Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(411)

Side by Side Diff: third_party/libwebp/enc/histogram.c

Issue 1546003002: libwebp: update to 0.5.0 (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: rebase around clang-cl fix Created 4 years, 12 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 // Copyright 2012 Google Inc. All Rights Reserved. 1 // Copyright 2012 Google Inc. All Rights Reserved.
2 // 2 //
3 // Use of this source code is governed by a BSD-style license 3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source 4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found 5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may 6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree. 7 // be found in the AUTHORS file in the root of the source tree.
8 // ----------------------------------------------------------------------------- 8 // -----------------------------------------------------------------------------
9 // 9 //
10 // Author: Jyrki Alakuijala (jyrki@google.com) 10 // Author: Jyrki Alakuijala (jyrki@google.com)
11 // 11 //
12 #ifdef HAVE_CONFIG_H 12 #ifdef HAVE_CONFIG_H
13 #include "../webp/config.h" 13 #include "../webp/config.h"
14 #endif 14 #endif
15 15
16 #include <math.h> 16 #include <math.h>
17 17
18 #include "./backward_references.h" 18 #include "./backward_references.h"
19 #include "./histogram.h" 19 #include "./histogram.h"
20 #include "../dsp/lossless.h" 20 #include "../dsp/lossless.h"
21 #include "../utils/utils.h" 21 #include "../utils/utils.h"
22 22
23 #define ALIGN_CST 15
24 #define DO_ALIGN(PTR) ((uintptr_t)((PTR) + ALIGN_CST) & ~ALIGN_CST)
25
26 #define MAX_COST 1.e38 23 #define MAX_COST 1.e38
27 24
28 // Number of partitions for the three dominant (literal, red and blue) symbol 25 // Number of partitions for the three dominant (literal, red and blue) symbol
29 // costs. 26 // costs.
30 #define NUM_PARTITIONS 4 27 #define NUM_PARTITIONS 4
31 // The size of the bin-hash corresponding to the three dominant costs. 28 // The size of the bin-hash corresponding to the three dominant costs.
32 #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS) 29 #define BIN_SIZE (NUM_PARTITIONS * NUM_PARTITIONS * NUM_PARTITIONS)
30 // Maximum number of histograms allowed in greedy combining algorithm.
31 #define MAX_HISTO_GREEDY 100
33 32
34 static void HistogramClear(VP8LHistogram* const p) { 33 static void HistogramClear(VP8LHistogram* const p) {
35 uint32_t* const literal = p->literal_; 34 uint32_t* const literal = p->literal_;
36 const int cache_bits = p->palette_code_bits_; 35 const int cache_bits = p->palette_code_bits_;
37 const int histo_size = VP8LGetHistogramSize(cache_bits); 36 const int histo_size = VP8LGetHistogramSize(cache_bits);
38 memset(p, 0, histo_size); 37 memset(p, 0, histo_size);
39 p->palette_code_bits_ = cache_bits; 38 p->palette_code_bits_ = cache_bits;
40 p->literal_ = literal; 39 p->literal_ = literal;
41 } 40 }
42 41
42 // Swap two histogram pointers.
43 static void HistogramSwap(VP8LHistogram** const A, VP8LHistogram** const B) {
44 VP8LHistogram* const tmp = *A;
45 *A = *B;
46 *B = tmp;
47 }
48
43 static void HistogramCopy(const VP8LHistogram* const src, 49 static void HistogramCopy(const VP8LHistogram* const src,
44 VP8LHistogram* const dst) { 50 VP8LHistogram* const dst) {
45 uint32_t* const dst_literal = dst->literal_; 51 uint32_t* const dst_literal = dst->literal_;
46 const int dst_cache_bits = dst->palette_code_bits_; 52 const int dst_cache_bits = dst->palette_code_bits_;
47 const int histo_size = VP8LGetHistogramSize(dst_cache_bits); 53 const int histo_size = VP8LGetHistogramSize(dst_cache_bits);
48 assert(src->palette_code_bits_ == dst_cache_bits); 54 assert(src->palette_code_bits_ == dst_cache_bits);
49 memcpy(dst, src, histo_size); 55 memcpy(dst, src, histo_size);
50 dst->literal_ = dst_literal; 56 dst->literal_ = dst_literal;
51 } 57 }
52 58
(...skipping 46 matching lines...) Expand 10 before | Expand all | Expand 10 after
99 histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); 105 histo->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
100 VP8LHistogramInit(histo, cache_bits); 106 VP8LHistogramInit(histo, cache_bits);
101 return histo; 107 return histo;
102 } 108 }
103 109
104 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) { 110 VP8LHistogramSet* VP8LAllocateHistogramSet(int size, int cache_bits) {
105 int i; 111 int i;
106 VP8LHistogramSet* set; 112 VP8LHistogramSet* set;
107 const int histo_size = VP8LGetHistogramSize(cache_bits); 113 const int histo_size = VP8LGetHistogramSize(cache_bits);
108 const size_t total_size = 114 const size_t total_size =
109 sizeof(*set) + size * (sizeof(*set->histograms) + histo_size + ALIGN_CST); 115 sizeof(*set) + size * (sizeof(*set->histograms) +
116 histo_size + WEBP_ALIGN_CST);
110 uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory)); 117 uint8_t* memory = (uint8_t*)WebPSafeMalloc(total_size, sizeof(*memory));
111 if (memory == NULL) return NULL; 118 if (memory == NULL) return NULL;
112 119
113 set = (VP8LHistogramSet*)memory; 120 set = (VP8LHistogramSet*)memory;
114 memory += sizeof(*set); 121 memory += sizeof(*set);
115 set->histograms = (VP8LHistogram**)memory; 122 set->histograms = (VP8LHistogram**)memory;
116 memory += size * sizeof(*set->histograms); 123 memory += size * sizeof(*set->histograms);
117 set->max_size = size; 124 set->max_size = size;
118 set->size = size; 125 set->size = size;
119 for (i = 0; i < size; ++i) { 126 for (i = 0; i < size; ++i) {
120 memory = (uint8_t*)DO_ALIGN(memory); 127 memory = (uint8_t*)WEBP_ALIGN(memory);
121 set->histograms[i] = (VP8LHistogram*)memory; 128 set->histograms[i] = (VP8LHistogram*)memory;
122 // literal_ won't necessary be aligned. 129 // literal_ won't necessary be aligned.
123 set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram)); 130 set->histograms[i]->literal_ = (uint32_t*)(memory + sizeof(VP8LHistogram));
124 VP8LHistogramInit(set->histograms[i], cache_bits); 131 VP8LHistogramInit(set->histograms[i], cache_bits);
125 memory += histo_size; 132 memory += histo_size;
126 } 133 }
127 return set; 134 return set;
128 } 135 }
129 136
130 // ----------------------------------------------------------------------------- 137 // -----------------------------------------------------------------------------
(...skipping 11 matching lines...) Expand all
142 ++histo->literal_[literal_ix]; 149 ++histo->literal_[literal_ix];
143 } else { 150 } else {
144 int code, extra_bits; 151 int code, extra_bits;
145 VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits); 152 VP8LPrefixEncodeBits(PixOrCopyLength(v), &code, &extra_bits);
146 ++histo->literal_[NUM_LITERAL_CODES + code]; 153 ++histo->literal_[NUM_LITERAL_CODES + code];
147 VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits); 154 VP8LPrefixEncodeBits(PixOrCopyDistance(v), &code, &extra_bits);
148 ++histo->distance_[code]; 155 ++histo->distance_[code];
149 } 156 }
150 } 157 }
151 158
152 static WEBP_INLINE double BitsEntropyRefine(int nonzeros, int sum, int max_val, 159 // -----------------------------------------------------------------------------
153 double retval) { 160 // Entropy-related functions.
