Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(175)

Unified Diff: third_party/re2/re2/parse.cc

Issue 1544433002: Replace RE2 import with a dependency (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Re-Added LICENSE and OWNERS file Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « third_party/re2/re2/onepass.cc ('k') | third_party/re2/re2/perl_groups.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: third_party/re2/re2/parse.cc
diff --git a/third_party/re2/re2/parse.cc b/third_party/re2/re2/parse.cc
deleted file mode 100644
index cf74f5a1abbe8b64d13e2dd326dba7336c427e25..0000000000000000000000000000000000000000
--- a/third_party/re2/re2/parse.cc
+++ /dev/null
@@ -1,2270 +0,0 @@
-// Copyright 2006 The RE2 Authors. All Rights Reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Regular expression parser.
-
-// The parser is a simple precedence-based parser with a
-// manual stack. The parsing work is done by the methods
-// of the ParseState class. The Regexp::Parse function is
-// essentially just a lexer that calls the ParseState method
-// for each token.
-
-// The parser recognizes POSIX extended regular expressions
-// excluding backreferences, collating elements, and collating
-// classes. It also allows the empty string as a regular expression
-// and recognizes the Perl escape sequences \d, \s, \w, \D, \S, and \W.
-// See regexp.h for rationale.
-
-#include "util/util.h"
-#include "re2/regexp.h"
-#include "re2/stringpiece.h"
-#include "re2/unicode_casefold.h"
-#include "re2/unicode_groups.h"
-#include "re2/walker-inl.h"
-
-namespace re2 {
-
-// Regular expression parse state.
-// The list of parsed regexps so far is maintained as a vector of
-// Regexp pointers called the stack. Left parenthesis and vertical
-// bar markers are also placed on the stack, as Regexps with
-// non-standard opcodes.
-// Scanning a left parenthesis causes the parser to push a left parenthesis
-// marker on the stack.
-// Scanning a vertical bar causes the parser to pop the stack until it finds a
-// vertical bar or left parenthesis marker (not popping the marker),
-// concatenate all the popped results, and push them back on
-// the stack (DoConcatenation).
-// Scanning a right parenthesis causes the parser to act as though it
-// has seen a vertical bar, which then leaves the top of the stack in the
-// form LeftParen regexp VerticalBar regexp VerticalBar ... regexp VerticalBar.
-// The parser pops all this off the stack and creates an alternation of the
-// regexps (DoAlternation).
-
-class Regexp::ParseState {
- public:
- ParseState(ParseFlags flags, const StringPiece& whole_regexp,
- RegexpStatus* status);
- ~ParseState();
-
- ParseFlags flags() { return flags_; }
- int rune_max() { return rune_max_; }
-
- // Parse methods. All public methods return a bool saying
- // whether parsing should continue. If a method returns
- // false, it has set fields in *status_, and the parser
- // should return NULL.
-
- // Pushes the given regular expression onto the stack.
- // Could check for too much memory used here.
- bool PushRegexp(Regexp* re);
-
- // Pushes the literal rune r onto the stack.
- bool PushLiteral(Rune r);
-
- // Pushes a regexp with the given op (and no args) onto the stack.
- bool PushSimpleOp(RegexpOp op);
-
- // Pushes a ^ onto the stack.
- bool PushCarat();
-
- // Pushes a \b (word == true) or \B (word == false) onto the stack.
- bool PushWordBoundary(bool word);
-
- // Pushes a $ onto the stack.
- bool PushDollar();
-
- // Pushes a . onto the stack
- bool PushDot();
-
- // Pushes a repeat operator regexp onto the stack.
- // A valid argument for the operator must already be on the stack.
- // s is the name of the operator, for use in error messages.
- bool PushRepeatOp(RegexpOp op, const StringPiece& s, bool nongreedy);
-
- // Pushes a repetition regexp onto the stack.
- // A valid argument for the operator must already be on the stack.
- bool PushRepetition(int min, int max, const StringPiece& s, bool nongreedy);
-
- // Checks whether a particular regexp op is a marker.
- bool IsMarker(RegexpOp op);
-
- // Processes a left parenthesis in the input.
- // Pushes a marker onto the stack.
- bool DoLeftParen(const StringPiece& name);
- bool DoLeftParenNoCapture();
-
- // Processes a vertical bar in the input.
- bool DoVerticalBar();
-
- // Processes a right parenthesis in the input.
- bool DoRightParen();
-
- // Processes the end of input, returning the final regexp.
- Regexp* DoFinish();
-
- // Finishes the regexp if necessary, preparing it for use
- // in a more complicated expression.
- // If it is a CharClassBuilder, converts into a CharClass.
- Regexp* FinishRegexp(Regexp*);
-
- // These routines don't manipulate the parse stack
- // directly, but they do need to look at flags_.
- // ParseCharClass also manipulates the internals of Regexp
- // while creating *out_re.
-
- // Parse a character class into *out_re.
- // Removes parsed text from s.
- bool ParseCharClass(StringPiece* s, Regexp** out_re,
- RegexpStatus* status);
-
- // Parse a character class character into *rp.
- // Removes parsed text from s.
- bool ParseCCCharacter(StringPiece* s, Rune *rp,
- const StringPiece& whole_class,
- RegexpStatus* status);
-
- // Parse a character class range into rr.
- // Removes parsed text from s.
- bool ParseCCRange(StringPiece* s, RuneRange* rr,
- const StringPiece& whole_class,
- RegexpStatus* status);
-
- // Parse a Perl flag set or non-capturing group from s.
- bool ParsePerlFlags(StringPiece* s);
-
-
- // Finishes the current concatenation,
- // collapsing it into a single regexp on the stack.
- void DoConcatenation();
-
- // Finishes the current alternation,
- // collapsing it to a single regexp on the stack.
- void DoAlternation();
-
- // Generalized DoAlternation/DoConcatenation.
- void DoCollapse(RegexpOp op);
-
- // Maybe concatenate Literals into LiteralString.
- bool MaybeConcatString(int r, ParseFlags flags);
-
-private:
- ParseFlags flags_;
- StringPiece whole_regexp_;
- RegexpStatus* status_;
- Regexp* stacktop_;
- int ncap_; // number of capturing parens seen
- int rune_max_; // maximum char value for this encoding
-
- DISALLOW_COPY_AND_ASSIGN(ParseState);
-};
-
-// Pseudo-operators - only on parse stack.
-const RegexpOp kLeftParen = static_cast<RegexpOp>(kMaxRegexpOp+1);
-const RegexpOp kVerticalBar = static_cast<RegexpOp>(kMaxRegexpOp+2);
-
-Regexp::ParseState::ParseState(ParseFlags flags,
- const StringPiece& whole_regexp,
- RegexpStatus* status)
- : flags_(flags), whole_regexp_(whole_regexp),
- status_(status), stacktop_(NULL), ncap_(0) {
- if (flags_ & Latin1)
- rune_max_ = 0xFF;
- else
- rune_max_ = Runemax;
-}
-
-// Cleans up by freeing all the regexps on the stack.
