff0 = _mm_or_si128(a0p, a0m); | 1056 SubtractAndAccumulate(a1, b1, &sum2); |
521 const __m128i diff1 = _mm_or_si128(a1p, a1m); | 1057 sum = _mm_add_epi32(sum, _mm_add_epi32(sum1, sum2)); |
522 const __m128i diff2 = _mm_or_si128(a2p, a2m); | 1058 a += 2 * BPS; |
523 const __m128i diff3 = _mm_or_si128(a3p, a3m); | 1059 b += 2 * BPS; |
524 | 1060 } |
525 // unpack (only four operations, instead of eight) | 1061 _mm_storeu_si128((__m128i*)tmp, sum); |
526 const __m128i low0 = _mm_unpacklo_epi8(diff0, zero); | 1062 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
527 const __m128i low1 = _mm_unpacklo_epi8(diff1, zero); | |
528 const __m128i low2 = _mm_unpacklo_epi8(diff2, zero); | |
529 const __m128i low3 = _mm_unpacklo_epi8(diff3, zero); | |
530 | |
531 // multiply with self | |
532 const __m128i low_madd0 = _mm_madd_epi16(low0, low0); | |
533 const __m128i low_madd1 = _mm_madd_epi16(low1, low1); | |
534 const __m128i low_madd2 = _mm_madd_epi16(low2, low2); | |
535 const __m128i low_madd3 = _mm_madd_epi16(low3, low3); | |
536 | |
537 // collect in a cascading way | |
538 const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1); | |
539 const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3); | |
540 sum1 = _mm_add_epi32(sum1, low_sum0); | |
541 sum2 = _mm_add_epi32(sum2, low_sum1); | |
542 | |
543 if (do_16) { // if necessary, process the higher 8 bytes similarly | |
544 const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero); | |
545 const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero); | |
546 const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero); | |
547 const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero); | |
548 | |
549 const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0); | |
550 const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1); | |
551 const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2); | |
552 const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3); | |
553 const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1); | |
554 const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3); | |
555 sum1 = _mm_add_epi32(sum1, hi_sum0); | |
556 sum2 = _mm_add_epi32(sum2, hi_sum1); | |
557 } | |
558 a += 4 * BPS; | |
559 b += 4 * BPS; | |
560 } | |
561 { | |
562 int32_t tmp[4]; | |
563 const __m128i sum = _mm_add_epi32(sum1, sum2); | |
564 _mm_storeu_si128((__m128i*)tmp, sum); | |
565 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); | |
566 } | |
567 } | 1063 } |
568 | 1064 |
569 static int SSE16x16(const uint8_t* a, const uint8_t* b) { | 1065 static int SSE16x16(const uint8_t* a, const uint8_t* b) { |
570 return SSE_Nx4(a, b, 4, 1); | 1066 return SSE_16xN(a, b, 8); |
571 } | 1067 } |
572 | 1068 |
573 static int SSE16x8(const uint8_t* a, const uint8_t* b) { | 1069 static int SSE16x8(const uint8_t* a, const uint8_t* b) { |
574 return SSE_Nx4(a, b, 2, 1); | 1070 return SSE_16xN(a, b, 4); |
575 } | 1071 } |
| 1072 |
| 1073 #define LOAD_8x16b(ptr) \ |
| 1074 _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(ptr)), zero) |
576 | 1075 |
577 static int SSE8x8(const uint8_t* a, const uint8_t* b) { | 1076 static int SSE8x8(const uint8_t* a, const uint8_t* b) { |
578 return SSE_Nx4(a, b, 2, 0); | 1077 const __m128i zero = _mm_setzero_si128(); |
579 } | 1078 int num_pairs = 4; |
| 1079 __m128i sum = zero; |
| 1080 int32_t tmp[4]; |
| 1081 while (num_pairs-- > 0) { |
| 1082 const __m128i a0 = LOAD_8x16b(&a[BPS * 0]); |
| 1083 const __m128i a1 = LOAD_8x16b(&a[BPS * 1]); |
| 1084 const __m128i b0 = LOAD_8x16b(&b[BPS * 0]); |
| 1085 const __m128i b1 = LOAD_8x16b(&b[BPS * 1]); |
| 1086 // subtract |
| 1087 const __m128i c0 = _mm_subs_epi16(a0, b0); |
| 1088 const __m128i c1 = _mm_subs_epi16(a1, b1); |
| 1089 // multiply/accumulate with self |
| 1090 const __m128i d0 = _mm_madd_epi16(c0, c0); |
| 1091 const __m128i d1 = _mm_madd_epi16(c1, c1); |
