Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(293)

Side by Side Diff: third_party/libwebp/dsp/dec_sse2.c

Issue 1546003002: libwebp: update to 0.5.0 (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: rebase Created 4 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « third_party/libwebp/dsp/dec_neon.c ('k') | third_party/libwebp/dsp/dec_sse41.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2011 Google Inc. All Rights Reserved. 1 // Copyright 2011 Google Inc. All Rights Reserved.
2 // 2 //
3 // Use of this source code is governed by a BSD-style license 3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source 4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found 5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may 6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree. 7 // be found in the AUTHORS file in the root of the source tree.
8 // ----------------------------------------------------------------------------- 8 // -----------------------------------------------------------------------------
9 // 9 //
10 // SSE2 version of some decoding functions (idct, loop filtering). 10 // SSE2 version of some decoding functions (idct, loop filtering).
(...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after
45 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x 45 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
46 const __m128i k1 = _mm_set1_epi16(20091); 46 const __m128i k1 = _mm_set1_epi16(20091);
47 const __m128i k2 = _mm_set1_epi16(-30068); 47 const __m128i k2 = _mm_set1_epi16(-30068);
48 __m128i T0, T1, T2, T3; 48 __m128i T0, T1, T2, T3;
49 49
50 // Load and concatenate the transform coefficients (we'll do two transforms 50 // Load and concatenate the transform coefficients (we'll do two transforms
51 // in parallel). In the case of only one transform, the second half of the 51 // in parallel). In the case of only one transform, the second half of the
52 // vectors will just contain random value we'll never use nor store. 52 // vectors will just contain random value we'll never use nor store.
53 __m128i in0, in1, in2, in3; 53 __m128i in0, in1, in2, in3;
54 { 54 {
55 in0 = _mm_loadl_epi64((__m128i*)&in[0]); 55 in0 = _mm_loadl_epi64((const __m128i*)&in[0]);
56 in1 = _mm_loadl_epi64((__m128i*)&in[4]); 56 in1 = _mm_loadl_epi64((const __m128i*)&in[4]);
57 in2 = _mm_loadl_epi64((__m128i*)&in[8]); 57 in2 = _mm_loadl_epi64((const __m128i*)&in[8]);
58 in3 = _mm_loadl_epi64((__m128i*)&in[12]); 58 in3 = _mm_loadl_epi64((const __m128i*)&in[12]);
59 // a00 a10 a20 a30 x x x x 59 // a00 a10 a20 a30 x x x x
60 // a01 a11 a21 a31 x x x x 60 // a01 a11 a21 a31 x x x x
61 // a02 a12 a22 a32 x x x x 61 // a02 a12 a22 a32 x x x x
62 // a03 a13 a23 a33 x x x x 62 // a03 a13 a23 a33 x x x x
63 if (do_two) { 63 if (do_two) {
64 const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]); 64 const __m128i inB0 = _mm_loadl_epi64((const __m128i*)&in[16]);
65 const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]); 65 const __m128i inB1 = _mm_loadl_epi64((const __m128i*)&in[20]);
66 const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]); 66 const __m128i inB2 = _mm_loadl_epi64((const __m128i*)&in[24]);
67 const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]); 67 const __m128i inB3 = _mm_loadl_epi64((const __m128i*)&in[28]);
68 in0 = _mm_unpacklo_epi64(in0, inB0); 68 in0 = _mm_unpacklo_epi64(in0, inB0);
69 in1 = _mm_unpacklo_epi64(in1, inB1); 69 in1 = _mm_unpacklo_epi64(in1, inB1);
70 in2 = _mm_unpacklo_epi64(in2, inB2); 70 in2 = _mm_unpacklo_epi64(in2, inB2);
71 in3 = _mm_unpacklo_epi64(in3, inB3); 71 in3 = _mm_unpacklo_epi64(in3, inB3);
72 // a00 a10 a20 a30 b00 b10 b20 b30 72 // a00 a10 a20 a30 b00 b10 b20 b30
73 // a01 a11 a21 a31 b01 b11 b21 b31 73 // a01 a11 a21 a31 b01 b11 b21 b31
74 // a02 a12 a22 a32 b02 b12 b22 b32 74 // a02 a12 a22 a32 b02 b12 b22 b32
75 // a03 a13 a23 a33 b03 b13 b23 b33 75 // a03 a13 a23 a33 b03 b13 b23 b33
76 } 76 }
77 } 77 }
(...skipping 122 matching lines...) Expand 10 before | Expand all | Expand 10 after
200 // Load the reference(s). 200 // Load the reference(s).
201 __m128i dst0, dst1, dst2, dst3; 201 __m128i dst0, dst1, dst2, dst3;
202 if (do_two) { 202 if (do_two) {
203 // Load eight bytes/pixels per line. 203 // Load eight bytes/pixels per line.
204 dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS)); 204 dst0 = _mm_loadl_epi64((__m128i*)(dst + 0 * BPS));
205 dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS)); 205 dst1 = _mm_loadl_epi64((__m128i*)(dst + 1 * BPS));
206 dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS)); 206 dst2 = _mm_loadl_epi64((__m128i*)(dst + 2 * BPS));
207 dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS)); 207 dst3 = _mm_loadl_epi64((__m128i*)(dst + 3 * BPS));
208 } else { 208 } else {
209 // Load four bytes/pixels per line. 209 // Load four bytes/pixels per line.
210 dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS)); 210 dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
211 dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS)); 211 dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
212 dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS)); 212 dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
213 dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS)); 213 dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
214 } 214 }
215 // Convert to 16b. 215 // Convert to 16b.
216 dst0 = _mm_unpacklo_epi8(dst0, zero); 216 dst0 = _mm_unpacklo_epi8(dst0, zero);
217 dst1 = _mm_unpacklo_epi8(dst1, zero); 217 dst1 = _mm_unpacklo_epi8(dst1, zero);
218 dst2 = _mm_unpacklo_epi8(dst2, zero); 218 dst2 = _mm_unpacklo_epi8(dst2, zero);
219 dst3 = _mm_unpacklo_epi8(dst3, zero); 219 dst3 = _mm_unpacklo_epi8(dst3, zero);
220 // Add the inverse transform(s). 220 // Add the inverse transform(s).
221 dst0 = _mm_add_epi16(dst0, T0); 221 dst0 = _mm_add_epi16(dst0, T0);
222 dst1 = _mm_add_epi16(dst1, T1); 222 dst1 = _mm_add_epi16(dst1, T1);
223 dst2 = _mm_add_epi16(dst2, T2); 223 dst2 = _mm_add_epi16(dst2, T2);
224 dst3 = _mm_add_epi16(dst3, T3); 224 dst3 = _mm_add_epi16(dst3, T3);
225 // Unsigned saturate to 8b. 225 // Unsigned saturate to 8b.