161
162 static WEBP_INLINE double BitsEntropyRefine(const VP8LBitEntropy* entropy) {
154 double mix; 163 double mix;
155 if (nonzeros < 5) { 164 if (entropy->nonzeros < 5) {
156 if (nonzeros <= 1) { 165 if (entropy->nonzeros <= 1) {
157 return 0; 166 return 0;
158 } 167 }
159 // Two symbols, they will be 0 and 1 in a Huffman code. 168 // Two symbols, they will be 0 and 1 in a Huffman code.
160 // Let's mix in a bit of entropy to favor good clustering when 169 // Let's mix in a bit of entropy to favor good clustering when
161 // distributions of these are combined. 170 // distributions of these are combined.
162 if (nonzeros == 2) { 171 if (entropy->nonzeros == 2) {
163 return 0.99 * sum + 0.01 * retval; 172 return 0.99 * entropy->sum + 0.01 * entropy->entropy;
164 } 173 }
165 // No matter what the entropy says, we cannot be better than min_limit 174 // No matter what the entropy says, we cannot be better than min_limit
166 // with Huffman coding. I am mixing a bit of entropy into the 175 // with Huffman coding. I am mixing a bit of entropy into the
167 // min_limit since it produces much better (~0.5 %) compression results 176 // min_limit since it produces much better (~0.5 %) compression results
168 // perhaps because of better entropy clustering. 177 // perhaps because of better entropy clustering.
169 if (nonzeros == 3) { 178 if (entropy->nonzeros == 3) {
170 mix = 0.95; 179 mix = 0.95;
171 } else { 180 } else {
172 mix = 0.7; // nonzeros == 4. 181 mix = 0.7; // nonzeros == 4.
173 } 182 }
174 } else { 183 } else {
175 mix = 0.627; 184 mix = 0.627;
176 } 185 }
177 186
178 { 187 {
179 double min_limit = 2 * sum - max_val; 188 double min_limit = 2 * entropy->sum - entropy->max_val;
180 min_limit = mix * min_limit + (1.0 - mix) * retval; 189 min_limit = mix * min_limit + (1.0 - mix) * entropy->entropy;
181 return (retval < min_limit) ? min_limit : retval; 190 return (entropy->entropy < min_limit) ? min_limit : entropy->entropy;
182 } 191 }
183 } 192 }
184 193
185 static double BitsEntropy(const uint32_t* const array, int n) { 194 double VP8LBitsEntropy(const uint32_t* const array, int n,
186 double retval = 0.; 195 uint32_t* const trivial_symbol) {
187 uint32_t sum = 0; 196 VP8LBitEntropy entropy;
188 int nonzeros = 0; 197 VP8LBitsEntropyUnrefined(array, n, &entropy);
189 uint32_t max_val = 0; 198 if (trivial_symbol != NULL) {
190 int i; 199 *trivial_symbol =
191 for (i = 0; i < n; ++i) { 200 (entropy.nonzeros == 1) ? entropy.nonzero_code : VP8L_NON_TRIVIAL_SYM;
192 if (array[i] != 0) {
193 sum += array[i];
194 ++nonzeros;
195 retval -= VP8LFastSLog2(array[i]);
196 if (max_val < array[i]) {
197 max_val = array[i];
198 }
199 }
200 } 201 }
201 retval += VP8LFastSLog2(sum);
202 return BitsEntropyRefine(nonzeros, sum, max_val, retval);
203 }
204 202
205 static double BitsEntropyCombined(const uint32_t* const X, 203 return BitsEntropyRefine(&entropy);
206 const uint32_t* const Y, int n) {
207 double retval = 0.;
208 int sum = 0;
209 int nonzeros = 0;
210 int max_val = 0;
211 int i;
212 for (i = 0; i < n; ++i) {
213 const int xy = X[i] + Y[i];
214 if (xy != 0) {
215 sum += xy;
216 ++nonzeros;
217 retval -= VP8LFastSLog2(xy);
218 if (max_val < xy) {
219 max_val = xy;
220 }
221 }
222 }
223 retval += VP8LFastSLog2(sum);
224 return BitsEntropyRefine(nonzeros, sum, max_val, retval);
225 } 204 }
226 205
227 static double InitialHuffmanCost(void) { 206 static double InitialHuffmanCost(void) {
228 // Small bias because Huffman code length is typically not stored in 207 // Small bias because Huffman code length is typically not stored in
229 // full length. 208 // full length.
230 static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3; 209 static const int kHuffmanCodeOfHuffmanCodeSize = CODE_LENGTH_CODES * 3;
231 static const double kSmallBias = 9.1; 210 static const double kSmallBias = 9.1;
232 return kHuffmanCodeOfHuffmanCodeSize - kSmallBias; 211 return kHuffmanCodeOfHuffmanCodeSize - kSmallBias;
233 } 212 }
234 213
235 // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3) 214 // Finalize the Huffman cost based on streak numbers and length type (<3 or >=3)
236 static double FinalHuffmanCost(const VP8LStreaks* const stats) { 215 static double FinalHuffmanCost(const VP8LStreaks* const stats) {
237 double retval = InitialHuffmanCost(); 216 double retval = InitialHuffmanCost();
238 retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1]; 217 retval += stats->counts[0] * 1.5625 + 0.234375 * stats->streaks[0][1];
239 retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1]; 218 retval += stats->counts[1] * 2.578125 + 0.703125 * stats->streaks[1][1];
240 retval += 1.796875 * stats->streaks[0][0]; 219 retval += 1.796875 * stats->streaks[0][0];
241 retval += 3.28125 * stats->streaks[1][0]; 220 retval += 3.28125 * stats->streaks[1][0];
242 return retval; 221 return retval;
243 } 222 }
244 223
245 // Trampolines 224 // Get the symbol entropy for the distribution 'population'.
246 static double HuffmanCost(const uint32_t* const population, int length) { 225 // Set 'trivial_sym', if there's only one symbol present in the distribution.
247 const VP8LStreaks stats = VP8LHuffmanCostCount(population, length); 226 static double PopulationCost(const uint32_t* const population, int length,
248 return FinalHuffmanCost(&stats); 227 uint32_t* const trivial_sym) {
228 VP8LBitEntropy bit_entropy;
229 VP8LStreaks stats;
230 VP8LGetEntropyUnrefined(population, length, &bit_entropy, &stats);
231 if (trivial_sym != NULL) {
232 *trivial_sym = (bit_entropy.nonzeros == 1) ? bit_entropy.nonzero_code
233 : VP8L_NON_TRIVIAL_SYM;
234 }
235
236 return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
249 } 237 }
250 238
251 static double HuffmanCostCombined(const uint32_t* const X, 239 static WEBP_INLINE double GetCombinedEntropy(const uint32_t* const X,
252 const uint32_t* const Y, int length) { 240 const uint32_t* const Y,
253 const VP8LStreaks stats = VP8LHuffmanCostCombinedCount(X, Y, length); 241 int length) {
254 return FinalHuffmanCost(&stats); 242 VP8LBitEntropy bit_entropy;
255 } 243 VP8LStreaks stats;
244 VP8LGetCombinedEntropyUnrefined(X, Y, length, &bit_entropy, &stats);
256 245
257 // Aggregated costs 246 return BitsEntropyRefine(&bit_entropy) + FinalHuffmanCost(&stats);
258 static double PopulationCost(const uint32_t* const population, int length) {
259 return BitsEntropy(population, length) + HuffmanCost(population, length);
260 }
261
262 static double GetCombinedEntropy(const uint32_t* const X,
263 const uint32_t* const Y, int length) {
264 return BitsEntropyCombined(X, Y, length) + HuffmanCostCombined(X, Y, length);
265 } 247 }
266 248
267 // Estimates the Entropy + Huffman + other block overhead size cost. 249 // Estimates the Entropy + Huffman + other block overhead size cost.
