| Index: third_party/base/nonstd_unique_ptr.h
|
| diff --git a/third_party/base/nonstd_unique_ptr.h b/third_party/base/nonstd_unique_ptr.h
|
| deleted file mode 100644
|
| index f056e5039735a509b2b5fe110fd4fd0b4721b1fd..0000000000000000000000000000000000000000
|
| --- a/third_party/base/nonstd_unique_ptr.h
|
| +++ /dev/null
|
| @@ -1,398 +0,0 @@
|
| -// Copyright 2013 Google Inc. All Rights Reserved.
|
| -//
|
| -// Redistribution and use in source and binary forms, with or without
|
| -// modification, are permitted provided that the following conditions are
|
| -// met:
|
| -//
|
| -// * Redistributions of source code must retain the above copyright
|
| -// notice, this list of conditions and the following disclaimer.
|
| -// * Redistributions in binary form must reproduce the above
|
| -// copyright notice, this list of conditions and the following disclaimer
|
| -// in the documentation and/or other materials provided with the
|
| -// distribution.
|
| -// * Neither the name of Google Inc. nor the names of its
|
| -// contributors may be used to endorse or promote products derived from
|
| -// this software without specific prior written permission.
|
| -//
|
| -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| -
|
| -// This is a copy of breakpad's standalone scoped_ptr, which has been
|
| -// renamed to nonstd::unique_ptr, and from which more complicated classes
|
| -// have been removed. The reset() method has also been tweaked to more
|
| -// closely match c++11, and an implicit conversion to bool has been added.
|
| -
|
| -// Scopers help you manage ownership of a pointer, helping you easily manage the
|
| -// a pointer within a scope, and automatically destroying the pointer at the
|
| -// end of a scope.
|
| -//
|
| -// A unique_ptr<T> is like a T*, except that the destructor of unique_ptr<T>
|
| -// automatically deletes the pointer it holds (if any).
|
| -// That is, unique_ptr<T> owns the T object that it points to.
|
| -// Like a T*, a unique_ptr<T> may hold either NULL or a pointer to a T object.
|
| -// Also like T*, unique_ptr<T> is thread-compatible, and once you
|
| -// dereference it, you get the thread safety guarantees of T.
|
| -//
|
| -// Example usage (unique_ptr):
|
| -// {
|
| -// unique_ptr<Foo> foo(new Foo("wee"));
|
| -// } // foo goes out of scope, releasing the pointer with it.
|
| -//
|
| -// {
|
| -// unique_ptr<Foo> foo; // No pointer managed.
|
| -// foo.reset(new Foo("wee")); // Now a pointer is managed.
|
| -// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
|
| -// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
|
| -// foo->Method(); // Foo::Method() called.
|
| -// foo.get()->Method(); // Foo::Method() called.
|
| -// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
|
| -// // manages a pointer.
|
| -// foo.reset(new Foo("wee4")); // foo manages a pointer again.
|
| -// foo.reset(); // Foo("wee4") destroyed, foo no longer
|
| -// // manages a pointer.
|
| -// } // foo wasn't managing a pointer, so nothing was destroyed.
|
| -//
|
| -// The size of a unique_ptr is small: sizeof(unique_ptr<C>) == sizeof(C*)
|
| -
|
| -#ifndef NONSTD_UNIQUE_PTR_H_
|
| -#define NONSTD_UNIQUE_PTR_H_
|
| -
|
| -// This is an implementation designed to match the anticipated future C++11
|
| -// implementation of the unique_ptr class.
|
| -
|
| -#include <assert.h>
|
| -#include <stddef.h>
|
| -#include <stdlib.h>
|
| -
|
| -#include <ostream>
|
| -#include <utility>
|
| -
|
| -#include "template_util.h"
|
| -
|
| -namespace nonstd {
|
| -
|
| -// Function object which deletes its parameter, which must be a pointer.
|
| -// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
|
| -// invokes 'delete'. The default deleter for unique_ptr<T>.
|
| -template <class T>
|
| -struct DefaultDeleter {
|
| - DefaultDeleter() {}
|
| - template <typename U>
|
| - DefaultDeleter(const DefaultDeleter<U>& other) {
|
| - // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
|
| - // if U* is implicitly convertible to T* and U is not an array type.