| 1092 // collect |
| 1093 const __m128i sum01 = _mm_add_epi32(d0, d1); |
| 1094 sum = _mm_add_epi32(sum, sum01); |
| 1095 a += 2 * BPS; |
| 1096 b += 2 * BPS; |
| 1097 } |
| 1098 _mm_storeu_si128((__m128i*)tmp, sum); |
| 1099 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
| 1100 } |
| 1101 #undef LOAD_8x16b |
580 | 1102 |
581 static int SSE4x4(const uint8_t* a, const uint8_t* b) { | 1103 static int SSE4x4(const uint8_t* a, const uint8_t* b) { |
582 const __m128i zero = _mm_setzero_si128(); | 1104 const __m128i zero = _mm_setzero_si128(); |
583 | 1105 |
584 // Load values. Note that we read 8 pixels instead of 4, | 1106 // Load values. Note that we read 8 pixels instead of 4, |
585 // but the a/b buffers are over-allocated to that effect. | 1107 // but the a/b buffers are over-allocated to that effect. |
586 const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]); | 1108 const __m128i a0 = _mm_loadl_epi64((const __m128i*)&a[BPS * 0]); |
587 const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]); | 1109 const __m128i a1 = _mm_loadl_epi64((const __m128i*)&a[BPS * 1]); |
588 const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]); | 1110 const __m128i a2 = _mm_loadl_epi64((const __m128i*)&a[BPS * 2]); |
589 const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]); | 1111 const __m128i a3 = _mm_loadl_epi64((const __m128i*)&a[BPS * 3]); |
590 const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]); | 1112 const __m128i b0 = _mm_loadl_epi64((const __m128i*)&b[BPS * 0]); |
591 const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]); | 1113 const __m128i b1 = _mm_loadl_epi64((const __m128i*)&b[BPS * 1]); |
592 const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]); | 1114 const __m128i b2 = _mm_loadl_epi64((const __m128i*)&b[BPS * 2]); |
593 const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]); | 1115 const __m128i b3 = _mm_loadl_epi64((const __m128i*)&b[BPS * 3]); |
594 | 1116 // Combine pair of lines. |
595 // Combine pair of lines and convert to 16b. | |
596 const __m128i a01 = _mm_unpacklo_epi32(a0, a1); | 1117 const __m128i a01 = _mm_unpacklo_epi32(a0, a1); |
597 const __m128i a23 = _mm_unpacklo_epi32(a2, a3); | 1118 const __m128i a23 = _mm_unpacklo_epi32(a2, a3); |
598 const __m128i b01 = _mm_unpacklo_epi32(b0, b1); | 1119 const __m128i b01 = _mm_unpacklo_epi32(b0, b1); |
599 const __m128i b23 = _mm_unpacklo_epi32(b2, b3); | 1120 const __m128i b23 = _mm_unpacklo_epi32(b2, b3); |
| 1121 // Convert to 16b. |
600 const __m128i a01s = _mm_unpacklo_epi8(a01, zero); | 1122 const __m128i a01s = _mm_unpacklo_epi8(a01, zero); |
601 const __m128i a23s = _mm_unpacklo_epi8(a23, zero); | 1123 const __m128i a23s = _mm_unpacklo_epi8(a23, zero); |
602 const __m128i b01s = _mm_unpacklo_epi8(b01, zero); | 1124 const __m128i b01s = _mm_unpacklo_epi8(b01, zero); |
603 const __m128i b23s = _mm_unpacklo_epi8(b23, zero); | 1125 const __m128i b23s = _mm_unpacklo_epi8(b23, zero); |
604 | 1126 // subtract, square and accumulate |
605 // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2 | 1127 const __m128i d0 = _mm_subs_epi16(a01s, b01s); |
606 // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't | 1128 const __m128i d1 = _mm_subs_epi16(a23s, b23s); |
607 // need absolute values, there is no need to do calculation | 1129 const __m128i e0 = _mm_madd_epi16(d0, d0); |
608 // in 8bit as we are already in 16bit, ... Yet this is what | 1130 const __m128i e1 = _mm_madd_epi16(d1, d1); |
609 // benchmarks the fastest! | 1131 const __m128i sum = _mm_add_epi32(e0, e1); |
610 const __m128i d0 = _mm_subs_epu8(a01s, b01s); | |
611 const __m128i d1 = _mm_subs_epu8(b01s, a01s); | |
612 const __m128i d2 = _mm_subs_epu8(a23s, b23s); | |
613 const __m128i d3 = _mm_subs_epu8(b23s, a23s); | |
614 | |
615 // Square and add them all together. | |
616 const __m128i madd0 = _mm_madd_epi16(d0, d0); | |