268 double VP8LHistogramEstimateBits(const VP8LHistogram* const p) { 250 double VP8LHistogramEstimateBits(const VP8LHistogram* const p) {
269 return 251 return
270 PopulationCost(p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_)) 252 PopulationCost(
271 + PopulationCost(p->red_, NUM_LITERAL_CODES) 253 p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_), NULL)
272 + PopulationCost(p->blue_, NUM_LITERAL_CODES) 254 + PopulationCost(p->red_, NUM_LITERAL_CODES, NULL)
273 + PopulationCost(p->alpha_, NUM_LITERAL_CODES) 255 + PopulationCost(p->blue_, NUM_LITERAL_CODES, NULL)
274 + PopulationCost(p->distance_, NUM_DISTANCE_CODES) 256 + PopulationCost(p->alpha_, NUM_LITERAL_CODES, NULL)
257 + PopulationCost(p->distance_, NUM_DISTANCE_CODES, NULL)
275 + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES) 258 + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
276 + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES); 259 + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
277 } 260 }
278
279 double VP8LHistogramEstimateBitsBulk(const VP8LHistogram* const p) {
280 return
281 BitsEntropy(p->literal_, VP8LHistogramNumCodes(p->palette_code_bits_))
282 + BitsEntropy(p->red_, NUM_LITERAL_CODES)
283 + BitsEntropy(p->blue_, NUM_LITERAL_CODES)
284 + BitsEntropy(p->alpha_, NUM_LITERAL_CODES)
285 + BitsEntropy(p->distance_, NUM_DISTANCE_CODES)
286 + VP8LExtraCost(p->literal_ + NUM_LITERAL_CODES, NUM_LENGTH_CODES)
287 + VP8LExtraCost(p->distance_, NUM_DISTANCE_CODES);
288 }
289 261
290 // ----------------------------------------------------------------------------- 262 // -----------------------------------------------------------------------------
291 // Various histogram combine/cost-eval functions 263 // Various histogram combine/cost-eval functions
292 264
293 static int GetCombinedHistogramEntropy(const VP8LHistogram* const a, 265 static int GetCombinedHistogramEntropy(const VP8LHistogram* const a,
294 const VP8LHistogram* const b, 266 const VP8LHistogram* const b,
295 double cost_threshold, 267 double cost_threshold,
296 double* cost) { 268 double* cost) {
297 const int palette_code_bits = a->palette_code_bits_; 269 const int palette_code_bits = a->palette_code_bits_;
298 assert(a->palette_code_bits_ == b->palette_code_bits_); 270 assert(a->palette_code_bits_ == b->palette_code_bits_);
299 *cost += GetCombinedEntropy(a->literal_, b->literal_, 271 *cost += GetCombinedEntropy(a->literal_, b->literal_,
300 VP8LHistogramNumCodes(palette_code_bits)); 272 VP8LHistogramNumCodes(palette_code_bits));
301 *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES, 273 *cost += VP8LExtraCostCombined(a->literal_ + NUM_LITERAL_CODES,
302 b->literal_ + NUM_LITERAL_CODES, 274 b->literal_ + NUM_LITERAL_CODES,
303 NUM_LENGTH_CODES); 275 NUM_LENGTH_CODES);
304 if (*cost > cost_threshold) return 0; 276 if (*cost > cost_threshold) return 0;
305 277
306 *cost += GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES); 278 *cost += GetCombinedEntropy(a->red_, b->red_, NUM_LITERAL_CODES);
307 if (*cost > cost_threshold) return 0; 279 if (*cost > cost_threshold) return 0;
308 280
309 *cost += GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES); 281 *cost += GetCombinedEntropy(a->blue_, b->blue_, NUM_LITERAL_CODES);
310 if (*cost > cost_threshold) return 0; 282 if (*cost > cost_threshold) return 0;
311 283
312 *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES); 284 *cost += GetCombinedEntropy(a->alpha_, b->alpha_, NUM_LITERAL_CODES);
313 if (*cost > cost_threshold) return 0; 285 if (*cost > cost_threshold) return 0;
314 286
315 *cost += GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES); 287 *cost += GetCombinedEntropy(a->distance_, b->distance_, NUM_DISTANCE_CODES);
316 *cost += VP8LExtraCostCombined(a->distance_, b->distance_, 288 *cost +=
317 NUM_DISTANCE_CODES); 289 VP8LExtraCostCombined(a->distance_, b->distance_, NUM_DISTANCE_CODES);
318 if (*cost > cost_threshold) return 0; 290 if (*cost > cost_threshold) return 0;
319 291
320 return 1; 292 return 1;
321 } 293 }
322 294
323 // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing 295 // Performs out = a + b, computing the cost C(a+b) - C(a) - C(b) while comparing
324 // to the threshold value 'cost_threshold'. The score returned is 296 // to the threshold value 'cost_threshold'. The score returned is
325 // Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed. 297 // Score = C(a+b) - C(a) - C(b), where C(a) + C(b) is known and fixed.
326 // Since the previous score passed is 'cost_threshold', we only need to compare 298 // Since the previous score passed is 'cost_threshold', we only need to compare
327 // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out 299 // the partial cost against 'cost_threshold + C(a) + C(b)' to possibly bail-out
328 // early. 300 // early.
329 static double HistogramAddEval(const VP8LHistogram* const a, 301 static double HistogramAddEval(const VP8LHistogram* const a,
330 const VP8LHistogram* const b, 302 const VP8LHistogram* const b,
331 VP8LHistogram* const out, 303 VP8LHistogram* const out,
332 double cost_threshold) { 304 double cost_threshold) {
333 double cost = 0; 305 double cost = 0;
334 const double sum_cost = a->bit_cost_ + b->bit_cost_; 306 const double sum_cost = a->bit_cost_ + b->bit_cost_;
335 cost_threshold += sum_cost; 307 cost_threshold += sum_cost;
336 308
337 if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) { 309 if (GetCombinedHistogramEntropy(a, b, cost_threshold, &cost)) {
338 VP8LHistogramAdd(a, b, out); 310 VP8LHistogramAdd(a, b, out);
339 out->bit_cost_ = cost; 311 out->bit_cost_ = cost;
340 out->palette_code_bits_ = a->palette_code_bits_; 312 out->palette_code_bits_ = a->palette_code_bits_;
313 out->trivial_symbol_ = (a->trivial_symbol_ == b->trivial_symbol_) ?
314 a->trivial_symbol_ : VP8L_NON_TRIVIAL_SYM;
341 } 315 }
342 316
343 return cost - sum_cost; 317 return cost - sum_cost;
344 } 318 }
345 319
346 // Same as HistogramAddEval(), except that the resulting histogram 320 // Same as HistogramAddEval(), except that the resulting histogram
347 // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit 321 // is not stored. Only the cost C(a+b) - C(a) is evaluated. We omit
348 // the term C(b) which is constant over all the evaluations. 322 // the term C(b) which is constant over all the evaluations.