|
| - //
|
| - // Correct implementation should use SFINAE to disable this
|
| - // constructor. However, since there are no other 1-argument constructors,
|
| - // using a static_assert() based on is_convertible<> and requiring
|
| - // complete types is simpler and will cause compile failures for equivalent
|
| - // misuses.
|
| - //
|
| - // Note, the is_convertible<U*, T*> check also ensures that U is not an
|
| - // array. T is guaranteed to be a non-array, so any U* where U is an array
|
| - // cannot convert to T*.
|
| - enum { T_must_be_complete = sizeof(T) };
|
| - enum { U_must_be_complete = sizeof(U) };
|
| - static_assert((pdfium::base::is_convertible<U*, T*>::value),
|
| - "U_ptr_must_implicitly_convert_to_T_ptr");
|
| - }
|
| - inline void operator()(T* ptr) const {
|
| - enum { type_must_be_complete = sizeof(T) };
|
| - delete ptr;
|
| - }
|
| -};
|
| -
|
| -// Specialization of DefaultDeleter for array types.
|
| -template <class T>
|
| -struct DefaultDeleter<T[]> {
|
| - inline void operator()(T* ptr) const {
|
| - enum { type_must_be_complete = sizeof(T) };
|
| - delete[] ptr;
|
| - }
|
| -
|
| - private:
|
| - // Disable this operator for any U != T because it is undefined to execute
|
| - // an array delete when the static type of the array mismatches the dynamic
|
| - // type.
|
| - //
|
| - // References:
|
| - // C++98 [expr.delete]p3
|
| - // http://cplusplus.github.com/LWG/lwg-defects.html#938
|
| - template <typename U>
|
| - void operator()(U* array) const;
|
| -};
|
| -
|
| -template <class T, int n>
|
| -struct DefaultDeleter<T[n]> {
|
| - // Never allow someone to declare something like unique_ptr<int[10]>.
|
| - static_assert(sizeof(T) == -1, "do_not_use_array_with_size_as_type");
|
| -};
|
| -
|
| -namespace internal {
|
| -
|
| -// Common implementation for both pointers to elements and pointers to
|
| -// arrays. These are differentiated below based on the need to invoke
|
| -// delete vs. delete[] as appropriate.
|
| -template <class C, class D>
|
| -class unique_ptr_base {
|
| - public:
|
| - // The element type
|
| - typedef C element_type;
|
| -
|
| - explicit unique_ptr_base(C* p) : data_(p) {}
|
| -
|
| - // Initializer for deleters that have data parameters.
|
| - unique_ptr_base(C* p, const D& d) : data_(p, d) {}
|
| -
|
| - // Move constructor.
|
| - unique_ptr_base(unique_ptr_base<C, D>&& that)
|
| - : data_(that.release(), that.get_deleter()) {}
|
| -
|
| - ~unique_ptr_base() {
|
| - enum { type_must_be_complete = sizeof(C) };
|
| - if (data_.ptr != nullptr) {
|
| - // Not using get_deleter() saves one function call in non-optimized
|
| - // builds.
|
| - static_cast<D&>(data_)(data_.ptr);
|
| - }
|
| - }
|
| -
|
| - void reset(C* p = nullptr) {
|
| - C* old = data_.ptr;
|
| - data_.ptr = p;
|
| - if (old != nullptr)
|
| - static_cast<D&>(data_)(old);
|
| - }
|
| -
|
| - C* get() const { return data_.ptr; }
|
| - D& get_deleter() { return data_; }
|
| - const D& get_deleter() const { return data_; }
|
| -
|
| - // Comparison operators.
|
| - // These return whether two unique_ptr refer to the same object, not just to
|
| - // two different but equal objects.
|
| - bool operator==(C* p) const { return data_.ptr == p; }
|
| - bool operator!=(C* p) const { return data_.ptr != p; }
|
| -
|
| - // Swap two unique pointers.
|
| - void swap(unique_ptr_base& p2) {
|
| - Data tmp = data_;
|
| - data_ = p2.data_;
|
| - p2.data_ = tmp;
|
| - }
|
| -
|
| - // Release a pointer.
|
| - // The return value is the current pointer held by this object.
|
| - // If this object holds a NULL pointer, the return value is NULL.
|
| - // After this operation, this object will hold a NULL pointer,
|
| - // and will not own the object any more.