-Regexp::ParseState::~ParseState() {
- Regexp* next;
- for (Regexp* re = stacktop_; re != NULL; re = next) {
- next = re->down_;
- re->down_ = NULL;
- if (re->op() == kLeftParen)
- delete re->name_;
- re->Decref();
- }
-}
-
-// Finishes the regexp if necessary, preparing it for use in
-// a more complex expression.
-// If it is a CharClassBuilder, converts into a CharClass.
-Regexp* Regexp::ParseState::FinishRegexp(Regexp* re) {
- if (re == NULL)
- return NULL;
- re->down_ = NULL;
-
- if (re->op_ == kRegexpCharClass && re->ccb_ != NULL) {
- CharClassBuilder* ccb = re->ccb_;
- re->ccb_ = NULL;
- re->cc_ = ccb->GetCharClass();
- delete ccb;
- }
-
- return re;
-}
-
-// Pushes the given regular expression onto the stack.
-// Could check for too much memory used here.
-bool Regexp::ParseState::PushRegexp(Regexp* re) {
- MaybeConcatString(-1, NoParseFlags);
-
- // Special case: a character class of one character is just
- // a literal. This is a common idiom for escaping
- // single characters (e.g., [.] instead of \.), and some
- // analysis does better with fewer character classes.
- // Similarly, [Aa] can be rewritten as a literal A with ASCII case folding.
- if (re->op_ == kRegexpCharClass && re->ccb_ != NULL) {
- re->ccb_->RemoveAbove(rune_max_);
- if (re->ccb_->size() == 1) {
- Rune r = re->ccb_->begin()->lo;
- re->Decref();
- re = new Regexp(kRegexpLiteral, flags_);
- re->rune_ = r;
- } else if (re->ccb_->size() == 2) {
- Rune r = re->ccb_->begin()->lo;
- if ('A' <= r && r <= 'Z' && re->ccb_->Contains(r + 'a' - 'A')) {
- re->Decref();
- re = new Regexp(kRegexpLiteral, flags_ | FoldCase);
- re->rune_ = r + 'a' - 'A';
- }
- }
- }
-
- if (!IsMarker(re->op()))
- re->simple_ = re->ComputeSimple();
- re->down_ = stacktop_;
- stacktop_ = re;
- return true;
-}
-
-// Searches the case folding tables and returns the CaseFold* that contains r.
-// If there isn't one, returns the CaseFold* with smallest f->lo bigger than r.
-// If there isn't one, returns NULL.
-const CaseFold* LookupCaseFold(const CaseFold *f, int n, Rune r) {
- const CaseFold* ef = f + n;
-
- // Binary search for entry containing r.
- while (n > 0) {
- int m = n/2;
- if (f[m].lo <= r && r <= f[m].hi)
- return &f[m];
- if (r < f[m].lo) {
- n = m;
- } else {
- f += m+1;
- n -= m+1;
- }
- }
-
- // There is no entry that contains r, but f points
- // where it would have been. Unless f points at
- // the end of the array, it points at the next entry
- // after r.
- if (f < ef)
- return f;
-
- // No entry contains r; no entry contains runes > r.
- return NULL;
-}
-
-// Returns the result of applying the fold f to the rune r.
-Rune ApplyFold(const CaseFold *f, Rune r) {
- switch (f->delta) {
- default:
- return r + f->delta;
-
- case EvenOddSkip: // even <-> odd but only applies to every other
- if ((r - f->lo) % 2)
- return r;
- // fall through
- case EvenOdd: // even <-> odd
- if (r%2 == 0)
- return r + 1;
- return r - 1;
-
- case OddEvenSkip: // odd <-> even but only applies to every other
- if ((r - f->lo) % 2)
- return r;
- // fall through
- case OddEven: // odd <-> even
- if (r%2 == 1)
- return r + 1;
- return r - 1;
- }
-}
-
-// Returns the next Rune in r's folding cycle (see unicode_casefold.h).
-// Examples:
-// CycleFoldRune('A') = 'a'
-// CycleFoldRune('a') = 'A'
-//
-// CycleFoldRune('K') = 'k'
-// CycleFoldRune('k') = 0x212A (Kelvin)
-// CycleFoldRune(0x212A) = 'K'
-//
-// CycleFoldRune('?') = '?'
-Rune CycleFoldRune(Rune r) {
- const CaseFold* f = LookupCaseFold(unicode_casefold, num_unicode_casefold, r);
- if (f == NULL || r < f->lo)
- return r;
- return ApplyFold(f, r);
-}
-
-// Add lo-hi to the class, along with their fold-equivalent characters.
-// If lo-hi is already in the class, assume that the fold-equivalent
-// chars are there too, so there's no work to do.
-static void AddFoldedRange(CharClassBuilder* cc, Rune lo, Rune hi, int depth) {
- // AddFoldedRange calls itself recursively for each rune in the fold cycle.
- // Most folding cycles are small: there aren't any bigger than four in the
- // current Unicode tables. make_unicode_casefold.py checks that
- // the cycles are not too long, and we double-check here using depth.
- if (depth > 10) {
- LOG(DFATAL) << "AddFoldedRange recurses too much.";
- return;
- }
-
- if (!cc->AddRange(lo, hi)) // lo-hi was already there? we're done
- return;
-
- while (lo <= hi) {
- const CaseFold* f = LookupCaseFold(unicode_casefold, num_unicode_casefold, lo);
- if (f == NULL) // lo has no fold, nor does anything above lo
- break;
- if (lo < f->lo) { // lo has no fold; next rune with a fold is f->lo
- lo = f->lo;
- continue;
- }
-
- // Add in the result of folding the range lo - f->hi
- // and that range's fold, recursively.
- Rune lo1 = lo;
- Rune hi1 = min<Rune>(hi, f->hi);
- switch (f->delta) {
- default:
- lo1 += f->delta;
- hi1 += f->delta;
- break;
- case EvenOdd:
- if (lo1%2 == 1)
- lo1--;
- if (hi1%2 == 0)
- hi1++;
- break;
- case OddEven:
- if (lo1%2 == 0)
- lo1--;
- if (hi1%2 == 1)
- hi1++;
- break;
- }
- AddFoldedRange(cc, lo1, hi1, depth+1);
-
- // Pick up where this fold left off.
- lo = f->hi + 1;
- }
-}
-
-// Pushes the literal rune r onto the stack.
-bool Regexp::ParseState::PushLiteral(Rune r) {
- // Do case folding if needed.
- if ((flags_ & FoldCase) && CycleFoldRune(r) != r) {
- Regexp* re = new Regexp(kRegexpCharClass, flags_ & ~FoldCase);
- re->ccb_ = new CharClassBuilder;
- Rune r1 = r;
- do {
- if (!(flags_ & NeverNL) || r != '\n') {
- re->ccb_->AddRange(r, r);
- }
- r = CycleFoldRune(r);
- } while (r != r1);
- return PushRegexp(re);
- }
-
- // Exclude newline if applicable.