349 static double HistogramAddThresh(const VP8LHistogram* const a, 323 static double HistogramAddThresh(const VP8LHistogram* const a,
350 const VP8LHistogram* const b, 324 const VP8LHistogram* const b,
(...skipping 31 matching lines...) Expand 10 before | Expand all | Expand 10 after
382 const VP8LHistogram* const h, DominantCostRange* const c) { 356 const VP8LHistogram* const h, DominantCostRange* const c) {
383 if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_; 357 if (c->literal_max_ < h->literal_cost_) c->literal_max_ = h->literal_cost_;
384 if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_; 358 if (c->literal_min_ > h->literal_cost_) c->literal_min_ = h->literal_cost_;
385 if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_; 359 if (c->red_max_ < h->red_cost_) c->red_max_ = h->red_cost_;
386 if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_; 360 if (c->red_min_ > h->red_cost_) c->red_min_ = h->red_cost_;
387 if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_; 361 if (c->blue_max_ < h->blue_cost_) c->blue_max_ = h->blue_cost_;
388 if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_; 362 if (c->blue_min_ > h->blue_cost_) c->blue_min_ = h->blue_cost_;
389 } 363 }
390 364
391 static void UpdateHistogramCost(VP8LHistogram* const h) { 365 static void UpdateHistogramCost(VP8LHistogram* const h) {
392 const double alpha_cost = PopulationCost(h->alpha_, NUM_LITERAL_CODES); 366 uint32_t alpha_sym, red_sym, blue_sym;
367 const double alpha_cost =
368 PopulationCost(h->alpha_, NUM_LITERAL_CODES, &alpha_sym);
393 const double distance_cost = 369 const double distance_cost =
394 PopulationCost(h->distance_, NUM_DISTANCE_CODES) + 370 PopulationCost(h->distance_, NUM_DISTANCE_CODES, NULL) +
395 VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES); 371 VP8LExtraCost(h->distance_, NUM_DISTANCE_CODES);
396 const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_); 372 const int num_codes = VP8LHistogramNumCodes(h->palette_code_bits_);
397 h->literal_cost_ = PopulationCost(h->literal_, num_codes) + 373 h->literal_cost_ = PopulationCost(h->literal_, num_codes, NULL) +
398 VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES, 374 VP8LExtraCost(h->literal_ + NUM_LITERAL_CODES,
399 NUM_LENGTH_CODES); 375 NUM_LENGTH_CODES);
400 h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES); 376 h->red_cost_ = PopulationCost(h->red_, NUM_LITERAL_CODES, &red_sym);
401 h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES); 377 h->blue_cost_ = PopulationCost(h->blue_, NUM_LITERAL_CODES, &blue_sym);
402 h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ + 378 h->bit_cost_ = h->literal_cost_ + h->red_cost_ + h->blue_cost_ +
403 alpha_cost + distance_cost; 379 alpha_cost + distance_cost;
380 if ((alpha_sym | red_sym | blue_sym) == VP8L_NON_TRIVIAL_SYM) {
381 h->trivial_symbol_ = VP8L_NON_TRIVIAL_SYM;
382 } else {
383 h->trivial_symbol_ =
384 ((uint32_t)alpha_sym << 24) | (red_sym << 16) | (blue_sym << 0);
385 }
404 } 386 }
405 387
406 static int GetBinIdForEntropy(double min, double max, double val) { 388 static int GetBinIdForEntropy(double min, double max, double val) {
407 const double range = max - min + 1e-6; 389 const double range = max - min + 1e-6;
408 const double delta = val - min; 390 const double delta = val - min;
409 return (int)(NUM_PARTITIONS * delta / range); 391 return (int)(NUM_PARTITIONS * delta / range);
410 } 392 }
411 393
412 // TODO(vikasa): Evaluate, if there's any correlation between red & blue. 394 static int GetHistoBinIndexLowEffort(
395 const VP8LHistogram* const h, const DominantCostRange* const c) {
396 const int bin_id = GetBinIdForEntropy(c->literal_min_, c->literal_max_,
397 h->literal_cost_);
398 assert(bin_id < NUM_PARTITIONS);
399 return bin_id;
400 }
401
413 static int GetHistoBinIndex( 402 static int GetHistoBinIndex(
414 const VP8LHistogram* const h, const DominantCostRange* const c) { 403 const VP8LHistogram* const h, const DominantCostRange* const c) {
415 const int bin_id = 404 const int bin_id =
416 GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_) + 405 GetBinIdForEntropy(c->blue_min_, c->blue_max_, h->blue_cost_) +
417 NUM_PARTITIONS * GetBinIdForEntropy(c->red_min_, c->red_max_, 406 NUM_PARTITIONS * GetBinIdForEntropy(c->red_min_, c->red_max_,
418 h->red_cost_) + 407 h->red_cost_) +
419 NUM_PARTITIONS * NUM_PARTITIONS * GetBinIdForEntropy(c->literal_min_, 408 NUM_PARTITIONS * NUM_PARTITIONS * GetBinIdForEntropy(c->literal_min_,
420 c->literal_max_, 409 c->literal_max_,
421 h->literal_cost_); 410 h->literal_cost_);
422 assert(bin_id < BIN_SIZE); 411 assert(bin_id < BIN_SIZE);
423 return bin_id; 412 return bin_id;
424 } 413 }
425 414
426 // Construct the histograms from backward references. 415 // Construct the histograms from backward references.
427 static void HistogramBuild( 416 static void HistogramBuild(
428 int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs, 417 int xsize, int histo_bits, const VP8LBackwardRefs* const backward_refs,
429 VP8LHistogramSet* const image_histo) { 418 VP8LHistogramSet* const image_histo) {
430 int x = 0, y = 0; 419 int x = 0, y = 0;
431 const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits); 420 const int histo_xsize = VP8LSubSampleSize(xsize, histo_bits);
432 VP8LHistogram** const histograms = image_histo->histograms; 421 VP8LHistogram** const histograms = image_histo->histograms;
433 VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs); 422 VP8LRefsCursor c = VP8LRefsCursorInit(backward_refs);
434 assert(histo_bits > 0); 423 assert(histo_bits > 0);
435 // Construct the Histo from a given backward references.
436 while (VP8LRefsCursorOk(&c)) { 424 while (VP8LRefsCursorOk(&c)) {
437 const PixOrCopy* const v = c.cur_pos; 425 const PixOrCopy* const v = c.cur_pos;
438 const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits); 426 const int ix = (y >> histo_bits) * histo_xsize + (x >> histo_bits);
439 VP8LHistogramAddSinglePixOrCopy(histograms[ix], v); 427 VP8LHistogramAddSinglePixOrCopy(histograms[ix], v);
440 x += PixOrCopyLength(v); 428 x += PixOrCopyLength(v);
441 while (x >= xsize) { 429 while (x >= xsize) {
442 x -= xsize; 430 x -= xsize;
443 ++y; 431 ++y;
444 } 432 }
445 VP8LRefsCursorNext(&c); 433 VP8LRefsCursorNext(&c);
(...skipping 10 matching lines...) Expand all
456 for (i = 0; i < histo_size; ++i) { 444 for (i = 0; i < histo_size; ++i) {
457 VP8LHistogram* const histo = orig_histograms[i]; 445 VP8LHistogram* const histo = orig_histograms[i];
458 UpdateHistogramCost(histo); 446 UpdateHistogramCost(histo);
459 // Copy histograms from orig_histo[] to image_histo[]. 447 // Copy histograms from orig_histo[] to image_histo[].
460 HistogramCopy(histo, histograms[i]); 448 HistogramCopy(histo, histograms[i]);
461 } 449 }
462 } 450 }
463 451
464 // Partition histograms to different entropy bins for three dominant (literal, 452 // Partition histograms to different entropy bins for three dominant (literal,
465 // red and blue) symbol costs and compute the histogram aggregate bit_cost. 453 // red and blue) symbol costs and compute the histogram aggregate bit_cost.
466 static void HistogramAnalyzeEntropyBin( 454 static void HistogramAnalyzeEntropyBin(VP8LHistogramSet* const image_histo,
467 VP8LHistogramSet* const image_histo, int16_t* const bin_map) { 455 int16_t* const bin_map, int low_effort) {
468 int i; 456 int i;
469 VP8LHistogram** const histograms = image_histo->histograms; 457 VP8LHistogram** const histograms = image_histo->histograms;
470 const int histo_size = image_histo->size; 458 const int histo_size = image_histo->size;
471 const int bin_depth = histo_size + 1; 459 const int bin_depth = histo_size + 1;
472 DominantCostRange cost_range; 460 DominantCostRange cost_range;
473 DominantCostRangeInit(&cost_range); 461 DominantCostRangeInit(&cost_range);
474 462
475 // Analyze the dominant (literal, red and blue) entropy costs. 463 // Analyze the dominant (literal, red and blue) entropy costs.