226 dst0 = _mm_packus_epi16(dst0, dst0); 226 dst0 = _mm_packus_epi16(dst0, dst0);
227 dst1 = _mm_packus_epi16(dst1, dst1); 227 dst1 = _mm_packus_epi16(dst1, dst1);
228 dst2 = _mm_packus_epi16(dst2, dst2); 228 dst2 = _mm_packus_epi16(dst2, dst2);
229 dst3 = _mm_packus_epi16(dst3, dst3); 229 dst3 = _mm_packus_epi16(dst3, dst3);
230 // Store the results. 230 // Store the results.
231 if (do_two) { 231 if (do_two) {
232 // Store eight bytes/pixels per line. 232 // Store eight bytes/pixels per line.
233 _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0); 233 _mm_storel_epi64((__m128i*)(dst + 0 * BPS), dst0);
234 _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1); 234 _mm_storel_epi64((__m128i*)(dst + 1 * BPS), dst1);
235 _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2); 235 _mm_storel_epi64((__m128i*)(dst + 2 * BPS), dst2);
236 _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3); 236 _mm_storel_epi64((__m128i*)(dst + 3 * BPS), dst3);
237 } else { 237 } else {
238 // Store four bytes/pixels per line. 238 // Store four bytes/pixels per line.
239 *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0); 239 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
240 *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1); 240 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
241 *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2); 241 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
242 *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3); 242 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
243 } 243 }
244 } 244 }
245 } 245 }
246 246
247 #if defined(USE_TRANSFORM_AC3) 247 #if defined(USE_TRANSFORM_AC3)
248 #define MUL(a, b) (((a) * (b)) >> 16) 248 #define MUL(a, b) (((a) * (b)) >> 16)
249 static void TransformAC3(const int16_t* in, uint8_t* dst) { 249 static void TransformAC3(const int16_t* in, uint8_t* dst) {
250 static const int kC1 = 20091 + (1 << 16); 250 static const int kC1 = 20091 + (1 << 16);
251 static const int kC2 = 35468; 251 static const int kC2 = 35468;
252 const __m128i A = _mm_set1_epi16(in[0] + 4); 252 const __m128i A = _mm_set1_epi16(in[0] + 4);
253 const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2)); 253 const __m128i c4 = _mm_set1_epi16(MUL(in[4], kC2));
254 const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1)); 254 const __m128i d4 = _mm_set1_epi16(MUL(in[4], kC1));
255 const int c1 = MUL(in[1], kC2); 255 const int c1 = MUL(in[1], kC2);
256 const int d1 = MUL(in[1], kC1); 256 const int d1 = MUL(in[1], kC1);
257 const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1); 257 const __m128i CD = _mm_set_epi16(0, 0, 0, 0, -d1, -c1, c1, d1);
258 const __m128i B = _mm_adds_epi16(A, CD); 258 const __m128i B = _mm_adds_epi16(A, CD);
259 const __m128i m0 = _mm_adds_epi16(B, d4); 259 const __m128i m0 = _mm_adds_epi16(B, d4);
260 const __m128i m1 = _mm_adds_epi16(B, c4); 260 const __m128i m1 = _mm_adds_epi16(B, c4);
261 const __m128i m2 = _mm_subs_epi16(B, c4); 261 const __m128i m2 = _mm_subs_epi16(B, c4);
262 const __m128i m3 = _mm_subs_epi16(B, d4); 262 const __m128i m3 = _mm_subs_epi16(B, d4);
263 const __m128i zero = _mm_setzero_si128(); 263 const __m128i zero = _mm_setzero_si128();
264 // Load the source pixels. 264 // Load the source pixels.
265 __m128i dst0 = _mm_cvtsi32_si128(*(int*)(dst + 0 * BPS)); 265 __m128i dst0 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 0 * BPS));
266 __m128i dst1 = _mm_cvtsi32_si128(*(int*)(dst + 1 * BPS)); 266 __m128i dst1 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 1 * BPS));
267 __m128i dst2 = _mm_cvtsi32_si128(*(int*)(dst + 2 * BPS)); 267 __m128i dst2 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 2 * BPS));
268 __m128i dst3 = _mm_cvtsi32_si128(*(int*)(dst + 3 * BPS)); 268 __m128i dst3 = _mm_cvtsi32_si128(WebPMemToUint32(dst + 3 * BPS));
269 // Convert to 16b. 269 // Convert to 16b.
270 dst0 = _mm_unpacklo_epi8(dst0, zero); 270 dst0 = _mm_unpacklo_epi8(dst0, zero);
271 dst1 = _mm_unpacklo_epi8(dst1, zero); 271 dst1 = _mm_unpacklo_epi8(dst1, zero);
272 dst2 = _mm_unpacklo_epi8(dst2, zero); 272 dst2 = _mm_unpacklo_epi8(dst2, zero);
273 dst3 = _mm_unpacklo_epi8(dst3, zero); 273 dst3 = _mm_unpacklo_epi8(dst3, zero);
274 // Add the inverse transform. 274 // Add the inverse transform.
275 dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3)); 275 dst0 = _mm_adds_epi16(dst0, _mm_srai_epi16(m0, 3));
276 dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3)); 276 dst1 = _mm_adds_epi16(dst1, _mm_srai_epi16(m1, 3));
277 dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3)); 277 dst2 = _mm_adds_epi16(dst2, _mm_srai_epi16(m2, 3));
278 dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3)); 278 dst3 = _mm_adds_epi16(dst3, _mm_srai_epi16(m3, 3));
279 // Unsigned saturate to 8b. 279 // Unsigned saturate to 8b.
280 dst0 = _mm_packus_epi16(dst0, dst0); 280 dst0 = _mm_packus_epi16(dst0, dst0);
281 dst1 = _mm_packus_epi16(dst1, dst1); 281 dst1 = _mm_packus_epi16(dst1, dst1);
282 dst2 = _mm_packus_epi16(dst2, dst2); 282 dst2 = _mm_packus_epi16(dst2, dst2);
283 dst3 = _mm_packus_epi16(dst3, dst3); 283 dst3 = _mm_packus_epi16(dst3, dst3);
284 // Store the results. 284 // Store the results.