- if ((flags_ & NeverNL) && r == '\n')
- return PushRegexp(new Regexp(kRegexpNoMatch, flags_));
-
- // No fancy stuff worked. Ordinary literal.
- if (MaybeConcatString(r, flags_))
- return true;
-
- Regexp* re = new Regexp(kRegexpLiteral, flags_);
- re->rune_ = r;
- return PushRegexp(re);
-}
-
-// Pushes a ^ onto the stack.
-bool Regexp::ParseState::PushCarat() {
- if (flags_ & OneLine) {
- return PushSimpleOp(kRegexpBeginText);
- }
- return PushSimpleOp(kRegexpBeginLine);
-}
-
-// Pushes a \b or \B onto the stack.
-bool Regexp::ParseState::PushWordBoundary(bool word) {
- if (word)
- return PushSimpleOp(kRegexpWordBoundary);
- return PushSimpleOp(kRegexpNoWordBoundary);
-}
-
-// Pushes a $ onto the stack.
-bool Regexp::ParseState::PushDollar() {
- if (flags_ & OneLine) {
- // Clumsy marker so that MimicsPCRE() can tell whether
- // this kRegexpEndText was a $ and not a \z.
- Regexp::ParseFlags oflags = flags_;
- flags_ = flags_ | WasDollar;
- bool ret = PushSimpleOp(kRegexpEndText);
- flags_ = oflags;
- return ret;
- }
- return PushSimpleOp(kRegexpEndLine);
-}
-
-// Pushes a . onto the stack.
-bool Regexp::ParseState::PushDot() {
- if ((flags_ & DotNL) && !(flags_ & NeverNL))
- return PushSimpleOp(kRegexpAnyChar);
- // Rewrite . into [^\n]
- Regexp* re = new Regexp(kRegexpCharClass, flags_ & ~FoldCase);
- re->ccb_ = new CharClassBuilder;
- re->ccb_->AddRange(0, '\n' - 1);
- re->ccb_->AddRange('\n' + 1, rune_max_);
- return PushRegexp(re);
-}
-
-// Pushes a regexp with the given op (and no args) onto the stack.
-bool Regexp::ParseState::PushSimpleOp(RegexpOp op) {
- Regexp* re = new Regexp(op, flags_);
- return PushRegexp(re);
-}
-
-// Pushes a repeat operator regexp onto the stack.
-// A valid argument for the operator must already be on the stack.
-// The char c is the name of the operator, for use in error messages.
-bool Regexp::ParseState::PushRepeatOp(RegexpOp op, const StringPiece& s,
- bool nongreedy) {
- if (stacktop_ == NULL || IsMarker(stacktop_->op())) {
- status_->set_code(kRegexpRepeatArgument);
- status_->set_error_arg(s);
- return false;
- }
- Regexp::ParseFlags fl = flags_;
- if (nongreedy)
- fl = fl ^ NonGreedy;
- Regexp* re = new Regexp(op, fl);
- re->AllocSub(1);
- re->down_ = stacktop_->down_;
- re->sub()[0] = FinishRegexp(stacktop_);
- re->simple_ = re->ComputeSimple();
- stacktop_ = re;
- return true;
-}
-
-// RepetitionWalker reports whether the repetition regexp is valid.
-// Valid means that the combination of the top-level repetition
-// and any inner repetitions does not exceed n copies of the
-// innermost thing.
-// This rewalks the regexp tree and is called for every repetition,
-// so we have to worry about inducing quadratic behavior in the parser.
-// We avoid this by only using RepetitionWalker when min or max >= 2.
-// In that case the depth of any >= 2 nesting can only get to 9 without
-// triggering a parse error, so each subtree can only be rewalked 9 times.
-class RepetitionWalker : public Regexp::Walker<int> {
- public:
- RepetitionWalker() {}
- virtual int PreVisit(Regexp* re, int parent_arg, bool* stop);
- virtual int PostVisit(Regexp* re, int parent_arg, int pre_arg,
- int* child_args, int nchild_args);
- virtual int ShortVisit(Regexp* re, int parent_arg);
-
- private:
- DISALLOW_COPY_AND_ASSIGN(RepetitionWalker);
-};
-
-int RepetitionWalker::PreVisit(Regexp* re, int parent_arg, bool* stop) {
- int arg = parent_arg;
- if (re->op() == kRegexpRepeat) {
- int m = re->max();
- if (m < 0) {
- m = re->min();
- }
- if (m > 0) {
- arg /= m;
- }
- }
- return arg;
-}
-
-int RepetitionWalker::PostVisit(Regexp* re, int parent_arg, int pre_arg,
- int* child_args, int nchild_args) {
- int arg = pre_arg;
- for (int i = 0; i < nchild_args; i++) {
- if (child_args[i] < arg) {
- arg = child_args[i];
- }
- }
- return arg;
-}
-
-int RepetitionWalker::ShortVisit(Regexp* re, int parent_arg) {
- // This should never be called, since we use Walk and not
- // WalkExponential.
- LOG(DFATAL) << "RepetitionWalker::ShortVisit called";
- return 0;
-}
-
-// Pushes a repetition regexp onto the stack.
-// A valid argument for the operator must already be on the stack.
-bool Regexp::ParseState::PushRepetition(int min, int max,
- const StringPiece& s,
- bool nongreedy) {
- if ((max != -1 && max < min) || min > 1000 || max > 1000) {
- status_->set_code(kRegexpRepeatSize);
- status_->set_error_arg(s);
- return false;
- }
- if (stacktop_ == NULL || IsMarker(stacktop_->op())) {
- status_->set_code(kRegexpRepeatArgument);
- status_->set_error_arg(s);
- return false;
- }
- Regexp::ParseFlags fl = flags_;
- if (nongreedy)
- fl = fl ^ NonGreedy;
- Regexp* re = new Regexp(kRegexpRepeat, fl);
- re->min_ = min;
- re->max_ = max;
- re->AllocSub(1);
- re->down_ = stacktop_->down_;
- re->sub()[0] = FinishRegexp(stacktop_);
- re->simple_ = re->ComputeSimple();
- stacktop_ = re;
- if (min >= 2 || max >= 2) {
- RepetitionWalker w;
- if (w.Walk(stacktop_, 1000) == 0) {
- status_->set_code(kRegexpRepeatSize);
- status_->set_error_arg(s);
- return false;
- }
- }
- return true;
-}
-
-// Checks whether a particular regexp op is a marker.
-bool Regexp::ParseState::IsMarker(RegexpOp op) {
- return op >= kLeftParen;
-}
-
-// Processes a left parenthesis in the input.
-// Pushes a marker onto the stack.