476 for (i = 0; i < histo_size; ++i) { 464 for (i = 0; i < histo_size; ++i) {
477 VP8LHistogram* const histo = histograms[i]; 465 VP8LHistogram* const histo = histograms[i];
478 UpdateDominantCostRange(histo, &cost_range); 466 UpdateDominantCostRange(histo, &cost_range);
479 } 467 }
480 468
481 // bin-hash histograms on three of the dominant (literal, red and blue) 469 // bin-hash histograms on three of the dominant (literal, red and blue)
482 // symbol costs. 470 // symbol costs.
483 for (i = 0; i < histo_size; ++i) { 471 for (i = 0; i < histo_size; ++i) {
484 int num_histos; 472 int num_histos;
485 VP8LHistogram* const histo = histograms[i]; 473 VP8LHistogram* const histo = histograms[i];
486 const int16_t bin_id = (int16_t)GetHistoBinIndex(histo, &cost_range); 474 const int16_t bin_id = low_effort ?
475 (int16_t)GetHistoBinIndexLowEffort(histo, &cost_range) :
476 (int16_t)GetHistoBinIndex(histo, &cost_range);
487 const int bin_offset = bin_id * bin_depth; 477 const int bin_offset = bin_id * bin_depth;
488 // bin_map[n][0] for every bin 'n' maintains the counter for the number of 478 // bin_map[n][0] for every bin 'n' maintains the counter for the number of
489 // histograms in that bin. 479 // histograms in that bin.
490 // Get and increment the num_histos in that bin. 480 // Get and increment the num_histos in that bin.
491 num_histos = ++bin_map[bin_offset]; 481 num_histos = ++bin_map[bin_offset];
492 assert(bin_offset + num_histos < bin_depth * BIN_SIZE); 482 assert(bin_offset + num_histos < bin_depth * BIN_SIZE);
493 // Add histogram i'th index at num_histos (last) position in the bin_map. 483 // Add histogram i'th index at num_histos (last) position in the bin_map.
494 bin_map[bin_offset + num_histos] = i; 484 bin_map[bin_offset + num_histos] = i;
495 } 485 }
496 } 486 }
497 487
498 // Compact the histogram set by moving the valid one left in the set to the 488 // Compact the histogram set by removing unused entries.
499 // head and moving the ones that have been merged to other histograms towards
500 // the end.
501 // TODO(vikasa): Evaluate if this method can be avoided by altering the code
502 // logic of HistogramCombineEntropyBin main loop.
503 static void HistogramCompactBins(VP8LHistogramSet* const image_histo) { 489 static void HistogramCompactBins(VP8LHistogramSet* const image_histo) {
504 int start = 0;
505 int end = image_histo->size - 1;
506 VP8LHistogram** const histograms = image_histo->histograms; 490 VP8LHistogram** const histograms = image_histo->histograms;
507 while (start < end) { 491 int i, j;
508 while (start <= end && histograms[start] != NULL && 492
509 histograms[start]->bit_cost_ != 0.) { 493 for (i = 0, j = 0; i < image_histo->size; ++i) {
510 ++start; 494 if (histograms[i] != NULL && histograms[i]->bit_cost_ != 0.) {
511 } 495 if (j < i) {
512 while (start <= end && histograms[end]->bit_cost_ == 0.) { 496 histograms[j] = histograms[i];
513 histograms[end] = NULL; 497 histograms[i] = NULL;
514 --end; 498 }
515 } 499 ++j;
516 if (start < end) {
517 assert(histograms[start] != NULL);
518 assert(histograms[end] != NULL);
519 HistogramCopy(histograms[end], histograms[start]);
520 histograms[end] = NULL;
521 --end;
522 } 500 }
523 } 501 }
524 image_histo->size = end + 1; 502 image_histo->size = j;
525 } 503 }
526 504
527 static void HistogramCombineEntropyBin(VP8LHistogramSet* const image_histo, 505 static VP8LHistogram* HistogramCombineEntropyBin(
528 VP8LHistogram* const histos, 506 VP8LHistogramSet* const image_histo,
529 int16_t* const bin_map, int bin_depth, 507 VP8LHistogram* cur_combo,
530 double combine_cost_factor) { 508 int16_t* const bin_map, int bin_depth, int num_bins,
509 double combine_cost_factor, int low_effort) {
531 int bin_id; 510 int bin_id;
532 VP8LHistogram* cur_combo = histos;
533 VP8LHistogram** const histograms = image_histo->histograms; 511 VP8LHistogram** const histograms = image_histo->histograms;
534 512
535 for (bin_id = 0; bin_id < BIN_SIZE; ++bin_id) { 513 for (bin_id = 0; bin_id < num_bins; ++bin_id) {
536 const int bin_offset = bin_id * bin_depth; 514 const int bin_offset = bin_id * bin_depth;
537 const int num_histos = bin_map[bin_offset]; 515 const int num_histos = bin_map[bin_offset];
538 const int idx1 = bin_map[bin_offset + 1]; 516 const int idx1 = bin_map[bin_offset + 1];
517 int num_combine_failures = 0;
539 int n; 518 int n;
540 for (n = 2; n <= num_histos; ++n) { 519 for (n = 2; n <= num_histos; ++n) {
541 const int idx2 = bin_map[bin_offset + n]; 520 const int idx2 = bin_map[bin_offset + n];
542 const double bit_cost_idx2 = histograms[idx2]->bit_cost_; 521 if (low_effort) {
543 if (bit_cost_idx2 > 0.) { 522 // Merge all histograms with the same bin index, irrespective of cost of
544 const double bit_cost_thresh = -bit_cost_idx2 * combine_cost_factor; 523 // the merged histograms.
545 const double curr_cost_diff = 524 VP8LHistogramAdd(histograms[idx1], histograms[idx2], histograms[idx1]);
546 HistogramAddEval(histograms[idx1], histograms[idx2], 525 histograms[idx2]->bit_cost_ = 0.;
547 cur_combo, bit_cost_thresh); 526 } else {
548 if (curr_cost_diff < bit_cost_thresh) { 527 const double bit_cost_idx2 = histograms[idx2]->bit_cost_;
549 HistogramCopy(cur_combo, histograms[idx1]); 528 if (bit_cost_idx2 > 0.) {
550 histograms[idx2]->bit_cost_ = 0.; 529 const double bit_cost_thresh = -bit_cost_idx2 * combine_cost_factor;
530 const double curr_cost_diff =
531 HistogramAddEval(histograms[idx1], histograms[idx2],
532 cur_combo, bit_cost_thresh);
533 if (curr_cost_diff < bit_cost_thresh) {
534 // Try to merge two histograms only if the combo is a trivial one or
535 // the two candidate histograms are already non-trivial.
536 // For some images, 'try_combine' turns out to be false for a lot of
537 // histogram pairs. In that case, we fallback to combining
538 // histograms as usual to avoid increasing the header size.
539 const int try_combine =
540 (cur_combo->trivial_symbol_ != VP8L_NON_TRIVIAL_SYM) ||
541 ((histograms[idx1]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM) &&
542 (histograms[idx2]->trivial_symbol_ == VP8L_NON_TRIVIAL_SYM));
543 const int max_combine_failures = 32;
544 if (try_combine || (num_combine_failures >= max_combine_failures)) {
545 HistogramSwap(&cur_combo, &histograms[idx1]);
546 histograms[idx2]->bit_cost_ = 0.;
547 } else {
548 ++num_combine_failures;
549 }
550 }
551 } 551 }
552 } 552 }
553 } 553 }
554 if (low_effort) {
555 // Update the bit_cost for the merged histograms (per bin index).