285 *(int*)(dst + 0 * BPS) = _mm_cvtsi128_si32(dst0); 285 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(dst0));
286 *(int*)(dst + 1 * BPS) = _mm_cvtsi128_si32(dst1); 286 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(dst1));
287 *(int*)(dst + 2 * BPS) = _mm_cvtsi128_si32(dst2); 287 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(dst2));
288 *(int*)(dst + 3 * BPS) = _mm_cvtsi128_si32(dst3); 288 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(dst3));
289 } 289 }
290 #undef MUL 290 #undef MUL
291 #endif // USE_TRANSFORM_AC3 291 #endif // USE_TRANSFORM_AC3
292 292
293 //------------------------------------------------------------------------------ 293 //------------------------------------------------------------------------------
294 // Loop Filter (Paragraph 15) 294 // Loop Filter (Paragraph 15)
295 295
296 // Compute abs(p - q) = subs(p - q) OR subs(q - p) 296 // Compute abs(p - q) = subs(p - q) OR subs(q - p)
297 #define MM_ABS(p, q) _mm_or_si128( \ 297 #define MM_ABS(p, q) _mm_or_si128( \
298 _mm_subs_epu8((q), (p)), \ 298 _mm_subs_epu8((q), (p)), \
299 _mm_subs_epu8((p), (q))) 299 _mm_subs_epu8((p), (q)))
300 300
301 // Shift each byte of "x" by 3 bits while preserving by the sign bit. 301 // Shift each byte of "x" by 3 bits while preserving by the sign bit.
302 static WEBP_INLINE void SignedShift8b(__m128i* const x) { 302 static WEBP_INLINE void SignedShift8b(__m128i* const x) {
303 const __m128i zero = _mm_setzero_si128(); 303 const __m128i zero = _mm_setzero_si128();
304 const __m128i signs = _mm_cmpgt_epi8(zero, *x); 304 const __m128i lo_0 = _mm_unpacklo_epi8(zero, *x);
305 const __m128i lo_0 = _mm_unpacklo_epi8(*x, signs); // s8 -> s16 sign extend 305 const __m128i hi_0 = _mm_unpackhi_epi8(zero, *x);
306 const __m128i hi_0 = _mm_unpackhi_epi8(*x, signs); 306 const __m128i lo_1 = _mm_srai_epi16(lo_0, 3 + 8);
307 const __m128i lo_1 = _mm_srai_epi16(lo_0, 3); 307 const __m128i hi_1 = _mm_srai_epi16(hi_0, 3 + 8);
308 const __m128i hi_1 = _mm_srai_epi16(hi_0, 3);
309 *x = _mm_packs_epi16(lo_1, hi_1); 308 *x = _mm_packs_epi16(lo_1, hi_1);
310 } 309 }
311 310
312 #define FLIP_SIGN_BIT2(a, b) { \ 311 #define FLIP_SIGN_BIT2(a, b) { \
313 a = _mm_xor_si128(a, sign_bit); \ 312 a = _mm_xor_si128(a, sign_bit); \
314 b = _mm_xor_si128(b, sign_bit); \ 313 b = _mm_xor_si128(b, sign_bit); \
315 } 314 }
316 315
317 #define FLIP_SIGN_BIT4(a, b, c, d) { \ 316 #define FLIP_SIGN_BIT4(a, b, c, d) { \
318 FLIP_SIGN_BIT2(a, b); \ 317 FLIP_SIGN_BIT2(a, b); \
319 FLIP_SIGN_BIT2(c, d); \ 318 FLIP_SIGN_BIT2(c, d); \
320 } 319 }
321 320
322 // input/output is uint8_t 321 // input/output is uint8_t
323 static WEBP_INLINE void GetNotHEV(const __m128i* const p1, 322 static WEBP_INLINE void GetNotHEV(const __m128i* const p1,
324 const __m128i* const p0, 323 const __m128i* const p0,
325 const __m128i* const q0, 324 const __m128i* const q0,
326 const __m128i* const q1, 325 const __m128i* const q1,
327 int hev_thresh, __m128i* const not_hev) { 326 int hev_thresh, __m128i* const not_hev) {
328 const __m128i zero = _mm_setzero_si128(); 327 const __m128i zero = _mm_setzero_si128();
329 const __m128i t_1 = MM_ABS(*p1, *p0); 328 const __m128i t_1 = MM_ABS(*p1, *p0);
330 const __m128i t_2 = MM_ABS(*q1, *q0); 329 const __m128i t_2 = MM_ABS(*q1, *q0);
331 330
332 const __m128i h = _mm_set1_epi8(hev_thresh); 331 const __m128i h = _mm_set1_epi8(hev_thresh);
333 const __m128i t_3 = _mm_subs_epu8(t_1, h); // abs(p1 - p0) - hev_tresh 332 const __m128i t_max = _mm_max_epu8(t_1, t_2);
334 const __m128i t_4 = _mm_subs_epu8(t_2, h); // abs(q1 - q0) - hev_tresh
335 333
336 *not_hev = _mm_or_si128(t_3, t_4); 334 const __m128i t_max_h = _mm_subs_epu8(t_max, h);
337 *not_hev = _mm_cmpeq_epi8(*not_hev, zero); // not_hev <= t1 && not_hev <= t2 335 *not_hev = _mm_cmpeq_epi8(t_max_h, zero); // not_hev <= t1 && not_hev <= t2
338 } 336 }
339 337
340 // input pixels are int8_t 338 // input pixels are int8_t
341 static WEBP_INLINE void GetBaseDelta(const __m128i* const p1, 339 static WEBP_INLINE void GetBaseDelta(const __m128i* const p1,
342 const __m128i* const p0, 340 const __m128i* const p0,
343 const __m128i* const q0, 341 const __m128i* const q0,
344 const __m128i* const q1, 342 const __m128i* const q1,
345 __m128i* const delta) { 343 __m128i* const delta) {
346 // beware of addition order, for saturation! 344 // beware of addition order, for saturation!