-bool Regexp::ParseState::DoLeftParen(const StringPiece& name) {
- Regexp* re = new Regexp(kLeftParen, flags_);
- re->cap_ = ++ncap_;
- if (name.data() != NULL)
- re->name_ = new string(name.as_string());
- return PushRegexp(re);
-}
-
-// Pushes a non-capturing marker onto the stack.
-bool Regexp::ParseState::DoLeftParenNoCapture() {
- Regexp* re = new Regexp(kLeftParen, flags_);
- re->cap_ = -1;
- return PushRegexp(re);
-}
-
-// Processes a vertical bar in the input.
-bool Regexp::ParseState::DoVerticalBar() {
- MaybeConcatString(-1, NoParseFlags);
- DoConcatenation();
-
- // Below the vertical bar is a list to alternate.
- // Above the vertical bar is a list to concatenate.
- // We just did the concatenation, so either swap
- // the result below the vertical bar or push a new
- // vertical bar on the stack.
- Regexp* r1;
- Regexp* r2;
- if ((r1 = stacktop_) != NULL &&
- (r2 = r1->down_) != NULL &&
- r2->op() == kVerticalBar) {
- Regexp* r3;
- if ((r3 = r2->down_) != NULL &&
- (r1->op() == kRegexpAnyChar || r3->op() == kRegexpAnyChar)) {
- // AnyChar is above or below the vertical bar. Let it subsume
- // the other when the other is Literal, CharClass or AnyChar.
- if (r3->op() == kRegexpAnyChar &&
- (r1->op() == kRegexpLiteral ||
- r1->op() == kRegexpCharClass ||
- r1->op() == kRegexpAnyChar)) {
- // Discard r1.
- stacktop_ = r2;
- r1->Decref();
- return true;
- }
- if (r1->op() == kRegexpAnyChar &&
- (r3->op() == kRegexpLiteral ||
- r3->op() == kRegexpCharClass ||
- r3->op() == kRegexpAnyChar)) {
- // Rearrange the stack and discard r3.
- r1->down_ = r3->down_;
- r2->down_ = r1;
- stacktop_ = r2;
- r3->Decref();
- return true;
- }
- }
- // Swap r1 below vertical bar (r2).
- r1->down_ = r2->down_;
- r2->down_ = r1;
- stacktop_ = r2;
- return true;
- }
- return PushSimpleOp(kVerticalBar);
-}
-
-// Processes a right parenthesis in the input.
-bool Regexp::ParseState::DoRightParen() {
- // Finish the current concatenation and alternation.
- DoAlternation();
-
- // The stack should be: LeftParen regexp
- // Remove the LeftParen, leaving the regexp,
- // parenthesized.
- Regexp* r1;
- Regexp* r2;
- if ((r1 = stacktop_) == NULL ||
- (r2 = r1->down_) == NULL ||
- r2->op() != kLeftParen) {
- status_->set_code(kRegexpMissingParen);
- status_->set_error_arg(whole_regexp_);
- return false;
- }
-
- // Pop off r1, r2. Will Decref or reuse below.
- stacktop_ = r2->down_;
-
- // Restore flags from when paren opened.
- Regexp* re = r2;
- flags_ = re->parse_flags();
-
- // Rewrite LeftParen as capture if needed.
- if (re->cap_ > 0) {
- re->op_ = kRegexpCapture;
- // re->cap_ is already set
- re->AllocSub(1);
- re->sub()[0] = FinishRegexp(r1);
- re->simple_ = re->ComputeSimple();
- } else {
- re->Decref();
- re = r1;
- }
- return PushRegexp(re);
-}
-
-// Processes the end of input, returning the final regexp.
-Regexp* Regexp::ParseState::DoFinish() {
- DoAlternation();
- Regexp* re = stacktop_;
- if (re != NULL && re->down_ != NULL) {
- status_->set_code(kRegexpMissingParen);
- status_->set_error_arg(whole_regexp_);
- return NULL;
- }
- stacktop_ = NULL;
- return FinishRegexp(re);
-}
-
-// Returns the leading regexp that re starts with.
-// The returned Regexp* points into a piece of re,
-// so it must not be used after the caller calls re->Decref().
-Regexp* Regexp::LeadingRegexp(Regexp* re) {
- if (re->op() == kRegexpEmptyMatch)
- return NULL;
- if (re->op() == kRegexpConcat && re->nsub() >= 2) {
- Regexp** sub = re->sub();
- if (sub[0]->op() == kRegexpEmptyMatch)
- return NULL;
- return sub[0];
- }
- return re;
-}
-
-// Removes LeadingRegexp(re) from re and returns what's left.
-// Consumes the reference to re and may edit it in place.
-// If caller wants to hold on to LeadingRegexp(re),
-// must have already Incref'ed it.
-Regexp* Regexp::RemoveLeadingRegexp(Regexp* re) {
- if (re->op() == kRegexpEmptyMatch)
- return re;
- if (re->op() == kRegexpConcat && re->nsub() >= 2) {
- Regexp** sub = re->sub();
- if (sub[0]->op() == kRegexpEmptyMatch)
- return re;
- sub[0]->Decref();
- sub[0] = NULL;
- if (re->nsub() == 2) {
- // Collapse concatenation to single regexp.
- Regexp* nre = sub[1];
- sub[1] = NULL;
- re->Decref();
- return nre;
- }
- // 3 or more -> 2 or more.
- re->nsub_--;
- memmove(sub, sub + 1, re->nsub_ * sizeof sub[0]);
- return re;
- }
- Regexp::ParseFlags pf = re->parse_flags();
- re->Decref();
- return new Regexp(kRegexpEmptyMatch, pf);
-}
-
-// Returns the leading string that re starts with.
-// The returned Rune* points into a piece of re,
-// so it must not be used after the caller calls re->Decref().
-Rune* Regexp::LeadingString(Regexp* re, int *nrune,
- Regexp::ParseFlags *flags) {
- while (re->op() == kRegexpConcat && re->nsub() > 0)
- re = re->sub()[0];
-
- *flags = static_cast<Regexp::ParseFlags>(re->parse_flags_ & Regexp::FoldCase);
-
- if (re->op() == kRegexpLiteral) {
- *nrune = 1;
- return &re->rune_;
- }
-
- if (re->op() == kRegexpLiteralString) {
- *nrune = re->nrunes_;
- return re->runes_;
- }
-
- *nrune = 0;
- return NULL;
-}
-
-// Removes the first n leading runes from the beginning of re.
-// Edits re in place.
-void Regexp::RemoveLeadingString(Regexp* re, int n) {
- // Chase down concats to find first string.
- // For regexps generated by parser, nested concats are
- // flattened except when doing so would overflow the 16-bit
- // limit on the size of a concatenation, so we should never
- // see more than two here.
- Regexp* stk[4];
- int d = 0;
- while (re->op() == kRegexpConcat) {
- if (d < arraysize(stk))
- stk[d++] = re;
- re = re->sub()[0];
- }
-
- // Remove leading string from re.