556 UpdateHistogramCost(histograms[idx1]);
557 }
554 } 558 }
555 HistogramCompactBins(image_histo); 559 HistogramCompactBins(image_histo);
560 return cur_combo;
556 } 561 }
557 562
558 static uint32_t MyRand(uint32_t *seed) { 563 static uint32_t MyRand(uint32_t *seed) {
559 *seed *= 16807U; 564 *seed *= 16807U;
560 if (*seed == 0) { 565 if (*seed == 0) {
561 *seed = 1; 566 *seed = 1;
562 } 567 }
563 return *seed; 568 return *seed;
564 } 569 }
565 570
566 static void HistogramCombine(VP8LHistogramSet* const image_histo, 571 // -----------------------------------------------------------------------------
567 VP8LHistogramSet* const histos, int quality) { 572 // Histogram pairs priority queue
573
574 // Pair of histograms. Negative idx1 value means that pair is out-of-date.
575 typedef struct {
576 int idx1;
577 int idx2;
578 double cost_diff;
579 double cost_combo;
580 } HistogramPair;
581
582 typedef struct {
583 HistogramPair* queue;
584 int size;
585 int max_size;
586 } HistoQueue;
587
588 static int HistoQueueInit(HistoQueue* const histo_queue, const int max_index) {
589 histo_queue->size = 0;
590 // max_index^2 for the queue size is safe. If you look at
591 // HistogramCombineGreedy, and imagine that UpdateQueueFront always pushes
592 // data to the queue, you insert at most:
593 // - max_index*(max_index-1)/2 (the first two for loops)
594 // - max_index - 1 in the last for loop at the first iteration of the while
595 // loop, max_index - 2 at the second iteration ... therefore
596 // max_index*(max_index-1)/2 overall too
597 histo_queue->max_size = max_index * max_index;
598 // We allocate max_size + 1 because the last element at index "size" is
599 // used as temporary data (and it could be up to max_size).
600 histo_queue->queue = WebPSafeMalloc(histo_queue->max_size + 1,
601 sizeof(*histo_queue->queue));
602 return histo_queue->queue != NULL;
603 }
604
605 static void HistoQueueClear(HistoQueue* const histo_queue) {
606 assert(histo_queue != NULL);
607 WebPSafeFree(histo_queue->queue);
608 }
609
610 static void SwapHistogramPairs(HistogramPair *p1,
611 HistogramPair *p2) {
612 const HistogramPair tmp = *p1;
613 *p1 = *p2;
614 *p2 = tmp;
615 }
616
617 // Given a valid priority queue in range [0, queue_size) this function checks
618 // whether histo_queue[queue_size] should be accepted and swaps it with the
619 // front if it is smaller. Otherwise, it leaves it as is.
620 static void UpdateQueueFront(HistoQueue* const histo_queue) {
621 if (histo_queue->queue[histo_queue->size].cost_diff >= 0) return;
622
623 if (histo_queue->queue[histo_queue->size].cost_diff <
624 histo_queue->queue[0].cost_diff) {
625 SwapHistogramPairs(histo_queue->queue,
626 histo_queue->queue + histo_queue->size);
627 }
628 ++histo_queue->size;
629
630 // We cannot add more elements than the capacity.
631 // The allocation adds an extra element to the official capacity so that
632 // histo_queue->queue[histo_queue->max_size] is read/written within bound.
633 assert(histo_queue->size <= histo_queue->max_size);
634 }
635
636 // -----------------------------------------------------------------------------
637
638 static void PreparePair(VP8LHistogram** histograms, int idx1, int idx2,
639 HistogramPair* const pair,
640 VP8LHistogram* const histos) {
641 if (idx1 > idx2) {
642 const int tmp = idx2;
643 idx2 = idx1;
644 idx1 = tmp;
645 }
646 pair->idx1 = idx1;
647 pair->idx2 = idx2;
648 pair->cost_diff =
649 HistogramAddEval(histograms[idx1], histograms[idx2], histos, 0);
650 pair->cost_combo = histos->bit_cost_;
651 }
652
653 // Combines histograms by continuously choosing the one with the highest cost
654 // reduction.
655 static int HistogramCombineGreedy(VP8LHistogramSet* const image_histo,
656 VP8LHistogram* const histos) {
657 int ok = 0;
658 int image_histo_size = image_histo->size;
659 int i, j;
660 VP8LHistogram** const histograms = image_histo->histograms;
661 // Indexes of remaining histograms.
662 int* const clusters = WebPSafeMalloc(image_histo_size, sizeof(*clusters));
663 // Priority queue of histogram pairs.
664 HistoQueue histo_queue;
665
666 if (!HistoQueueInit(&histo_queue, image_histo_size) || clusters == NULL) {
667 goto End;
668 }
669
670 for (i = 0; i < image_histo_size; ++i) {
671 // Initialize clusters indexes.
672 clusters[i] = i;
673 for (j = i + 1; j < image_histo_size; ++j) {
674 // Initialize positions array.
675 PreparePair(histograms, i, j, &histo_queue.queue[histo_queue.size],
676 histos);
677 UpdateQueueFront(&histo_queue);
678 }
679 }
680
681 while (image_histo_size > 1 && histo_queue.size > 0) {
682 HistogramPair* copy_to;
683 const int idx1 = histo_queue.queue[0].idx1;
684 const int idx2 = histo_queue.queue[0].idx2;
685 VP8LHistogramAdd(histograms[idx2], histograms[idx1], histograms[idx1]);
686 histograms[idx1]->bit_cost_ = histo_queue.queue[0].cost_combo;
687 // Remove merged histogram.
688 for (i = 0; i + 1 < image_histo_size; ++i) {
689 if (clusters[i] >= idx2) {
690 clusters[i] = clusters[i + 1];
691 }
692 }
693 --image_histo_size;
694
695 // Remove pairs intersecting the just combined best pair. This will
696 // therefore pop the head of the queue.
697 copy_to = histo_queue.queue;
698 for (i = 0; i < histo_queue.size; ++i) {
699 HistogramPair* const p = histo_queue.queue + i;
700 if (p->idx1 == idx1 || p->idx2 == idx1 ||
701 p->idx1 == idx2 || p->idx2 == idx2) {
702 // Do not copy the invalid pair.
703 continue;
704 }
705 if (p->cost_diff < histo_queue.queue[0].cost_diff) {
706 // Replace the top of the queue if we found better.
707 SwapHistogramPairs(histo_queue.queue, p);
708 }
709 SwapHistogramPairs(copy_to, p);
710 ++copy_to;
711 }
712 histo_queue.size = (int)(copy_to - histo_queue.queue);
713
714 // Push new pairs formed with combined histogram to the queue.
715 for (i = 0; i < image_histo_size; ++i) {
716 if (clusters[i] != idx1) {
717 PreparePair(histograms, idx1, clusters[i],
718 &histo_queue.queue[histo_queue.size], histos);
719 UpdateQueueFront(&histo_queue);
720 }
721 }
722 }
723 // Move remaining histograms to the beginning of the array.
724 for (i = 0; i < image_histo_size; ++i) {
725 if (i != clusters[i]) { // swap the two histograms
726 HistogramSwap(&histograms[i], &histograms[clusters[i]]);
727 }
728 }
729
730 image_histo->size = image_histo_size;
731 ok = 1;
732
733 End:
734 WebPSafeFree(clusters);
735 HistoQueueClear(&histo_queue);
736 return ok;
737 }
738
739 static VP8LHistogram* HistogramCombineStochastic(
740 VP8LHistogramSet* const image_histo,
741 VP8LHistogram* tmp_histo,
742 VP8LHistogram* best_combo,
743 int quality, int min_cluster_size) {
568 int iter; 744 int iter;
569 uint32_t seed = 0; 745 uint32_t seed = 0;
570 int tries_with_no_success = 0; 746 int tries_with_no_success = 0;
571 int image_histo_size = image_histo->size; 747 int image_histo_size = image_histo->size;
572 const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8; 748 const int iter_mult = (quality < 25) ? 2 : 2 + (quality - 25) / 8;
573 const int outer_iters = image_histo_size * iter_mult; 749 const int outer_iters = image_histo_size * iter_mult;
574 const int num_pairs = image_histo_size / 2; 750 const int num_pairs = image_histo_size / 2;
575 const int num_tries_no_success = outer_iters / 2; 751 const int num_tries_no_success = outer_iters / 2;
576 const int min_cluster_size = 2;
577 VP8LHistogram** const histograms = image_histo->histograms; 752 VP8LHistogram** const histograms = image_histo->histograms;
578 VP8LHistogram* cur_combo = histos->histograms[0]; // trial histogram
579 VP8LHistogram* best_combo = histos->histograms[1]; // best histogram so far
580 753
581 // Collapse similar histograms in 'image_histo'. 754 // Collapse similar histograms in 'image_histo'.