617 const __m128i madd1 = _mm_madd_epi16(d1, d1); | |
618 const __m128i madd2 = _mm_madd_epi16(d2, d2); | |
619 const __m128i madd3 = _mm_madd_epi16(d3, d3); | |
620 const __m128i sum0 = _mm_add_epi32(madd0, madd1); | |
621 const __m128i sum1 = _mm_add_epi32(madd2, madd3); | |
622 const __m128i sum2 = _mm_add_epi32(sum0, sum1); | |
623 | 1132 |
624 int32_t tmp[4]; | 1133 int32_t tmp[4]; |
625 _mm_storeu_si128((__m128i*)tmp, sum2); | 1134 _mm_storeu_si128((__m128i*)tmp, sum); |
626 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); | 1135 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]); |
627 } | 1136 } |
628 | 1137 |
629 //------------------------------------------------------------------------------ | 1138 //------------------------------------------------------------------------------ |
630 // Texture distortion | 1139 // Texture distortion |
631 // | 1140 // |
632 // We try to match the spectral content (weighted) between source and | 1141 // We try to match the spectral content (weighted) between source and |
633 // reconstructed samples. | 1142 // reconstructed samples. |
634 | 1143 |
635 // Hadamard transform | 1144 // Hadamard transform |
636 // Returns the difference between the weighted sum of the absolute value of | 1145 // Returns the difference between the weighted sum of the absolute value of |
637 // transformed coefficients. | 1146 // transformed coefficients. |
638 static int TTransform(const uint8_t* inA, const uint8_t* inB, | 1147 static int TTransform(const uint8_t* inA, const uint8_t* inB, |
639 const uint16_t* const w) { | 1148 const uint16_t* const w) { |
640 int32_t sum[4]; | 1149 int32_t sum[4]; |
641 __m128i tmp_0, tmp_1, tmp_2, tmp_3; | 1150 __m128i tmp_0, tmp_1, tmp_2, tmp_3; |
642 const __m128i zero = _mm_setzero_si128(); | 1151 const __m128i zero = _mm_setzero_si128(); |
643 | 1152 |
644 // Load, combine and transpose inputs. | 1153 // Load, combine and transpose inputs. |
645 { | 1154 { |
646 const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]); | 1155 const __m128i inA_0 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 0]); |
647 const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]); | 1156 const __m128i inA_1 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 1]); |
648 const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]); | 1157 const __m128i inA_2 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 2]); |
649 const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]); | 1158 const __m128i inA_3 = _mm_loadl_epi64((const __m128i*)&inA[BPS * 3]); |
650 const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]); | 1159 const __m128i inB_0 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 0]); |
651 const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]); | 1160 const __m128i inB_1 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 1]); |
652 const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]); | 1161 const __m128i inB_2 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 2]); |
653 const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]); | 1162 const __m128i inB_3 = _mm_loadl_epi64((const __m128i*)&inB[BPS * 3]); |
654 | 1163 |
655 // Combine inA and inB (we'll do two transforms in parallel). | 1164 // Combine inA and inB (we'll do two transforms in parallel). |
656 const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0); | 1165 const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0); |
657 const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1); | 1166 const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1); |
658 const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2); | 1167 const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2); |
659 const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3); | 1168 const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3); |