- if (re->op() == kRegexpLiteral) {
- re->rune_ = 0;
- re->op_ = kRegexpEmptyMatch;
- } else if (re->op() == kRegexpLiteralString) {
- if (n >= re->nrunes_) {
- delete[] re->runes_;
- re->runes_ = NULL;
- re->nrunes_ = 0;
- re->op_ = kRegexpEmptyMatch;
- } else if (n == re->nrunes_ - 1) {
- Rune rune = re->runes_[re->nrunes_ - 1];
- delete[] re->runes_;
- re->runes_ = NULL;
- re->nrunes_ = 0;
- re->rune_ = rune;
- re->op_ = kRegexpLiteral;
- } else {
- re->nrunes_ -= n;
- memmove(re->runes_, re->runes_ + n, re->nrunes_ * sizeof re->runes_[0]);
- }
- }
-
- // If re is now empty, concatenations might simplify too.
- while (d-- > 0) {
- re = stk[d];
- Regexp** sub = re->sub();
- if (sub[0]->op() == kRegexpEmptyMatch) {
- sub[0]->Decref();
- sub[0] = NULL;
- // Delete first element of concat.
- switch (re->nsub()) {
- case 0:
- case 1:
- // Impossible.
- LOG(DFATAL) << "Concat of " << re->nsub();
- re->submany_ = NULL;
- re->op_ = kRegexpEmptyMatch;
- break;
-
- case 2: {
- // Replace re with sub[1].
- Regexp* old = sub[1];
- sub[1] = NULL;
- re->Swap(old);
- old->Decref();
- break;
- }
-
- default:
- // Slide down.
- re->nsub_--;
- memmove(sub, sub + 1, re->nsub_ * sizeof sub[0]);
- break;
- }
- }
- }
-}
-
-// Factors common prefixes from alternation.
-// For example,
-// ABC|ABD|AEF|BCX|BCY
-// simplifies to
-// A(B(C|D)|EF)|BC(X|Y)
-// which the normal parse state routines will further simplify to
-// A(B[CD]|EF)|BC[XY]
-//
-// Rewrites sub to contain simplified list to alternate and returns
-// the new length of sub. Adjusts reference counts accordingly
-// (incoming sub[i] decremented, outgoing sub[i] incremented).
-
-// It's too much of a pain to write this code with an explicit stack,
-// so instead we let the caller specify a maximum depth and
-// don't simplify beyond that. There are around 15 words of local
-// variables and parameters in the frame, so allowing 8 levels
-// on a 64-bit machine is still less than a kilobyte of stack and
-// probably enough benefit for practical uses.
-const int kFactorAlternationMaxDepth = 8;
-
-int Regexp::FactorAlternation(
- Regexp** sub, int n,
- Regexp::ParseFlags altflags) {
- return FactorAlternationRecursive(sub, n, altflags,
- kFactorAlternationMaxDepth);
-}
-
-int Regexp::FactorAlternationRecursive(
- Regexp** sub, int n,
- Regexp::ParseFlags altflags,
- int maxdepth) {
-
- if (maxdepth <= 0)
- return n;
-
- // Round 1: Factor out common literal prefixes.
- Rune *rune = NULL;
- int nrune = 0;
- Regexp::ParseFlags runeflags = Regexp::NoParseFlags;
- int start = 0;
- int out = 0;
- for (int i = 0; i <= n; i++) {
- // Invariant: what was in sub[0:start] has been Decref'ed
- // and that space has been reused for sub[0:out] (out <= start).
- //
- // Invariant: sub[start:i] consists of regexps that all begin
- // with the string rune[0:nrune].
-
- Rune* rune_i = NULL;
- int nrune_i = 0;
- Regexp::ParseFlags runeflags_i = Regexp::NoParseFlags;
- if (i < n) {
- rune_i = LeadingString(sub[i], &nrune_i, &runeflags_i);
- if (runeflags_i == runeflags) {
- int same = 0;
- while (same < nrune && same < nrune_i && rune[same] == rune_i[same])
- same++;
- if (same > 0) {
- // Matches at least one rune in current range. Keep going around.
- nrune = same;
- continue;
- }
- }
- }
-
- // Found end of a run with common leading literal string:
- // sub[start:i] all begin with rune[0:nrune] but sub[i]
- // does not even begin with rune[0].
- //
- // Factor out common string and append factored expression to sub[0:out].
- if (i == start) {
- // Nothing to do - first iteration.
- } else if (i == start+1) {
- // Just one: don't bother factoring.
- sub[out++] = sub[start];
- } else {
- // Construct factored form: prefix(suffix1|suffix2|...)
- Regexp* x[2]; // x[0] = prefix, x[1] = suffix1|suffix2|...
- x[0] = LiteralString(rune, nrune, runeflags);
- for (int j = start; j < i; j++)
- RemoveLeadingString(sub[j], nrune);
- int nn = FactorAlternationRecursive(sub + start, i - start, altflags,
- maxdepth - 1);
- x[1] = AlternateNoFactor(sub + start, nn, altflags);
- sub[out++] = Concat(x, 2, altflags);
- }
-
- // Prepare for next round (if there is one).
- if (i < n) {
- start = i;
- rune = rune_i;
- nrune = nrune_i;
- runeflags = runeflags_i;
- }
- }
- n = out;
-
- // Round 2: Factor out common complex prefixes,
- // just the first piece of each concatenation,
- // whatever it is. This is good enough a lot of the time.
- start = 0;
- out = 0;
- Regexp* first = NULL;
- for (int i = 0; i <= n; i++) {
- // Invariant: what was in sub[0:start] has been Decref'ed
- // and that space has been reused for sub[0:out] (out <= start).
- //
- // Invariant: sub[start:i] consists of regexps that all begin with first.
-
- Regexp* first_i = NULL;
- if (i < n) {
- first_i = LeadingRegexp(sub[i]);
- if (first != NULL && Regexp::Equal(first, first_i)) {
- continue;
- }
- }
-
- // Found end of a run with common leading regexp:
- // sub[start:i] all begin with first but sub[i] does not.
- //
- // Factor out common regexp and append factored expression to sub[0:out].
- if (i == start) {
- // Nothing to do - first iteration.
- } else if (i == start+1) {
- // Just one: don't bother factoring.
- sub[out++] = sub[start];
- } else {
- // Construct factored form: prefix(suffix1|suffix2|...)
- Regexp* x[2]; // x[0] = prefix, x[1] = suffix1|suffix2|...
- x[0] = first->Incref();
- for (int j = start; j < i; j++)
- sub[j] = RemoveLeadingRegexp(sub[j]);
- int nn = FactorAlternationRecursive(sub + start, i - start, altflags,
- maxdepth - 1);
- x[1] = AlternateNoFactor(sub + start, nn, altflags);
- sub[out++] = Concat(x, 2, altflags);
- }
-
- // Prepare for next round (if there is one).