|
| - C* release() {
|
| - C* ptr = data_.ptr;
|
| - data_.ptr = nullptr;
|
| - return ptr;
|
| - }
|
| -
|
| - // Allow promotion to bool for conditional statements.
|
| - explicit operator bool() const { return data_.ptr != nullptr; }
|
| -
|
| - protected:
|
| - // Use the empty base class optimization to allow us to have a D
|
| - // member, while avoiding any space overhead for it when D is an
|
| - // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
|
| - // discussion of this technique.
|
| - struct Data : public D {
|
| - explicit Data(C* ptr_in) : ptr(ptr_in) {}
|
| - Data(C* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
|
| - C* ptr;
|
| - };
|
| -
|
| - Data data_;
|
| -};
|
| -
|
| -} // namespace internal
|
| -
|
| -// Implementation for ordinary pointers using delete.
|
| -template <class C, class D = DefaultDeleter<C>>
|
| -class unique_ptr : public internal::unique_ptr_base<C, D> {
|
| - public:
|
| - // Constructor. Defaults to initializing with nullptr.
|
| - unique_ptr() : internal::unique_ptr_base<C, D>(nullptr) {}
|
| -
|
| - // Constructor. Takes ownership of p.
|
| - explicit unique_ptr(C* p) : internal::unique_ptr_base<C, D>(p) {}
|
| -
|
| - // Constructor. Allows initialization of a stateful deleter.
|
| - unique_ptr(C* p, const D& d) : internal::unique_ptr_base<C, D>(p, d) {}
|
| -
|
| - // Constructor. Allows construction from a nullptr.
|
| - unique_ptr(decltype(nullptr)) : internal::unique_ptr_base<C, D>(nullptr) {}
|
| -
|
| - // Move constructor.
|
| - unique_ptr(unique_ptr&& that)
|
| - : internal::unique_ptr_base<C, D>(std::move(that)) {}
|
| -
|
| - // operator=. Allows assignment from a nullptr. Deletes the currently owned
|
| - // object, if any.
|
| - unique_ptr& operator=(decltype(nullptr)) {
|
| - this->reset();
|
| - return *this;
|
| - }
|
| -
|
| - // Move assignment.
|
| - unique_ptr<C>& operator=(unique_ptr<C>&& that) {
|
| - this->reset(that.release());
|
| - return *this;
|
| - }
|
| -
|
| - // Accessors to get the owned object.
|
| - // operator* and operator-> will assert() if there is no current object.
|
| - C& operator*() const {
|
| - assert(this->data_.ptr != nullptr);
|
| - return *this->data_.ptr;
|
| - }
|
| - C* operator->() const {
|
| - assert(this->data_.ptr != nullptr);
|
| - return this->data_.ptr;
|
| - }
|
| -
|
| - // Comparison operators.
|
| - // These return whether two unique_ptr refer to the same object, not just to
|
| - // two different but equal objects.
|
| - bool operator==(const C* p) const { return this->get() == p; }
|
| - bool operator!=(const C* p) const { return this->get() != p; }
|
| -
|
| - private:
|
| - // Disallow evil constructors. It doesn't make sense to make a copy of
|
| - // something that's allegedly unique.
|
| - unique_ptr(const unique_ptr&) = delete;
|
| - void operator=(const unique_ptr&) = delete;
|
| -
|
| - // Forbid comparison of unique_ptr types. If U != C, it totally
|
| - // doesn't make sense, and if U == C, it still doesn't make sense
|
| - // because you should never have the same object owned by two different
|
| - // unique_ptrs.
|
| - template <class U>
|
| - bool operator==(unique_ptr<U> const& p2) const;
|
| - template <class U>
|
| - bool operator!=(unique_ptr<U> const& p2) const;
|
| -};
|
| -
|
| -// Specialization for arrays using delete[].
|
| -template <class C, class D>
|
| -class unique_ptr<C[], D> : public internal::unique_ptr_base<C, D> {
|
| - public:
|
| - // Constructor. Defaults to initializing with nullptr.
|
| - unique_ptr() : internal::unique_ptr_base<C, D>(nullptr) {}
|
| -
|
| - // Constructor. Stores the given array. Note that the argument's type
|
| - // must exactly match T*. In particular:
|
| - // - it cannot be a pointer to a type derived from T, because it is
|
| - // inherently unsafe in the general case to access an array through a
|
| - // pointer whose dynamic type does not match its static type (eg., if
|
| - // T and the derived types had different sizes access would be
|
| - // incorrectly calculated). Deletion is also always undefined
|
| - // (C++98 [expr.delete]p3). If you're doing this, fix your code.