660 // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0 | 1169 // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0 |
661 // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0 | 1170 // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0 |
662 // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0 | 1171 // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0 |
663 // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0 | 1172 // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0 |
(...skipping 58 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
722 tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); | 1231 tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3); |
723 // a00 a10 a20 a30 b00 b10 b20 b30 | 1232 // a00 a10 a20 a30 b00 b10 b20 b30 |
724 // a01 a11 a21 a31 b01 b11 b21 b31 | 1233 // a01 a11 a21 a31 b01 b11 b21 b31 |
725 // a02 a12 a22 a32 b02 b12 b22 b32 | 1234 // a02 a12 a22 a32 b02 b12 b22 b32 |
726 // a03 a13 a23 a33 b03 b13 b23 b33 | 1235 // a03 a13 a23 a33 b03 b13 b23 b33 |
727 } | 1236 } |
728 | 1237 |
729 // Vertical pass and difference of weighted sums. | 1238 // Vertical pass and difference of weighted sums. |
730 { | 1239 { |
731 // Load all inputs. | 1240 // Load all inputs. |
732 // TODO(cduvivier): Make variable declarations and allocations aligned so | 1241 const __m128i w_0 = _mm_loadu_si128((const __m128i*)&w[0]); |
733 // we can use _mm_load_si128 instead of _mm_loadu_si128. | 1242 const __m128i w_8 = _mm_loadu_si128((const __m128i*)&w[8]); |
734 const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]); | |
735 const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]); | |
736 | 1243 |
737 // Calculate a and b (two 4x4 at once). | 1244 // Calculate a and b (two 4x4 at once). |
738 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); | 1245 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2); |
739 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); | 1246 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3); |
740 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); | 1247 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3); |
741 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); | 1248 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2); |
742 const __m128i b0 = _mm_add_epi16(a0, a1); | 1249 const __m128i b0 = _mm_add_epi16(a0, a1); |
743 const __m128i b1 = _mm_add_epi16(a3, a2); | 1250 const __m128i b1 = _mm_add_epi16(a3, a2); |
744 const __m128i b2 = _mm_sub_epi16(a3, a2); | 1251 const __m128i b2 = _mm_sub_epi16(a3, a2); |
745 const __m128i b3 = _mm_sub_epi16(a0, a1); | 1252 const __m128i b3 = _mm_sub_epi16(a0, a1); |
746 | 1253 |
747 // Separate the transforms of inA and inB. | 1254 // Separate the transforms of inA and inB. |
748 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); | 1255 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1); |
749 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); | 1256 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3); |
750 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); | 1257 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1); |
751 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); | 1258 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3); |
752 | 1259 |
753 { | 1260 { |
754 // sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative) | 1261 const __m128i d0 = _mm_sub_epi16(zero, A_b0); |
755 const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15); | 1262 const __m128i d1 = _mm_sub_epi16(zero, A_b2); |
756 const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15); | 1263 const __m128i d2 = _mm_sub_epi16(zero, B_b0); |
757 const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15); | 1264 const __m128i d3 = _mm_sub_epi16(zero, B_b2); |
758 const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15); | 1265 A_b0 = _mm_max_epi16(A_b0, d0); // abs(v), 16b |