- if (i < n) {
- start = i;
- first = first_i;
- }
- }
- n = out;
-
- // Round 3: Collapse runs of single literals into character classes.
- start = 0;
- out = 0;
- for (int i = 0; i <= n; i++) {
- // Invariant: what was in sub[0:start] has been Decref'ed
- // and that space has been reused for sub[0:out] (out <= start).
- //
- // Invariant: sub[start:i] consists of regexps that are either
- // literal runes or character classes.
-
- if (i < n &&
- (sub[i]->op() == kRegexpLiteral ||
- sub[i]->op() == kRegexpCharClass))
- continue;
-
- // sub[i] is not a char or char class;
- // emit char class for sub[start:i]...
- if (i == start) {
- // Nothing to do.
- } else if (i == start+1) {
- sub[out++] = sub[start];
- } else {
- // Make new char class.
- CharClassBuilder ccb;
- for (int j = start; j < i; j++) {
- Regexp* re = sub[j];
- if (re->op() == kRegexpCharClass) {
- CharClass* cc = re->cc();
- for (CharClass::iterator it = cc->begin(); it != cc->end(); ++it)
- ccb.AddRange(it->lo, it->hi);
- } else if (re->op() == kRegexpLiteral) {
- ccb.AddRangeFlags(re->rune(), re->rune(), re->parse_flags());
- } else {
- LOG(DFATAL) << "RE2: unexpected op: " << re->op() << " "
- << re->ToString();
- }
- re->Decref();
- }
- sub[out++] = NewCharClass(ccb.GetCharClass(), altflags);
- }
-
- // ... and then emit sub[i].
- if (i < n)
- sub[out++] = sub[i];
- start = i+1;
- }
- n = out;
-
- // Round 4: Collapse runs of empty matches into single empty match.
- start = 0;
- out = 0;
- for (int i = 0; i < n; i++) {
- if (i + 1 < n &&
- sub[i]->op() == kRegexpEmptyMatch &&
- sub[i+1]->op() == kRegexpEmptyMatch) {
- sub[i]->Decref();
- continue;
- }
- sub[out++] = sub[i];
- }
- n = out;
-
- return n;
-}
-
-// Collapse the regexps on top of the stack, down to the
-// first marker, into a new op node (op == kRegexpAlternate
-// or op == kRegexpConcat).
-void Regexp::ParseState::DoCollapse(RegexpOp op) {
- // Scan backward to marker, counting children of composite.
- int n = 0;
- Regexp* next = NULL;
- Regexp* sub;
- for (sub = stacktop_; sub != NULL && !IsMarker(sub->op()); sub = next) {
- next = sub->down_;
- if (sub->op_ == op)
- n += sub->nsub_;
- else
- n++;
- }
-
- // If there's just one child, leave it alone.
- // (Concat of one thing is that one thing; alternate of one thing is same.)
- if (stacktop_ != NULL && stacktop_->down_ == next)
- return;
-
- // Construct op (alternation or concatenation), flattening op of op.
- Regexp** subs = new Regexp*[n];
- next = NULL;
- int i = n;
- for (sub = stacktop_; sub != NULL && !IsMarker(sub->op()); sub = next) {
- next = sub->down_;
- if (sub->op_ == op) {
- Regexp** sub_subs = sub->sub();
- for (int k = sub->nsub_ - 1; k >= 0; k--)
- subs[--i] = sub_subs[k]->Incref();
- sub->Decref();
- } else {
- subs[--i] = FinishRegexp(sub);
- }
- }
-
- Regexp* re = ConcatOrAlternate(op, subs, n, flags_, true);
- delete[] subs;
- re->simple_ = re->ComputeSimple();
- re->down_ = next;
- stacktop_ = re;
-}
-
-// Finishes the current concatenation,
-// collapsing it into a single regexp on the stack.
-void Regexp::ParseState::DoConcatenation() {
- Regexp* r1 = stacktop_;
- if (r1 == NULL || IsMarker(r1->op())) {
- // empty concatenation is special case
- Regexp* re = new Regexp(kRegexpEmptyMatch, flags_);
- PushRegexp(re);
- }
- DoCollapse(kRegexpConcat);
-}
-
-// Finishes the current alternation,
-// collapsing it to a single regexp on the stack.
-void Regexp::ParseState::DoAlternation() {
- DoVerticalBar();
- // Now stack top is kVerticalBar.
- Regexp* r1 = stacktop_;
- stacktop_ = r1->down_;
- r1->Decref();
- DoCollapse(kRegexpAlternate);
-}
-
-// Incremental conversion of concatenated literals into strings.
-// If top two elements on stack are both literal or string,
-// collapse into single string.
-// Don't walk down the stack -- the parser calls this frequently
-// enough that below the bottom two is known to be collapsed.
-// Only called when another regexp is about to be pushed
-// on the stack, so that the topmost literal is not being considered.
-// (Otherwise ab* would turn into (ab)*.)
-// If r >= 0, consider pushing a literal r on the stack.
-// Return whether that happened.
-bool Regexp::ParseState::MaybeConcatString(int r, ParseFlags flags) {
- Regexp* re1;
- Regexp* re2;
- if ((re1 = stacktop_) == NULL || (re2 = re1->down_) == NULL)
- return false;
-
- if (re1->op_ != kRegexpLiteral && re1->op_ != kRegexpLiteralString)
- return false;
- if (re2->op_ != kRegexpLiteral && re2->op_ != kRegexpLiteralString)
- return false;
- if ((re1->parse_flags_ & FoldCase) != (re2->parse_flags_ & FoldCase))
- return false;
-
- if (re2->op_ == kRegexpLiteral) {
- // convert into string
- Rune rune = re2->rune_;
- re2->op_ = kRegexpLiteralString;
- re2->nrunes_ = 0;
- re2->runes_ = NULL;
- re2->AddRuneToString(rune);
- }
-
- // push re1 into re2.
- if (re1->op_ == kRegexpLiteral) {
- re2->AddRuneToString(re1->rune_);
- } else {
- for (int i = 0; i < re1->nrunes_; i++)
- re2->AddRuneToString(re1->runes_[i]);
- re1->nrunes_ = 0;
- delete[] re1->runes_;
- re1->runes_ = NULL;
- }
-
- // reuse re1 if possible
- if (r >= 0) {
- re1->op_ = kRegexpLiteral;
- re1->rune_ = r;
- re1->parse_flags_ = static_cast<uint16>(flags);
- return true;
- }
-
- stacktop_ = re2;
- re1->Decref();
- return false;
-}
-
-// Lexing routines.
-
-// Parses a decimal integer, storing it in *n.
-// Sets *s to span the remainder of the string.
-// Sets *out_re to the regexp for the class.
-static bool ParseInteger(StringPiece* s, int* np) {
- if (s->size() == 0 || !isdigit((*s)[0] & 0xFF))
- return false;
- // Disallow leading zeros.