755 ++min_cluster_size;
582 for (iter = 0; 756 for (iter = 0;
583 iter < outer_iters && image_histo_size >= min_cluster_size; 757 iter < outer_iters && image_histo_size >= min_cluster_size;
584 ++iter) { 758 ++iter) {
585 double best_cost_diff = 0.; 759 double best_cost_diff = 0.;
586 int best_idx1 = -1, best_idx2 = 1; 760 int best_idx1 = -1, best_idx2 = 1;
587 int j; 761 int j;
588 const int num_tries = 762 const int num_tries =
589 (num_pairs < image_histo_size) ? num_pairs : image_histo_size; 763 (num_pairs < image_histo_size) ? num_pairs : image_histo_size;
590 seed += iter; 764 seed += iter;
591 for (j = 0; j < num_tries; ++j) { 765 for (j = 0; j < num_tries; ++j) {
592 double curr_cost_diff; 766 double curr_cost_diff;
593 // Choose two histograms at random and try to combine them. 767 // Choose two histograms at random and try to combine them.
594 const uint32_t idx1 = MyRand(&seed) % image_histo_size; 768 const uint32_t idx1 = MyRand(&seed) % image_histo_size;
595 const uint32_t tmp = (j & 7) + 1; 769 const uint32_t tmp = (j & 7) + 1;
596 const uint32_t diff = 770 const uint32_t diff =
597 (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1); 771 (tmp < 3) ? tmp : MyRand(&seed) % (image_histo_size - 1);
598 const uint32_t idx2 = (idx1 + diff + 1) % image_histo_size; 772 const uint32_t idx2 = (idx1 + diff + 1) % image_histo_size;
599 if (idx1 == idx2) { 773 if (idx1 == idx2) {
600 continue; 774 continue;
601 } 775 }
602 776
603 // Calculate cost reduction on combining. 777 // Calculate cost reduction on combining.
604 curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2], 778 curr_cost_diff = HistogramAddEval(histograms[idx1], histograms[idx2],
605 cur_combo, best_cost_diff); 779 tmp_histo, best_cost_diff);
606 if (curr_cost_diff < best_cost_diff) { // found a better pair? 780 if (curr_cost_diff < best_cost_diff) { // found a better pair?
607 { // swap cur/best combo histograms 781 HistogramSwap(&best_combo, &tmp_histo);
608 VP8LHistogram* const tmp_histo = cur_combo;
609 cur_combo = best_combo;
610 best_combo = tmp_histo;
611 }
612 best_cost_diff = curr_cost_diff; 782 best_cost_diff = curr_cost_diff;
613 best_idx1 = idx1; 783 best_idx1 = idx1;
614 best_idx2 = idx2; 784 best_idx2 = idx2;
615 } 785 }
616 } 786 }
617 787
618 if (best_idx1 >= 0) { 788 if (best_idx1 >= 0) {
619 HistogramCopy(best_combo, histograms[best_idx1]); 789 HistogramSwap(&best_combo, &histograms[best_idx1]);
620 // swap best_idx2 slot with last one (which is now unused) 790 // swap best_idx2 slot with last one (which is now unused)
621 --image_histo_size; 791 --image_histo_size;
622 if (best_idx2 != image_histo_size) { 792 if (best_idx2 != image_histo_size) {
623 HistogramCopy(histograms[image_histo_size], histograms[best_idx2]); 793 HistogramSwap(&histograms[image_histo_size], &histograms[best_idx2]);
624 histograms[image_histo_size] = NULL; 794 histograms[image_histo_size] = NULL;
625 } 795 }
626 tries_with_no_success = 0; 796 tries_with_no_success = 0;
627 } 797 }
628 if (++tries_with_no_success >= num_tries_no_success) { 798 if (++tries_with_no_success >= num_tries_no_success) {
629 break; 799 break;
630 } 800 }
631 } 801 }
632 image_histo->size = image_histo_size; 802 image_histo->size = image_histo_size;
803 return best_combo;
633 } 804 }
634 805
635 // ----------------------------------------------------------------------------- 806 // -----------------------------------------------------------------------------
636 // Histogram refinement 807 // Histogram refinement
637 808
638 // Find the best 'out' histogram for each of the 'in' histograms. 809 // Find the best 'out' histogram for each of the 'in' histograms.
639 // Note: we assume that out[]->bit_cost_ is already up-to-date. 810 // Note: we assume that out[]->bit_cost_ is already up-to-date.
640 static void HistogramRemap(const VP8LHistogramSet* const orig_histo, 811 static void HistogramRemap(const VP8LHistogramSet* const orig_histo,
641 const VP8LHistogramSet* const image_histo, 812 const VP8LHistogramSet* const image_histo,
642 uint16_t* const symbols) { 813 uint16_t* const symbols) {
643 int i; 814 int i;
644 VP8LHistogram** const orig_histograms = orig_histo->histograms; 815 VP8LHistogram** const orig_histograms = orig_histo->histograms;
645 VP8LHistogram** const histograms = image_histo->histograms; 816 VP8LHistogram** const histograms = image_histo->histograms;
646 for (i = 0; i < orig_histo->size; ++i) { 817 const int orig_histo_size = orig_histo->size;
647 int best_out = 0; 818 const int image_histo_size = image_histo->size;
648 double best_bits = 819 if (image_histo_size > 1) {
649 HistogramAddThresh(histograms[0], orig_histograms[i], MAX_COST); 820 for (i = 0; i < orig_histo_size; ++i) {
650 int k; 821 int best_out = 0;
651 for (k = 1; k < image_histo->size; ++k) { 822 double best_bits =
652 const double cur_bits = 823 HistogramAddThresh(histograms[0], orig_histograms[i], MAX_COST);
653 HistogramAddThresh(histograms[k], orig_histograms[i], best_bits); 824 int k;
654 if (cur_bits < best_bits) { 825 for (k = 1; k < image_histo_size; ++k) {
655 best_bits = cur_bits; 826 const double cur_bits =
656 best_out = k; 827 HistogramAddThresh(histograms[k], orig_histograms[i], best_bits);
828 if (cur_bits < best_bits) {
829 best_bits = cur_bits;
830 best_out = k;
831 }
657 } 832 }
833 symbols[i] = best_out;
658 } 834 }
659 symbols[i] = best_out; 835 } else {
836 assert(image_histo_size == 1);
837 for (i = 0; i < orig_histo_size; ++i) {
838 symbols[i] = 0;
839 }
660 } 840 }
661 841
662 // Recompute each out based on raw and symbols. 842 // Recompute each out based on raw and symbols.