759 | 1266 A_b2 = _mm_max_epi16(A_b2, d1); |
760 // b = abs(b) = (b ^ sign) - sign | 1267 B_b0 = _mm_max_epi16(B_b0, d2); |
761 A_b0 = _mm_xor_si128(A_b0, sign_A_b0); | 1268 B_b2 = _mm_max_epi16(B_b2, d3); |
762 A_b2 = _mm_xor_si128(A_b2, sign_A_b2); | |
763 B_b0 = _mm_xor_si128(B_b0, sign_B_b0); | |
764 B_b2 = _mm_xor_si128(B_b2, sign_B_b2); | |
765 A_b0 = _mm_sub_epi16(A_b0, sign_A_b0); | |
766 A_b2 = _mm_sub_epi16(A_b2, sign_A_b2); | |
767 B_b0 = _mm_sub_epi16(B_b0, sign_B_b0); | |
768 B_b2 = _mm_sub_epi16(B_b2, sign_B_b2); | |
769 } | 1269 } |
770 | 1270 |
771 // weighted sums | 1271 // weighted sums |
772 A_b0 = _mm_madd_epi16(A_b0, w_0); | 1272 A_b0 = _mm_madd_epi16(A_b0, w_0); |
773 A_b2 = _mm_madd_epi16(A_b2, w_8); | 1273 A_b2 = _mm_madd_epi16(A_b2, w_8); |
774 B_b0 = _mm_madd_epi16(B_b0, w_0); | 1274 B_b0 = _mm_madd_epi16(B_b0, w_0); |
775 B_b2 = _mm_madd_epi16(B_b2, w_8); | 1275 B_b2 = _mm_madd_epi16(B_b2, w_8); |
776 A_b0 = _mm_add_epi32(A_b0, A_b2); | 1276 A_b0 = _mm_add_epi32(A_b0, A_b2); |
777 B_b0 = _mm_add_epi32(B_b0, B_b2); | 1277 B_b0 = _mm_add_epi32(B_b0, B_b2); |
778 | 1278 |
(...skipping 29 matching lines...) Expand all Loading... |
808 static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16], | 1308 static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16], |
809 const uint16_t* const sharpen, | 1309 const uint16_t* const sharpen, |
810 const VP8Matrix* const mtx) { | 1310 const VP8Matrix* const mtx) { |
811 const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); | 1311 const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL); |
812 const __m128i zero = _mm_setzero_si128(); | 1312 const __m128i zero = _mm_setzero_si128(); |
813 __m128i coeff0, coeff8; | 1313 __m128i coeff0, coeff8; |
814 __m128i out0, out8; | 1314 __m128i out0, out8; |
815 __m128i packed_out; | 1315 __m128i packed_out; |
816 | 1316 |
817 // Load all inputs. | 1317 // Load all inputs. |
818 // TODO(cduvivier): Make variable declarations and allocations aligned so that | |
819 // we can use _mm_load_si128 instead of _mm_loadu_si128. | |
820 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); | 1318 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]); |
821 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); | 1319 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]); |
822 const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]); | 1320 const __m128i iq0 = _mm_loadu_si128((const __m128i*)&mtx->iq_[0]); |
823 const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]); | 1321 const __m128i iq8 = _mm_loadu_si128((const __m128i*)&mtx->iq_[8]); |
824 const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]); | 1322 const __m128i q0 = _mm_loadu_si128((const __m128i*)&mtx->q_[0]); |
825 const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]); | 1323 const __m128i q8 = _mm_loadu_si128((const __m128i*)&mtx->q_[8]); |
826 | 1324 |
827 // extract sign(in) (0x0000 if positive, 0xffff if negative) | 1325 // extract sign(in) (0x0000 if positive, 0xffff if negative) |
828 const __m128i sign0 = _mm_cmpgt_epi16(zero, in0); | 1326 const __m128i sign0 = _mm_cmpgt_epi16(zero, in0); |
829 const __m128i sign8 = _mm_cmpgt_epi16(zero, in8); | 1327 const __m128i sign8 = _mm_cmpgt_epi16(zero, in8); |
830 | 1328 |
831 // coeff = abs(in) = (in ^ sign) - sign | 1329 // coeff = abs(in) = (in ^ sign) - sign |
832 coeff0 = _mm_xor_si128(in0, sign0); | 1330 coeff0 = _mm_xor_si128(in0, sign0); |
833 coeff8 = _mm_xor_si128(in8, sign8); | 1331 coeff8 = _mm_xor_si128(in8, sign8); |
834 coeff0 = _mm_sub_epi16(coeff0, sign0); | 1332 coeff0 = _mm_sub_epi16(coeff0, sign0); |
835 coeff8 = _mm_sub_epi16(coeff8, sign8); | 1333 coeff8 = _mm_sub_epi16(coeff8, sign8); |
836 | 1334 |
837 // coeff = abs(in) + sharpen | 1335 // coeff = abs(in) + sharpen |
838 if (sharpen != NULL) { | 1336 if (sharpen != NULL) { |