- if (s->size() >= 2 && (*s)[0] == '0' && isdigit((*s)[1] & 0xFF))
- return false;
- int n = 0;
- int c;
- while (s->size() > 0 && isdigit(c = (*s)[0] & 0xFF)) {
- // Avoid overflow.
- if (n >= 100000000)
- return false;
- n = n*10 + c - '0';
- s->remove_prefix(1); // digit
- }
- *np = n;
- return true;
-}
-
-// Parses a repetition suffix like {1,2} or {2} or {2,}.
-// Sets *s to span the remainder of the string on success.
-// Sets *lo and *hi to the given range.
-// In the case of {2,}, the high number is unbounded;
-// sets *hi to -1 to signify this.
-// {,2} is NOT a valid suffix.
-// The Maybe in the name signifies that the regexp parse
-// doesn't fail even if ParseRepetition does, so the StringPiece
-// s must NOT be edited unless MaybeParseRepetition returns true.
-static bool MaybeParseRepetition(StringPiece* sp, int* lo, int* hi) {
- StringPiece s = *sp;
- if (s.size() == 0 || s[0] != '{')
- return false;
- s.remove_prefix(1); // '{'
- if (!ParseInteger(&s, lo))
- return false;
- if (s.size() == 0)
- return false;
- if (s[0] == ',') {
- s.remove_prefix(1); // ','
- if (s.size() == 0)
- return false;
- if (s[0] == '}') {
- // {2,} means at least 2
- *hi = -1;
- } else {
- // {2,4} means 2, 3, or 4.
- if (!ParseInteger(&s, hi))
- return false;
- }
- } else {
- // {2} means exactly two
- *hi = *lo;
- }
- if (s.size() == 0 || s[0] != '}')
- return false;
- s.remove_prefix(1); // '}'
- *sp = s;
- return true;
-}
-
-// Removes the next Rune from the StringPiece and stores it in *r.
-// Returns number of bytes removed from sp.
-// Behaves as though there is a terminating NUL at the end of sp.
-// Argument order is backwards from usual Google style
-// but consistent with chartorune.
-static int StringPieceToRune(Rune *r, StringPiece *sp, RegexpStatus* status) {
- int n;
- if (fullrune(sp->data(), sp->size())) {
- n = chartorune(r, sp->data());
- // Some copies of chartorune have a bug that accepts
- // encodings of values in (10FFFF, 1FFFFF] as valid.
- // Those values break the character class algorithm,
- // which assumes Runemax is the largest rune.
- if (*r > Runemax) {
- n = 1;
- *r = Runeerror;
- }
- if (!(n == 1 && *r == Runeerror)) { // no decoding error
- sp->remove_prefix(n);
- return n;
- }
- }
-
- status->set_code(kRegexpBadUTF8);
- status->set_error_arg(NULL);
- return -1;
-}
-
-// Return whether name is valid UTF-8.
-// If not, set status to kRegexpBadUTF8.
-static bool IsValidUTF8(const StringPiece& s, RegexpStatus* status) {
- StringPiece t = s;
- Rune r;
- while (t.size() > 0) {
- if (StringPieceToRune(&r, &t, status) < 0)
- return false;
- }
- return true;
-}
-
-// Is c a hex digit?
-static int IsHex(int c) {
- return ('0' <= c && c <= '9') ||
- ('A' <= c && c <= 'F') ||
- ('a' <= c && c <= 'f');
-}
-
-// Convert hex digit to value.
-static int UnHex(int c) {
- if ('0' <= c && c <= '9')
- return c - '0';
- if ('A' <= c && c <= 'F')
- return c - 'A' + 10;
- if ('a' <= c && c <= 'f')
- return c - 'a' + 10;
- LOG(DFATAL) << "Bad hex digit " << c;
- return 0;
-}
-
-// Parse an escape sequence (e.g., \n, \{).
-// Sets *s to span the remainder of the string.
-// Sets *rp to the named character.
-static bool ParseEscape(StringPiece* s, Rune* rp,
- RegexpStatus* status, int rune_max) {
- const char* begin = s->begin();
- if (s->size() < 1 || (*s)[0] != '\\') {
- // Should not happen - caller always checks.
- status->set_code(kRegexpInternalError);
- status->set_error_arg(NULL);
- return false;
- }
- if (s->size() < 2) {
- status->set_code(kRegexpTrailingBackslash);
- status->set_error_arg(NULL);
- return false;
- }
- Rune c, c1;
- s->remove_prefix(1); // backslash
- if (StringPieceToRune(&c, s, status) < 0)
- return false;
- int code;
- switch (c) {
- default:
- if (c < Runeself && !isalpha(c) && !isdigit(c)) {
- // Escaped non-word characters are always themselves.
- // PCRE is not quite so rigorous: it accepts things like
- // \q, but we don't. We once rejected \_, but too many
- // programs and people insist on using it, so allow \_.
- *rp = c;
- return true;
- }
- goto BadEscape;
-
- // Octal escapes.
- case '1':
- case '2':
- case '3':
- case '4':
- case '5':
- case '6':
- case '7':
- // Single non-zero octal digit is a backreference; not supported.
- if (s->size() == 0 || (*s)[0] < '0' || (*s)[0] > '7')
- goto BadEscape;
- // fall through
- case '0':
- // consume up to three octal digits; already have one.
- code = c - '0';
- if (s->size() > 0 && '0' <= (c = (*s)[0]) && c <= '7') {
- code = code * 8 + c - '0';
- s->remove_prefix(1); // digit
- if (s->size() > 0) {
- c = (*s)[0];
- if ('0' <= c && c <= '7') {
- code = code * 8 + c - '0';
- s->remove_prefix(1); // digit
- }
- }
- }
- if (code > rune_max)
- goto BadEscape;
- *rp = code;
- return true;
-
- // Hexadecimal escapes
- case 'x':
- if (s->size() == 0)
- goto BadEscape;
- if (StringPieceToRune(&c, s, status) < 0)
- return false;
- if (c == '{') {
- // Any number of digits in braces.
- // Update n as we consume the string, so that
- // the whole thing gets shown in the error message.
- // Perl accepts any text at all; it ignores all text
- // after the first non-hex digit. We require only hex digits,
- // and at least one.
- if (StringPieceToRune(&c, s, status) < 0)
- return false;
- int nhex = 0;
- code = 0;
- while (IsHex(c)) {
- nhex++;
- code = code * 16 + UnHex(c);
- if (code > rune_max)
- goto BadEscape;
- if (s->size() == 0)
- goto BadEscape;
- if (StringPieceToRune(&c, s, status) < 0)
- return false;
- }
- if (c != '}' || nhex == 0)
- goto BadEscape;
- *rp = code;
- return true;
- }
- // Easy case: two hex digits.
- if (s->size() == 0)
- goto BadEscape;
- if (StringPieceToRune(&c1, s, status) < 0)
- return false;
- if (!IsHex(c) || !IsHex(c1))
- goto BadEscape;
- *rp = UnHex(c) * 16 + UnHex(c1);
- return true;
-
- // C escapes.