347 const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 345 const __m128i p1_q1 = _mm_subs_epi8(*p1, *q1); // p1 - q1
(...skipping 73 matching lines...) Expand 10 before | Expand all | Expand 10 after
421 GetBaseDelta(&p1s, p0, q0, &q1s, &a); 419 GetBaseDelta(&p1s, p0, q0, &q1s, &a);
422 a = _mm_and_si128(a, mask); // mask filter values we don't care about 420 a = _mm_and_si128(a, mask); // mask filter values we don't care about
423 DoSimpleFilter(p0, q0, &a); 421 DoSimpleFilter(p0, q0, &a);
424 FLIP_SIGN_BIT2(*p0, *q0); 422 FLIP_SIGN_BIT2(*p0, *q0);
425 } 423 }
426 424
427 // Applies filter on 4 pixels (p1, p0, q0 and q1) 425 // Applies filter on 4 pixels (p1, p0, q0 and q1)
428 static WEBP_INLINE void DoFilter4(__m128i* const p1, __m128i* const p0, 426 static WEBP_INLINE void DoFilter4(__m128i* const p1, __m128i* const p0,
429 __m128i* const q0, __m128i* const q1, 427 __m128i* const q0, __m128i* const q1,
430 const __m128i* const mask, int hev_thresh) { 428 const __m128i* const mask, int hev_thresh) {
429 const __m128i zero = _mm_setzero_si128();
431 const __m128i sign_bit = _mm_set1_epi8(0x80); 430 const __m128i sign_bit = _mm_set1_epi8(0x80);
432 const __m128i k64 = _mm_set1_epi8(0x40); 431 const __m128i k64 = _mm_set1_epi8(64);
433 const __m128i zero = _mm_setzero_si128(); 432 const __m128i k3 = _mm_set1_epi8(3);
433 const __m128i k4 = _mm_set1_epi8(4);
434 __m128i not_hev; 434 __m128i not_hev;
435 __m128i t1, t2, t3; 435 __m128i t1, t2, t3;
436 436
437 // compute hev mask 437 // compute hev mask
438 GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev); 438 GetNotHEV(p1, p0, q0, q1, hev_thresh, &not_hev);
439 439
440 // convert to signed values 440 // convert to signed values
441 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1); 441 FLIP_SIGN_BIT4(*p1, *p0, *q0, *q1);
442 442
443 t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1 443 t1 = _mm_subs_epi8(*p1, *q1); // p1 - q1
444 t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1) 444 t1 = _mm_andnot_si128(not_hev, t1); // hev(p1 - q1)
445 t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0 445 t2 = _mm_subs_epi8(*q0, *p0); // q0 - p0
446 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0) 446 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 1 * (q0 - p0)
447 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0) 447 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 2 * (q0 - p0)
448 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0) 448 t1 = _mm_adds_epi8(t1, t2); // hev(p1 - q1) + 3 * (q0 - p0)
449 t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about 449 t1 = _mm_and_si128(t1, *mask); // mask filter values we don't care about
450 450
451 t2 = _mm_set1_epi8(3); 451 t2 = _mm_adds_epi8(t1, k3); // 3 * (q0 - p0) + hev(p1 - q1) + 3
452 t3 = _mm_set1_epi8(4); 452 t3 = _mm_adds_epi8(t1, k4); // 3 * (q0 - p0) + hev(p1 - q1) + 4
453 t2 = _mm_adds_epi8(t1, t2); // 3 * (q0 - p0) + (p1 - q1) + 3
454 t3 = _mm_adds_epi8(t1, t3); // 3 * (q0 - p0) + (p1 - q1) + 4
455 SignedShift8b(&t2); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3 453 SignedShift8b(&t2); // (3 * (q0 - p0) + hev(p1 - q1) + 3) >> 3
456 SignedShift8b(&t3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3 454 SignedShift8b(&t3); // (3 * (q0 - p0) + hev(p1 - q1) + 4) >> 3
457 *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2 455 *p0 = _mm_adds_epi8(*p0, t2); // p0 += t2
458 *q0 = _mm_subs_epi8(*q0, t3); // q0 -= t3 456 *q0 = _mm_subs_epi8(*q0, t3); // q0 -= t3
459 FLIP_SIGN_BIT2(*p0, *q0); 457 FLIP_SIGN_BIT2(*p0, *q0);
460 458
461 // this is equivalent to signed (a + 1) >> 1 calculation 459 // this is equivalent to signed (a + 1) >> 1 calculation
462 t2 = _mm_add_epi8(t3, sign_bit); 460 t2 = _mm_add_epi8(t3, sign_bit);
463 t3 = _mm_avg_epu8(t2, zero); 461 t3 = _mm_avg_epu8(t2, zero);
464 t3 = _mm_sub_epi8(t3, k64); 462 t3 = _mm_sub_epi8(t3, k64);
(...skipping 48 matching lines...) Expand 10 before | Expand all | Expand 10 after
513 const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo); // Filter * 27 + 63 511 const __m128i a0_lo = _mm_add_epi16(a1_lo, f9_lo); // Filter * 27 + 63
514 const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi); // Filter * 27 + 63 512 const __m128i a0_hi = _mm_add_epi16(a1_hi, f9_hi); // Filter * 27 + 63
515 513
516 Update2Pixels(p2, q2, &a2_lo, &a2_hi); 514 Update2Pixels(p2, q2, &a2_lo, &a2_hi);
517 Update2Pixels(p1, q1, &a1_lo, &a1_hi); 515 Update2Pixels(p1, q1, &a1_lo, &a1_hi);
518 Update2Pixels(p0, q0, &a0_lo, &a0_hi); 516 Update2Pixels(p0, q0, &a0_lo, &a0_hi);
519 } 517 }
520 } 518 }
521 519
522 // reads 8 rows across a vertical edge. 520 // reads 8 rows across a vertical edge.
523 //
524 // TODO(somnath): Investigate _mm_shuffle* also see if it can be broken into
525 // two Load4x4() to avoid code duplication.