839 const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&sharpen[0]); | 1337 const __m128i sharpen0 = _mm_loadu_si128((const __m128i*)&sharpen[0]); |
840 const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&sharpen[8]); | 1338 const __m128i sharpen8 = _mm_loadu_si128((const __m128i*)&sharpen[8]); |
841 coeff0 = _mm_add_epi16(coeff0, sharpen0); | 1339 coeff0 = _mm_add_epi16(coeff0, sharpen0); |
842 coeff8 = _mm_add_epi16(coeff8, sharpen8); | 1340 coeff8 = _mm_add_epi16(coeff8, sharpen8); |
843 } | 1341 } |
844 | 1342 |
845 // out = (coeff * iQ + B) >> QFIX | 1343 // out = (coeff * iQ + B) >> QFIX |
846 { | 1344 { |
847 // doing calculations with 32b precision (QFIX=17) | 1345 // doing calculations with 32b precision (QFIX=17) |
848 // out = (coeff * iQ) | 1346 // out = (coeff * iQ) |
849 const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); | 1347 const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0); |
850 const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); | 1348 const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0); |
851 const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); | 1349 const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8); |
852 const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); | 1350 const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8); |
853 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); | 1351 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H); |
854 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); | 1352 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H); |
855 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); | 1353 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H); |
856 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); | 1354 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H); |
857 // out = (coeff * iQ + B) | 1355 // out = (coeff * iQ + B) |
858 const __m128i bias_00 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]); | 1356 const __m128i bias_00 = _mm_loadu_si128((const __m128i*)&mtx->bias_[0]); |
859 const __m128i bias_04 = _mm_loadu_si128((__m128i*)&mtx->bias_[4]); | 1357 const __m128i bias_04 = _mm_loadu_si128((const __m128i*)&mtx->bias_[4]); |
860 const __m128i bias_08 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]); | 1358 const __m128i bias_08 = _mm_loadu_si128((const __m128i*)&mtx->bias_[8]); |
861 const __m128i bias_12 = _mm_loadu_si128((__m128i*)&mtx->bias_[12]); | 1359 const __m128i bias_12 = _mm_loadu_si128((const __m128i*)&mtx->bias_[12]); |
862 out_00 = _mm_add_epi32(out_00, bias_00); | 1360 out_00 = _mm_add_epi32(out_00, bias_00); |
863 out_04 = _mm_add_epi32(out_04, bias_04); | 1361 out_04 = _mm_add_epi32(out_04, bias_04); |
864 out_08 = _mm_add_epi32(out_08, bias_08); | 1362 out_08 = _mm_add_epi32(out_08, bias_08); |
865 out_12 = _mm_add_epi32(out_12, bias_12); | 1363 out_12 = _mm_add_epi32(out_12, bias_12); |
866 // out = QUANTDIV(coeff, iQ, B, QFIX) | 1364 // out = QUANTDIV(coeff, iQ, B, QFIX) |
867 out_00 = _mm_srai_epi32(out_00, QFIX); | 1365 out_00 = _mm_srai_epi32(out_00, QFIX); |
868 out_04 = _mm_srai_epi32(out_04, QFIX); | 1366 out_04 = _mm_srai_epi32(out_04, QFIX); |
869 out_08 = _mm_srai_epi32(out_08, QFIX); | 1367 out_08 = _mm_srai_epi32(out_08, QFIX); |
870 out_12 = _mm_srai_epi32(out_12, QFIX); | 1368 out_12 = _mm_srai_epi32(out_12, QFIX); |
871 | 1369 |
(...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
922 static int QuantizeBlock(int16_t in[16], int16_t out[16], | 1420 static int QuantizeBlock(int16_t in[16], int16_t out[16], |
923 const VP8Matrix* const mtx) { | 1421 const VP8Matrix* const mtx) { |
924 return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx); | 1422 return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx); |
925 } | 1423 } |
926 | 1424 |
927 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16], | 1425 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16], |