663 for (i = 0; i < image_histo->size; ++i) { 843 for (i = 0; i < image_histo_size; ++i) {
664 HistogramClear(histograms[i]); 844 HistogramClear(histograms[i]);
665 } 845 }
666 846
667 for (i = 0; i < orig_histo->size; ++i) { 847 for (i = 0; i < orig_histo_size; ++i) {
668 const int idx = symbols[i]; 848 const int idx = symbols[i];
669 VP8LHistogramAdd(orig_histograms[i], histograms[idx], histograms[idx]); 849 VP8LHistogramAdd(orig_histograms[i], histograms[idx], histograms[idx]);
670 } 850 }
671 } 851 }
672 852
673 static double GetCombineCostFactor(int histo_size, int quality) { 853 static double GetCombineCostFactor(int histo_size, int quality) {
674 double combine_cost_factor = 0.16; 854 double combine_cost_factor = 0.16;
675 if (histo_size > 256) combine_cost_factor /= 2.; 855 if (quality < 90) {
676 if (histo_size > 512) combine_cost_factor /= 2.; 856 if (histo_size > 256) combine_cost_factor /= 2.;
677 if (histo_size > 1024) combine_cost_factor /= 2.; 857 if (histo_size > 512) combine_cost_factor /= 2.;
678 if (quality <= 50) combine_cost_factor /= 2.; 858 if (histo_size > 1024) combine_cost_factor /= 2.;
859 if (quality <= 50) combine_cost_factor /= 2.;
860 }
679 return combine_cost_factor; 861 return combine_cost_factor;
680 } 862 }
681 863
682 int VP8LGetHistoImageSymbols(int xsize, int ysize, 864 int VP8LGetHistoImageSymbols(int xsize, int ysize,
683 const VP8LBackwardRefs* const refs, 865 const VP8LBackwardRefs* const refs,
684 int quality, int histo_bits, int cache_bits, 866 int quality, int low_effort,
867 int histo_bits, int cache_bits,
685 VP8LHistogramSet* const image_histo, 868 VP8LHistogramSet* const image_histo,
869 VP8LHistogramSet* const tmp_histos,
686 uint16_t* const histogram_symbols) { 870 uint16_t* const histogram_symbols) {
687 int ok = 0; 871 int ok = 0;
688 const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1; 872 const int histo_xsize = histo_bits ? VP8LSubSampleSize(xsize, histo_bits) : 1;
689 const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1; 873 const int histo_ysize = histo_bits ? VP8LSubSampleSize(ysize, histo_bits) : 1;
690 const int image_histo_raw_size = histo_xsize * histo_ysize; 874 const int image_histo_raw_size = histo_xsize * histo_ysize;
875 const int entropy_combine_num_bins = low_effort ? NUM_PARTITIONS : BIN_SIZE;
691 876
692 // The bin_map for every bin follows following semantics: 877 // The bin_map for every bin follows following semantics:
693 // bin_map[n][0] = num_histo; // The number of histograms in that bin. 878 // bin_map[n][0] = num_histo; // The number of histograms in that bin.
694 // bin_map[n][1] = index of first histogram in that bin; 879 // bin_map[n][1] = index of first histogram in that bin;
695 // bin_map[n][num_histo] = index of last histogram in that bin; 880 // bin_map[n][num_histo] = index of last histogram in that bin;
696 // bin_map[n][num_histo + 1] ... bin_map[n][bin_depth - 1] = un-used indices. 881 // bin_map[n][num_histo + 1] ... bin_map[n][bin_depth - 1] = unused indices.
697 const int bin_depth = image_histo_raw_size + 1; 882 const int bin_depth = image_histo_raw_size + 1;
698 int16_t* bin_map = NULL; 883 int16_t* bin_map = NULL;
699 VP8LHistogramSet* const histos = VP8LAllocateHistogramSet(2, cache_bits);
700 VP8LHistogramSet* const orig_histo = 884 VP8LHistogramSet* const orig_histo =
701 VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits); 885 VP8LAllocateHistogramSet(image_histo_raw_size, cache_bits);
886 VP8LHistogram* cur_combo;
887 const int entropy_combine =
888 (orig_histo->size > entropy_combine_num_bins * 2) && (quality < 100);
702 889
703 if (orig_histo == NULL || histos == NULL) { 890 if (orig_histo == NULL) goto Error;
704 goto Error;
705 }
706 891
707 // Don't attempt linear bin-partition heuristic for: 892 // Don't attempt linear bin-partition heuristic for:
708 // histograms of small sizes, as bin_map will be very sparse and; 893 // histograms of small sizes, as bin_map will be very sparse and;
709 // Higher qualities (> 90), to preserve the compression gains at those 894 // Maximum quality (q==100), to preserve the compression gains at that level.
710 // quality settings. 895 if (entropy_combine) {
711 if (orig_histo->size > 2 * BIN_SIZE && quality < 90) { 896 const int bin_map_size = bin_depth * entropy_combine_num_bins;
712 const int bin_map_size = bin_depth * BIN_SIZE;
713 bin_map = (int16_t*)WebPSafeCalloc(bin_map_size, sizeof(*bin_map)); 897 bin_map = (int16_t*)WebPSafeCalloc(bin_map_size, sizeof(*bin_map));
714 if (bin_map == NULL) goto Error; 898 if (bin_map == NULL) goto Error;
715 } 899 }
716 900
717 // Construct the histograms from backward references. 901 // Construct the histograms from backward references.
718 HistogramBuild(xsize, histo_bits, refs, orig_histo); 902 HistogramBuild(xsize, histo_bits, refs, orig_histo);
719 // Copies the histograms and computes its bit_cost. 903 // Copies the histograms and computes its bit_cost.
720 HistogramCopyAndAnalyze(orig_histo, image_histo); 904 HistogramCopyAndAnalyze(orig_histo, image_histo);
721 905
722 if (bin_map != NULL) { 906 cur_combo = tmp_histos->histograms[1]; // pick up working slot
907 if (entropy_combine) {
723 const double combine_cost_factor = 908 const double combine_cost_factor =
724 GetCombineCostFactor(image_histo_raw_size, quality); 909 GetCombineCostFactor(image_histo_raw_size, quality);
725 HistogramAnalyzeEntropyBin(orig_histo, bin_map); 910 HistogramAnalyzeEntropyBin(orig_histo, bin_map, low_effort);
726 // Collapse histograms with similar entropy. 911 // Collapse histograms with similar entropy.
727 HistogramCombineEntropyBin(image_histo, histos->histograms[0], 912 cur_combo = HistogramCombineEntropyBin(image_histo, cur_combo, bin_map,
728 bin_map, bin_depth, combine_cost_factor); 913 bin_depth, entropy_combine_num_bins,
914 combine_cost_factor, low_effort);
729 } 915 }
730 916
731 // Collapse similar histograms by random histogram-pair compares. 917 // Don't combine the histograms using stochastic and greedy heuristics for
732 HistogramCombine(image_histo, histos, quality); 918 // low-effort compression mode.
919 if (!low_effort || !entropy_combine) {
920 const float x = quality / 100.f;
921 // cubic ramp between 1 and MAX_HISTO_GREEDY:
922 const int threshold_size = (int)(1 + (x * x * x) * (MAX_HISTO_GREEDY - 1));
923 cur_combo = HistogramCombineStochastic(image_histo,
924 tmp_histos->histograms[0],
925 cur_combo, quality, threshold_size);
926 if ((image_histo->size <= threshold_size) &&
927 !HistogramCombineGreedy(image_histo, cur_combo)) {
928 goto Error;
929 }
930 }
733 931
932 // TODO(vikasa): Optimize HistogramRemap for low-effort compression mode also.
734 // Find the optimal map from original histograms to the final ones. 933 // Find the optimal map from original histograms to the final ones.
735 HistogramRemap(orig_histo, image_histo, histogram_symbols); 934 HistogramRemap(orig_histo, image_histo, histogram_symbols);
736 935
737 ok = 1; 936 ok = 1;
738 937
739 Error: 938 Error:
740 WebPSafeFree(bin_map); 939 WebPSafeFree(bin_map);
741 VP8LFreeHistogramSet(orig_histo); 940 VP8LFreeHistogramSet(orig_histo);
742 VP8LFreeHistogramSet(histos);
743 return ok; 941 return ok;
744 } 942 }
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698