526 static WEBP_INLINE void Load8x4(const uint8_t* const b, int stride, 521 static WEBP_INLINE void Load8x4(const uint8_t* const b, int stride,
527 __m128i* const p, __m128i* const q) { 522 __m128i* const p, __m128i* const q) {
528 __m128i t1, t2; 523 // A0 = 63 62 61 60 23 22 21 20 43 42 41 40 03 02 01 00
524 // A1 = 73 72 71 70 33 32 31 30 53 52 51 50 13 12 11 10
525 const __m128i A0 = _mm_set_epi32(
526 WebPMemToUint32(&b[6 * stride]), WebPMemToUint32(&b[2 * stride]),
527 WebPMemToUint32(&b[4 * stride]), WebPMemToUint32(&b[0 * stride]));
528 const __m128i A1 = _mm_set_epi32(
529 WebPMemToUint32(&b[7 * stride]), WebPMemToUint32(&b[3 * stride]),
530 WebPMemToUint32(&b[5 * stride]), WebPMemToUint32(&b[1 * stride]));
529 531
530 // Load 0th, 1st, 4th and 5th rows 532 // B0 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00
531 __m128i r0 = _mm_cvtsi32_si128(*((int*)&b[0 * stride])); // 03 02 01 00 533 // B1 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
532 __m128i r1 = _mm_cvtsi32_si128(*((int*)&b[1 * stride])); // 13 12 11 10 534 const __m128i B0 = _mm_unpacklo_epi8(A0, A1);
533 __m128i r4 = _mm_cvtsi32_si128(*((int*)&b[4 * stride])); // 43 42 41 40 535 const __m128i B1 = _mm_unpackhi_epi8(A0, A1);
534 __m128i r5 = _mm_cvtsi32_si128(*((int*)&b[5 * stride])); // 53 52 51 50
535 536
536 r0 = _mm_unpacklo_epi32(r0, r4); // 43 42 41 40 03 02 01 00 537 // C0 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
537 r1 = _mm_unpacklo_epi32(r1, r5); // 53 52 51 50 13 12 11 10 538 // C1 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
538 539 const __m128i C0 = _mm_unpacklo_epi16(B0, B1);
539 // t1 = 53 43 52 42 51 41 50 40 13 03 12 02 11 01 10 00 540 const __m128i C1 = _mm_unpackhi_epi16(B0, B1);
540 t1 = _mm_unpacklo_epi8(r0, r1);
541
542 // Load 2nd, 3rd, 6th and 7th rows
543 r0 = _mm_cvtsi32_si128(*((int*)&b[2 * stride])); // 23 22 21 22
544 r1 = _mm_cvtsi32_si128(*((int*)&b[3 * stride])); // 33 32 31 30
545 r4 = _mm_cvtsi32_si128(*((int*)&b[6 * stride])); // 63 62 61 60
546 r5 = _mm_cvtsi32_si128(*((int*)&b[7 * stride])); // 73 72 71 70
547
548 r0 = _mm_unpacklo_epi32(r0, r4); // 63 62 61 60 23 22 21 20
549 r1 = _mm_unpacklo_epi32(r1, r5); // 73 72 71 70 33 32 31 30
550
551 // t2 = 73 63 72 62 71 61 70 60 33 23 32 22 31 21 30 20
552 t2 = _mm_unpacklo_epi8(r0, r1);
553
554 // t1 = 33 23 13 03 32 22 12 02 31 21 11 01 30 20 10 00
555 // t2 = 73 63 53 43 72 62 52 42 71 61 51 41 70 60 50 40
556 r0 = t1;
557 t1 = _mm_unpacklo_epi16(t1, t2);
558 t2 = _mm_unpackhi_epi16(r0, t2);
559 541
560 // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 542 // *p = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
561 // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 543 // *q = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
562 *p = _mm_unpacklo_epi32(t1, t2); 544 *p = _mm_unpacklo_epi32(C0, C1);
563 *q = _mm_unpackhi_epi32(t1, t2); 545 *q = _mm_unpackhi_epi32(C0, C1);
564 } 546 }
565 547
566 static WEBP_INLINE void Load16x4(const uint8_t* const r0, 548 static WEBP_INLINE void Load16x4(const uint8_t* const r0,
567 const uint8_t* const r8, 549 const uint8_t* const r8,
568 int stride, 550 int stride,
569 __m128i* const p1, __m128i* const p0, 551 __m128i* const p1, __m128i* const p0,
570 __m128i* const q0, __m128i* const q1) { 552 __m128i* const q0, __m128i* const q1) {
571 __m128i t1, t2;
572 // Assume the pixels around the edge (|) are numbered as follows 553 // Assume the pixels around the edge (|) are numbered as follows
573 // 00 01 | 02 03 554 // 00 01 | 02 03
574 // 10 11 | 12 13 555 // 10 11 | 12 13
575 // ... | ... 556 // ... | ...
576 // e0 e1 | e2 e3 557 // e0 e1 | e2 e3
577 // f0 f1 | f2 f3 558 // f0 f1 | f2 f3
578 // 559 //
579 // r0 is pointing to the 0th row (00) 560 // r0 is pointing to the 0th row (00)
580 // r8 is pointing to the 8th row (80) 561 // r8 is pointing to the 8th row (80)
581 562
582 // Load 563 // Load
583 // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00 564 // p1 = 71 61 51 41 31 21 11 01 70 60 50 40 30 20 10 00
584 // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02 565 // q0 = 73 63 53 43 33 23 13 03 72 62 52 42 32 22 12 02
585 // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80 566 // p0 = f1 e1 d1 c1 b1 a1 91 81 f0 e0 d0 c0 b0 a0 90 80
586 // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82 567 // q1 = f3 e3 d3 c3 b3 a3 93 83 f2 e2 d2 c2 b2 a2 92 82
587 Load8x4(r0, stride, p1, q0); 568 Load8x4(r0, stride, p1, q0);
588 Load8x4(r8, stride, p0, q1); 569 Load8x4(r8, stride, p0, q1);
589 570
590 t1 = *p1; 571 {
591 t2 = *q0; 572 // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00
592 // p1 = f0 e0 d0 c0 b0 a0 90 80 70 60 50 40 30 20 10 00 573 // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01
593 // p0 = f1 e1 d1 c1 b1 a1 91 81 71 61 51 41 31 21 11 01 574 // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02
594 // q0 = f2 e2 d2 c2 b2 a2 92 82 72 62 52 42 32 22 12 02 575 // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03
595 // q1 = f3 e3 d3 c3 b3 a3 93 83 73 63 53 43 33 23 13 03 576 const __m128i t1 = *p1;
596 *p1 = _mm_unpacklo_epi64(t1, *p0); 577 const __m128i t2 = *q0;
597 *p0 = _mm_unpackhi_epi64(t1, *p0); 578 *p1 = _mm_unpacklo_epi64(t1, *p0);
598 *q0 = _mm_unpacklo_epi64(t2, *q1); 579 *p0 = _mm_unpackhi_epi64(t1, *p0);