|
| - // - it cannot be const-qualified differently from T per unique_ptr spec
|
| - // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
|
| - // to work around this may use const_cast<const T*>().
|
| - explicit unique_ptr(C* p) : internal::unique_ptr_base<C, D>(p) {}
|
| -
|
| - // Constructor. Allows construction from a nullptr.
|
| - unique_ptr(decltype(nullptr)) : internal::unique_ptr_base<C, D>(nullptr) {}
|
| -
|
| - // Move constructor.
|
| - unique_ptr(unique_ptr&& that)
|
| - : internal::unique_ptr_base<C, D>(std::move(that)) {}
|
| -
|
| - // operator=. Allows assignment from a nullptr. Deletes the currently owned
|
| - // array, if any.
|
| - unique_ptr& operator=(decltype(nullptr)) {
|
| - this->reset();
|
| - return *this;
|
| - }
|
| -
|
| - // Move assignment.
|
| - unique_ptr<C>& operator=(unique_ptr<C>&& that) {
|
| - this->reset(that.release());
|
| - return *this;
|
| - }
|
| -
|
| - // Reset. Deletes the currently owned array, if any.
|
| - // Then takes ownership of a new object, if given.
|
| - void reset(C* array = nullptr) {
|
| - static_cast<internal::unique_ptr_base<C, D>*>(this)->reset(array);
|
| - }
|
| -
|
| - // Support indexing since it is holding array.
|
| - C& operator[](size_t i) { return this->data_.ptr[i]; }
|
| -
|
| - // Comparison operators.
|
| - // These return whether two unique_ptr refer to the same object, not just to
|
| - // two different but equal objects.
|
| - bool operator==(C* array) const { return this->get() == array; }
|
| - bool operator!=(C* array) const { return this->get() != array; }
|
| -
|
| - private:
|
| - // Disable initialization from any type other than element_type*, by
|
| - // providing a constructor that matches such an initialization, but is
|
| - // private and has no definition. This is disabled because it is not safe to
|
| - // call delete[] on an array whose static type does not match its dynamic
|
| - // type.
|
| - template <typename U>
|
| - explicit unique_ptr(U* array);
|
| - explicit unique_ptr(int disallow_construction_from_null);
|
| -
|
| - // Disable reset() from any type other than element_type*, for the same
|
| - // reasons as the constructor above.
|
| - template <typename U>
|
| - void reset(U* array);
|
| - void reset(int disallow_reset_from_null);
|
| -
|
| - // Disallow evil constructors. It doesn't make sense to make a copy of
|
| - // something that's allegedly unique.
|
| - unique_ptr(const unique_ptr&) = delete;
|
| - void operator=(const unique_ptr&) = delete;
|
| -
|
| - // Forbid comparison of unique_ptr types. If U != C, it totally
|
| - // doesn't make sense, and if U == C, it still doesn't make sense
|
| - // because you should never have the same object owned by two different
|
| - // unique_ptrs.
|
| - template <class U>
|
| - bool operator==(unique_ptr<U> const& p2) const;
|
| - template <class U>
|
| - bool operator!=(unique_ptr<U> const& p2) const;
|
| -};
|
| -
|
| -// Free functions
|
| -template <class C>
|
| -void swap(unique_ptr<C>& p1, unique_ptr<C>& p2) {
|
| - p1.swap(p2);
|
| -}
|
| -
|
| -template <class C>
|
| -bool operator==(C* p1, const unique_ptr<C>& p2) {
|
| - return p1 == p2.get();
|
| -}
|
| -
|
| -template <class C>
|
| -bool operator!=(C* p1, const unique_ptr<C>& p2) {
|
| - return p1 != p2.get();
|
| -}
|
| -
|
| -template <typename T>
|
| -std::ostream& operator<<(std::ostream& out, const unique_ptr<T>& p) {
|
| - return out << p.get();
|
| -}
|
| -
|
| -} // namespace nonstd
|
| -
|
| -#endif // NONSTD_UNIQUE_PTR_H_
|
|
|