928 const VP8Matrix* const mtx) { | 1426 const VP8Matrix* const mtx) { |
929 return DoQuantizeBlock(in, out, NULL, mtx); | 1427 return DoQuantizeBlock(in, out, NULL, mtx); |
930 } | 1428 } |
931 | 1429 |
932 // Forward declaration. | 1430 static int Quantize2Blocks(int16_t in[32], int16_t out[32], |
933 void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs, | 1431 const VP8Matrix* const mtx) { |
934 VP8Residual* const res); | 1432 int nz; |
935 | 1433 const uint16_t* const sharpen = &mtx->sharpen_[0]; |
936 void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs, | 1434 nz = DoQuantizeBlock(in + 0 * 16, out + 0 * 16, sharpen, mtx) << 0; |
937 VP8Residual* const res) { | 1435 nz |= DoQuantizeBlock(in + 1 * 16, out + 1 * 16, sharpen, mtx) << 1; |
938 const __m128i c0 = _mm_loadu_si128((const __m128i*)coeffs); | 1436 return nz; |
939 const __m128i c1 = _mm_loadu_si128((const __m128i*)(coeffs + 8)); | |
940 // Use SSE to compare 8 values with a single instruction. | |
941 const __m128i zero = _mm_setzero_si128(); | |
942 const __m128i m0 = _mm_cmpeq_epi16(c0, zero); | |
943 const __m128i m1 = _mm_cmpeq_epi16(c1, zero); | |
944 // Get the comparison results as a bitmask, consisting of two times 16 bits: | |
945 // two identical bits for each result. Concatenate both bitmasks to get a | |
946 // single 32 bit value. Negate the mask to get the position of entries that | |
947 // are not equal to zero. We don't need to mask out least significant bits | |
948 // according to res->first, since coeffs[0] is 0 if res->first > 0 | |
949 const uint32_t mask = | |
950 ~(((uint32_t)_mm_movemask_epi8(m1) << 16) | _mm_movemask_epi8(m0)); | |
951 // The position of the most significant non-zero bit indicates the position of | |
952 // the last non-zero value. Divide the result by two because __movemask_epi8 | |
953 // operates on 8 bit values instead of 16 bit values. | |
954 assert(res->first == 0 || coeffs[0] == 0); | |
955 res->last = mask ? (BitsLog2Floor(mask) >> 1) : -1; | |
956 res->coeffs = coeffs; | |
957 } | 1437 } |
958 | 1438 |
959 #endif // WEBP_USE_SSE2 | |
960 | |
961 //------------------------------------------------------------------------------ | 1439 //------------------------------------------------------------------------------ |
962 // Entry point | 1440 // Entry point |
963 | 1441 |
964 extern void VP8EncDspInitSSE2(void); | 1442 extern void VP8EncDspInitSSE2(void); |
965 | 1443 |
966 void VP8EncDspInitSSE2(void) { | 1444 WEBP_TSAN_IGNORE_FUNCTION void VP8EncDspInitSSE2(void) { |
967 #if defined(WEBP_USE_SSE2) | |
968 VP8CollectHistogram = CollectHistogram; | 1445 VP8CollectHistogram = CollectHistogram; |
| 1446 VP8EncPredLuma16 = Intra16Preds; |
| 1447 VP8EncPredChroma8 = IntraChromaPreds; |
| 1448 VP8EncPredLuma4 = Intra4Preds; |
969 VP8EncQuantizeBlock = QuantizeBlock; | 1449 VP8EncQuantizeBlock = QuantizeBlock; |
| 1450 VP8EncQuantize2Blocks = Quantize2Blocks; |
970 VP8EncQuantizeBlockWHT = QuantizeBlockWHT; | 1451 VP8EncQuantizeBlockWHT = QuantizeBlockWHT; |
971 VP8ITransform = ITransform; | 1452 VP8ITransform = ITransform; |
972 VP8FTransform = FTransform; | 1453 VP8FTransform = FTransform; |
| 1454 VP8FTransform2 = FTransform2; |
973 VP8FTransformWHT = FTransformWHT; | 1455 VP8FTransformWHT = FTransformWHT; |
974 VP8SSE16x16 = SSE16x16; | 1456 VP8SSE16x16 = SSE16x16; |
975 VP8SSE16x8 = SSE16x8; | 1457 VP8SSE16x8 = SSE16x8; |
976 VP8SSE8x8 = SSE8x8; | 1458 VP8SSE8x8 = SSE8x8; |
977 VP8SSE4x4 = SSE4x4; | 1459 VP8SSE4x4 = SSE4x4; |
978 VP8TDisto4x4 = Disto4x4; | 1460 VP8TDisto4x4 = Disto4x4; |
979 VP8TDisto16x16 = Disto16x16; | 1461 VP8TDisto16x16 = Disto16x16; |
980 #endif // WEBP_USE_SSE2 | |
981 } | 1462 } |
982 | 1463 |
| 1464 #else // !WEBP_USE_SSE2 |
| 1465 |
| 1466 WEBP_DSP_INIT_STUB(VP8EncDspInitSSE2) |
| 1467 |
| 1468 #endif // WEBP_USE_SSE2 |
OLD | NEW |