599 *q1 = _mm_unpackhi_epi64(t2, *q1); 580 *q0 = _mm_unpacklo_epi64(t2, *q1);
581 *q1 = _mm_unpackhi_epi64(t2, *q1);
582 }
600 } 583 }
601 584
602 static WEBP_INLINE void Store4x4(__m128i* const x, uint8_t* dst, int stride) { 585 static WEBP_INLINE void Store4x4(__m128i* const x, uint8_t* dst, int stride) {
603 int i; 586 int i;
604 for (i = 0; i < 4; ++i, dst += stride) { 587 for (i = 0; i < 4; ++i, dst += stride) {
605 *((int32_t*)dst) = _mm_cvtsi128_si32(*x); 588 WebPUint32ToMem(dst, _mm_cvtsi128_si32(*x));
606 *x = _mm_srli_si128(*x, 4); 589 *x = _mm_srli_si128(*x, 4);
607 } 590 }
608 } 591 }
609 592
610 // Transpose back and store 593 // Transpose back and store
611 static WEBP_INLINE void Store16x4(const __m128i* const p1, 594 static WEBP_INLINE void Store16x4(const __m128i* const p1,
612 const __m128i* const p0, 595 const __m128i* const p0,
613 const __m128i* const q0, 596 const __m128i* const q0,
614 const __m128i* const q1, 597 const __m128i* const q1,
615 uint8_t* r0, uint8_t* r8, 598 uint8_t* r0, uint8_t* r8,
(...skipping 324 matching lines...) Expand 10 before | Expand all | Expand 10 after
940 MAX_DIFF2(t2, t1, q1, q0, mask); 923 MAX_DIFF2(t2, t1, q1, q0, mask);
941 924
942 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask); 925 ComplexMask(&p1, &p0, &q0, &q1, thresh, ithresh, &mask);
943 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh); 926 DoFilter4(&p1, &p0, &q0, &q1, &mask, hev_thresh);
944 927
945 u -= 2; // beginning of p1 928 u -= 2; // beginning of p1
946 v -= 2; 929 v -= 2;
947 Store16x4(&p1, &p0, &q0, &q1, u, v, stride); 930 Store16x4(&p1, &p0, &q0, &q1, u, v, stride);
948 } 931 }
949 932
950 #endif // WEBP_USE_SSE2 933 //------------------------------------------------------------------------------
934 // 4x4 predictions
935
936 #define DST(x, y) dst[(x) + (y) * BPS]
937 #define AVG3(a, b, c) (((a) + 2 * (b) + (c) + 2) >> 2)
938
939 // We use the following 8b-arithmetic tricks:
940 // (a + 2 * b + c + 2) >> 2 = (AC + b + 1) >> 1
941 // where: AC = (a + c) >> 1 = [(a + c + 1) >> 1] - [(a^c) & 1]
942 // and:
943 // (a + 2 * b + c + 2) >> 2 = (AB + BC + 1) >> 1 - (ab|bc)&lsb
944 // where: AC = (a + b + 1) >> 1, BC = (b + c + 1) >> 1
945 // and ab = a ^ b, bc = b ^ c, lsb = (AC^BC)&1
946
947 static void VE4(uint8_t* dst) { // vertical
948 const __m128i one = _mm_set1_epi8(1);
949 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
950 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
951 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
952 const __m128i a = _mm_avg_epu8(ABCDEFGH, CDEFGH00);
953 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGH00), one);
954 const __m128i b = _mm_subs_epu8(a, lsb);
955 const __m128i avg = _mm_avg_epu8(b, BCDEFGH0);
956 const uint32_t vals = _mm_cvtsi128_si32(avg);
957 int i;
958 for (i = 0; i < 4; ++i) {
959 WebPUint32ToMem(dst + i * BPS, vals);
960 }
961 }
962
963 static void LD4(uint8_t* dst) { // Down-Left
964 const __m128i one = _mm_set1_epi8(1);
965 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
966 const __m128i BCDEFGH0 = _mm_srli_si128(ABCDEFGH, 1);
967 const __m128i CDEFGH00 = _mm_srli_si128(ABCDEFGH, 2);
968 const __m128i CDEFGHH0 = _mm_insert_epi16(CDEFGH00, dst[-BPS + 7], 3);
969 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, CDEFGHH0);
970 const __m128i lsb = _mm_and_si128(_mm_xor_si128(ABCDEFGH, CDEFGHH0), one);
971 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
972 const __m128i abcdefg = _mm_avg_epu8(avg2, BCDEFGH0);
973 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcdefg ));
974 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
975 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
976 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
977 }
978
979 static void VR4(uint8_t* dst) { // Vertical-Right
980 const __m128i one = _mm_set1_epi8(1);
981 const int I = dst[-1 + 0 * BPS];
982 const int J = dst[-1 + 1 * BPS];
983 const int K = dst[-1 + 2 * BPS];
984 const int X = dst[-1 - BPS];
985 const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
986 const __m128i ABCD0 = _mm_srli_si128(XABCD, 1);
987 const __m128i abcd = _mm_avg_epu8(XABCD, ABCD0);
988 const __m128i _XABCD = _mm_slli_si128(XABCD, 1);
989 const __m128i IXABCD = _mm_insert_epi16(_XABCD, I | (X << 8), 0);
990 const __m128i avg1 = _mm_avg_epu8(IXABCD, ABCD0);
991 const __m128i lsb = _mm_and_si128(_mm_xor_si128(IXABCD, ABCD0), one);
992 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
993 const __m128i efgh = _mm_avg_epu8(avg2, XABCD);
994 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( abcd ));
995 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( efgh ));
996 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(abcd, 1)));
997 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_slli_si128(efgh, 1)));
998
999 // these two are hard to implement in SSE2, so we keep the C-version:
1000 DST(0, 2) = AVG3(J, I, X);
1001 DST(0, 3) = AVG3(K, J, I);
1002 }
1003
1004 static void VL4(uint8_t* dst) { // Vertical-Left
1005 const __m128i one = _mm_set1_epi8(1);
1006 const __m128i ABCDEFGH = _mm_loadl_epi64((__m128i*)(dst - BPS));
1007 const __m128i BCDEFGH_ = _mm_srli_si128(ABCDEFGH, 1);
1008 const __m128i CDEFGH__ = _mm_srli_si128(ABCDEFGH, 2);
1009 const __m128i avg1 = _mm_avg_epu8(ABCDEFGH, BCDEFGH_);
1010 const __m128i avg2 = _mm_avg_epu8(CDEFGH__, BCDEFGH_);
1011 const __m128i avg3 = _mm_avg_epu8(avg1, avg2);
1012 const __m128i lsb1 = _mm_and_si128(_mm_xor_si128(avg1, avg2), one);
1013 const __m128i ab = _mm_xor_si128(ABCDEFGH, BCDEFGH_);
1014 const __m128i bc = _mm_xor_si128(CDEFGH__, BCDEFGH_);
1015 const __m128i abbc = _mm_or_si128(ab, bc);
1016 const __m128i lsb2 = _mm_and_si128(abbc, lsb1);
1017 const __m128i avg4 = _mm_subs_epu8(avg3, lsb2);
1018 const uint32_t extra_out = _mm_cvtsi128_si32(_mm_srli_si128(avg4, 4));
1019 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32( avg1 ));
1020 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32( avg4 ));
1021 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg1, 1)));
1022 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(avg4, 1)));
1023
1024 // these two are hard to get and irregular
1025 DST(3, 2) = (extra_out >> 0) & 0xff;
1026 DST(3, 3) = (extra_out >> 8) & 0xff;
1027 }
1028
1029 static void RD4(uint8_t* dst) { // Down-right
1030 const __m128i one = _mm_set1_epi8(1);
1031 const __m128i XABCD = _mm_loadl_epi64((__m128i*)(dst - BPS - 1));
1032 const __m128i ____XABCD = _mm_slli_si128(XABCD, 4);
1033 const uint32_t I = dst[-1 + 0 * BPS];
1034 const uint32_t J = dst[-1 + 1 * BPS];
1035 const uint32_t K = dst[-1 + 2 * BPS];
1036 const uint32_t L = dst[-1 + 3 * BPS];
1037 const __m128i LKJI_____ =
1038 _mm_cvtsi32_si128(L | (K << 8) | (J << 16) | (I << 24));
1039 const __m128i LKJIXABCD = _mm_or_si128(LKJI_____, ____XABCD);
1040 const __m128i KJIXABCD_ = _mm_srli_si128(LKJIXABCD, 1);
1041 const __m128i JIXABCD__ = _mm_srli_si128(LKJIXABCD, 2);
1042 const __m128i avg1 = _mm_avg_epu8(JIXABCD__, LKJIXABCD);
1043 const __m128i lsb = _mm_and_si128(_mm_xor_si128(JIXABCD__, LKJIXABCD), one);
1044 const __m128i avg2 = _mm_subs_epu8(avg1, lsb);
1045 const __m128i abcdefg = _mm_avg_epu8(avg2, KJIXABCD_);
1046 WebPUint32ToMem(dst + 3 * BPS, _mm_cvtsi128_si32( abcdefg ));
1047 WebPUint32ToMem(dst + 2 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 1)));
1048 WebPUint32ToMem(dst + 1 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 2)));
1049 WebPUint32ToMem(dst + 0 * BPS, _mm_cvtsi128_si32(_mm_srli_si128(abcdefg, 3)));
1050 }
1051
1052 #undef DST
1053 #undef AVG3
1054
1055 //------------------------------------------------------------------------------
1056 // Luma 16x16
1057
1058 static WEBP_INLINE void TrueMotion(uint8_t* dst, int size) {
1059 const uint8_t* top = dst - BPS;
1060 const __m128i zero = _mm_setzero_si128();
1061 int y;
1062 if (size == 4) {
1063 const __m128i top_values = _mm_cvtsi32_si128(WebPMemToUint32(top));
1064 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1065 for (y = 0; y < 4; ++y, dst += BPS) {
1066 const int val = dst[-1] - top[-1];
1067 const __m128i base = _mm_set1_epi16(val);
1068 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1069 WebPUint32ToMem(dst, _mm_cvtsi128_si32(out));
1070 }
1071 } else if (size == 8) {
1072 const __m128i top_values = _mm_loadl_epi64((const __m128i*)top);
1073 const __m128i top_base = _mm_unpacklo_epi8(top_values, zero);
1074 for (y = 0; y < 8; ++y, dst += BPS) {
1075 const int val = dst[-1] - top[-1];
1076 const __m128i base = _mm_set1_epi16(val);
1077 const __m128i out = _mm_packus_epi16(_mm_add_epi16(base, top_base), zero);
1078 _mm_storel_epi64((__m128i*)dst, out);
1079 }
1080 } else {
1081 const __m128i top_values = _mm_loadu_si128((const __m128i*)top);
1082 const __m128i top_base_0 = _mm_unpacklo_epi8(top_values, zero);
1083 const __m128i top_base_1 = _mm_unpackhi_epi8(top_values, zero);
1084 for (y = 0; y < 16; ++y, dst += BPS) {
1085 const int val = dst[-1] - top[-1];
1086 const __m128i base = _mm_set1_epi16(val);
1087 const __m128i out_0 = _mm_add_epi16(base, top_base_0);
1088 const __m128i out_1 = _mm_add_epi16(base, top_base_1);
1089 const __m128i out = _mm_packus_epi16(out_0, out_1);
1090 _mm_storeu_si128((__m128i*)dst, out);
1091 }
1092 }
1093 }
1094
1095 static void TM4(uint8_t* dst) { TrueMotion(dst, 4); }
1096 static void TM8uv(uint8_t* dst) { TrueMotion(dst, 8); }
1097 static void TM16(uint8_t* dst) { TrueMotion(dst, 16); }
1098
1099 static void VE16(uint8_t* dst) {
1100 const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1101 int j;
1102 for (j = 0; j < 16; ++j) {
1103 _mm_storeu_si128((__m128i*)(dst + j * BPS), top);
1104 }
1105 }
1106
1107 static void HE16(uint8_t* dst) { // horizontal
1108 int j;
1109 for (j = 16; j > 0; --j) {
1110 const __m128i values = _mm_set1_epi8(dst[-1]);
1111 _mm_storeu_si128((__m128i*)dst, values);
1112 dst += BPS;
1113 }
1114 }
1115
1116 static WEBP_INLINE void Put16(uint8_t v, uint8_t* dst) {
1117 int j;
1118 const __m128i values = _mm_set1_epi8(v);
1119 for (j = 0; j < 16; ++j) {
1120 _mm_storeu_si128((__m128i*)(dst + j * BPS), values);
1121 }
1122 }
1123
1124 static void DC16(uint8_t* dst) { // DC
1125 const __m128i zero = _mm_setzero_si128();
1126 const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1127 const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1128 // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1129 const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1130 int left = 0;
1131 int j;
1132 for (j = 0; j < 16; ++j) {
1133 left += dst[-1 + j * BPS];
1134 }
1135 {
1136 const int DC = _mm_cvtsi128_si32(sum) + left + 16;
1137 Put16(DC >> 5, dst);
1138 }
1139 }
1140
1141 static void DC16NoTop(uint8_t* dst) { // DC with top samples not available
1142 int DC = 8;
1143 int j;
1144 for (j = 0; j < 16; ++j) {
1145 DC += dst[-1 + j * BPS];
1146 }
1147 Put16(DC >> 4, dst);
1148 }
1149
1150 static void DC16NoLeft(uint8_t* dst) { // DC with left samples not available
1151 const __m128i zero = _mm_setzero_si128();
1152 const __m128i top = _mm_loadu_si128((const __m128i*)(dst - BPS));
1153 const __m128i sad8x2 = _mm_sad_epu8(top, zero);
1154 // sum the two sads: sad8x2[0:1] + sad8x2[8:9]
1155 const __m128i sum = _mm_add_epi16(sad8x2, _mm_shuffle_epi32(sad8x2, 2));
1156 const int DC = _mm_cvtsi128_si32(sum) + 8;
1157 Put16(DC >> 4, dst);
1158 }
1159
1160 static void DC16NoTopLeft(uint8_t* dst) { // DC with no top and left samples
1161 Put16(0x80, dst);
1162 }
1163
1164 //------------------------------------------------------------------------------
1165 // Chroma
1166
1167 static void VE8uv(uint8_t* dst) { // vertical
1168 int j;
1169 const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1170 for (j = 0; j < 8; ++j) {
1171 _mm_storel_epi64((__m128i*)(dst + j * BPS), top);
1172 }
1173 }
1174
1175 static void HE8uv(uint8_t* dst) { // horizontal
1176 int j;
1177 for (j = 0; j < 8; ++j) {
1178 const __m128i values = _mm_set1_epi8(dst[-1]);
1179 _mm_storel_epi64((__m128i*)dst, values);
1180 dst += BPS;
1181 }
1182 }
1183
1184 // helper for chroma-DC predictions
1185 static WEBP_INLINE void Put8x8uv(uint8_t v, uint8_t* dst) {
1186 int j;
1187 const __m128i values = _mm_set1_epi8(v);
1188 for (j = 0; j < 8; ++j) {
1189 _mm_storel_epi64((__m128i*)(dst + j * BPS), values);
1190 }
1191 }
1192
1193 static void DC8uv(uint8_t* dst) { // DC
1194 const __m128i zero = _mm_setzero_si128();
1195 const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1196 const __m128i sum = _mm_sad_epu8(top, zero);
1197 int left = 0;
1198 int j;
1199 for (j = 0; j < 8; ++j) {
1200 left += dst[-1 + j * BPS];
1201 }
1202 {
1203 const int DC = _mm_cvtsi128_si32(sum) + left + 8;
1204 Put8x8uv(DC >> 4, dst);
1205 }
1206 }
1207
1208 static void DC8uvNoLeft(uint8_t* dst) { // DC with no left samples
1209 const __m128i zero = _mm_setzero_si128();
1210 const __m128i top = _mm_loadl_epi64((const __m128i*)(dst - BPS));
1211 const __m128i sum = _mm_sad_epu8(top, zero);
1212 const int DC = _mm_cvtsi128_si32(sum) + 4;
1213 Put8x8uv(DC >> 3, dst);
1214 }
1215
1216 static void DC8uvNoTop(uint8_t* dst) { // DC with no top samples
1217 int dc0 = 4;
1218 int i;
1219 for (i = 0; i < 8; ++i) {
1220 dc0 += dst[-1 + i * BPS];
1221 }
1222 Put8x8uv(dc0 >> 3, dst);
1223 }
1224
1225 static void DC8uvNoTopLeft(uint8_t* dst) { // DC with nothing
1226 Put8x8uv(0x80, dst);
1227 }
951 1228
952 //------------------------------------------------------------------------------ 1229 //------------------------------------------------------------------------------
953 // Entry point 1230 // Entry point
954 1231
955 extern void VP8DspInitSSE2(void); 1232 extern void VP8DspInitSSE2(void);
956 1233
957 void VP8DspInitSSE2(void) { 1234 WEBP_TSAN_IGNORE_FUNCTION void VP8DspInitSSE2(void) {
958 #if defined(WEBP_USE_SSE2)
959 VP8Transform = Transform; 1235 VP8Transform = Transform;
960 #if defined(USE_TRANSFORM_AC3) 1236 #if defined(USE_TRANSFORM_AC3)
961 VP8TransformAC3 = TransformAC3; 1237 VP8TransformAC3 = TransformAC3;
962 #endif 1238 #endif
963 1239
964 VP8VFilter16 = VFilter16; 1240 VP8VFilter16 = VFilter16;
965 VP8HFilter16 = HFilter16; 1241 VP8HFilter16 = HFilter16;
966 VP8VFilter8 = VFilter8; 1242 VP8VFilter8 = VFilter8;
967 VP8HFilter8 = HFilter8; 1243 VP8HFilter8 = HFilter8;
968 VP8VFilter16i = VFilter16i; 1244 VP8VFilter16i = VFilter16i;
969 VP8HFilter16i = HFilter16i; 1245 VP8HFilter16i = HFilter16i;
970 VP8VFilter8i = VFilter8i; 1246 VP8VFilter8i = VFilter8i;
971 VP8HFilter8i = HFilter8i; 1247 VP8HFilter8i = HFilter8i;
972 1248
973 VP8SimpleVFilter16 = SimpleVFilter16; 1249 VP8SimpleVFilter16 = SimpleVFilter16;
974 VP8SimpleHFilter16 = SimpleHFilter16; 1250 VP8SimpleHFilter16 = SimpleHFilter16;
975 VP8SimpleVFilter16i = SimpleVFilter16i; 1251 VP8SimpleVFilter16i = SimpleVFilter16i;
976 VP8SimpleHFilter16i = SimpleHFilter16i; 1252 VP8SimpleHFilter16i = SimpleHFilter16i;
977 #endif // WEBP_USE_SSE2 1253
1254 VP8PredLuma4[1] = TM4;
1255 VP8PredLuma4[2] = VE4;
1256 VP8PredLuma4[4] = RD4;
1257 VP8PredLuma4[5] = VR4;
1258 VP8PredLuma4[6] = LD4;
1259 VP8PredLuma4[7] = VL4;
1260
1261 VP8PredLuma16[0] = DC16;
1262 VP8PredLuma16[1] = TM16;
1263 VP8PredLuma16[2] = VE16;
1264 VP8PredLuma16[3] = HE16;
1265 VP8PredLuma16[4] = DC16NoTop;
1266 VP8PredLuma16[5] = DC16NoLeft;
1267 VP8PredLuma16[6] = DC16NoTopLeft;
1268
1269 VP8PredChroma8[0] = DC8uv;
1270 VP8PredChroma8[1] = TM8uv;
1271 VP8PredChroma8[2] = VE8uv;
1272 VP8PredChroma8[3] = HE8uv;
1273 VP8PredChroma8[4] = DC8uvNoTop;
1274 VP8PredChroma8[5] = DC8uvNoLeft;
1275 VP8PredChroma8[6] = DC8uvNoTopLeft;
978 } 1276 }
1277
1278 #else // !WEBP_USE_SSE2
1279
1280 WEBP_DSP_INIT_STUB(VP8DspInitSSE2)
1281
1282 #endif // WEBP_USE_SSE2
OLDNEW
« no previous file with comments | « third_party/libwebp/dsp/dec_neon.c ('k') | third_party/libwebp/dsp/dec_sse41.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698