- case 'n':
- *rp = '\n';
- return true;
- case 'r':
- *rp = '\r';
- return true;
- case 't':
- *rp = '\t';
- return true;
-
- // Less common C escapes.
- case 'a':
- *rp = '\a';
- return true;
- case 'f':
- *rp = '\f';
- return true;
- case 'v':
- *rp = '\v';
- return true;
-
- // This code is disabled to avoid misparsing
- // the Perl word-boundary \b as a backspace
- // when in POSIX regexp mode. Surprisingly,
- // in Perl, \b means word-boundary but [\b]
- // means backspace. We don't support that:
- // if you want a backspace embed a literal
- // backspace character or use \x08.
- //
- // case 'b':
- // *rp = '\b';
- // return true;
- }
-
- LOG(DFATAL) << "Not reached in ParseEscape.";
-
-BadEscape:
- // Unrecognized escape sequence.
- status->set_code(kRegexpBadEscape);
- status->set_error_arg(
- StringPiece(begin, static_cast<int>(s->data() - begin)));
- return false;
-}
-
-// Add a range to the character class, but exclude newline if asked.
-// Also handle case folding.
-void CharClassBuilder::AddRangeFlags(
- Rune lo, Rune hi, Regexp::ParseFlags parse_flags) {
-
- // Take out \n if the flags say so.
- bool cutnl = !(parse_flags & Regexp::ClassNL) ||
- (parse_flags & Regexp::NeverNL);
- if (cutnl && lo <= '\n' && '\n' <= hi) {
- if (lo < '\n')
- AddRangeFlags(lo, '\n' - 1, parse_flags);
- if (hi > '\n')
- AddRangeFlags('\n' + 1, hi, parse_flags);
- return;
- }
-
- // If folding case, add fold-equivalent characters too.
- if (parse_flags & Regexp::FoldCase)
- AddFoldedRange(this, lo, hi, 0);
- else
- AddRange(lo, hi);
-}
-
-// Look for a group with the given name.
-static const UGroup* LookupGroup(const StringPiece& name,
- const UGroup *groups, int ngroups) {
- // Simple name lookup.
- for (int i = 0; i < ngroups; i++)
- if (StringPiece(groups[i].name) == name)
- return &groups[i];
- return NULL;
-}
-
-// Fake UGroup containing all Runes
-static URange16 any16[] = { { 0, 65535 } };
-static URange32 any32[] = { { 65536, Runemax } };
-static UGroup anygroup = { "Any", +1, any16, 1, any32, 1 };
-
-// Look for a POSIX group with the given name (e.g., "[:^alpha:]")
-static const UGroup* LookupPosixGroup(const StringPiece& name) {
- return LookupGroup(name, posix_groups, num_posix_groups);
-}
-
-static const UGroup* LookupPerlGroup(const StringPiece& name) {
- return LookupGroup(name, perl_groups, num_perl_groups);
-}
-
-// Look for a Unicode group with the given name (e.g., "Han")
-static const UGroup* LookupUnicodeGroup(const StringPiece& name) {
- // Special case: "Any" means any.
- if (name == StringPiece("Any"))
- return &anygroup;
- return LookupGroup(name, unicode_groups, num_unicode_groups);
-}
-
-// Add a UGroup or its negation to the character class.
-static void AddUGroup(CharClassBuilder *cc, const UGroup *g, int sign,
- Regexp::ParseFlags parse_flags) {
- if (sign == +1) {
- for (int i = 0; i < g->nr16; i++) {
- cc->AddRangeFlags(g->r16[i].lo, g->r16[i].hi, parse_flags);
- }
- for (int i = 0; i < g->nr32; i++) {
- cc->AddRangeFlags(g->r32[i].lo, g->r32[i].hi, parse_flags);
- }
- } else {
- if (parse_flags & Regexp::FoldCase) {
- // Normally adding a case-folded group means
- // adding all the extra fold-equivalent runes too.
- // But if we're adding the negation of the group,
- // we have to exclude all the runes that are fold-equivalent
- // to what's already missing. Too hard, so do in two steps.
- CharClassBuilder ccb1;
- AddUGroup(&ccb1, g, +1, parse_flags);
- // If the flags say to take out \n, put it in, so that negating will take it out.
- // Normally AddRangeFlags does this, but we're bypassing AddRangeFlags.
- bool cutnl = !(parse_flags & Regexp::ClassNL) ||
- (parse_flags & Regexp::NeverNL);
- if (cutnl) {
- ccb1.AddRange('\n', '\n');
- }
- ccb1.Negate();
- cc->AddCharClass(&ccb1);
- return;
- }
- int next = 0;
- for (int i = 0; i < g->nr16; i++) {
- if (next < g->r16[i].lo)
- cc->AddRangeFlags(next, g->r16[i].lo - 1, parse_flags);
- next = g->r16[i].hi + 1;
- }
- for (int i = 0; i < g->nr32; i++) {
- if (next < g->r32[i].lo)
- cc->AddRangeFlags(next, g->r32[i].lo - 1, parse_flags);
- next = g->r32[i].hi + 1;
- }
- if (next <= Runemax)
- cc->AddRangeFlags(next, Runemax, parse_flags);
- }
-}
-
-// Maybe parse a Perl character class escape sequence.
-// Only recognizes the Perl character classes (\d \s \w \D \S \W),
-// not the Perl empty-string classes (\b \B \A \Z \z).
-// On success, sets *s to span the remainder of the string
-// and returns the corresponding UGroup.
-// The StringPiece must *NOT* be edited unless the call succeeds.
-const UGroup* MaybeParsePerlCCEscape(StringPiece* s, Regexp::ParseFlags parse_flags) {
- if (!(parse_flags & Regexp::PerlClasses))
- return NULL;
- if (s->size() < 2 || (*s)[0] != '\\')
- return NULL;
- // Could use StringPieceToRune, but there aren't
- // any non-ASCII Perl group names.
- StringPiece name(s->begin(), 2);
- const UGroup *g = LookupPerlGroup(name);
- if (g == NULL)
- return NULL;
- s->remove_prefix(name.size());
- return g;
-}
-
-enum ParseStatus {
- kParseOk, // Did some parsing.
- kParseError, // Found an error.
- kParseNothing, // Decided not to parse.
-};
-
-// Maybe parses a Unicode character group like \p{Han} or \P{Han}
-// (the latter is a negated group).
-ParseStatus ParseUnicodeGroup(StringPiece* s, Regexp::ParseFlags parse_flags,
- CharClassBuilder *cc,
- RegexpStatus* status) {
- // Decide whether to parse.
- if (!(parse_flags & Regexp::UnicodeGroups))
- return kParseNothing;
- if (s->size() < 2 || (*s)[0] != '\\')
- return kParseNothing;
- Rune c = (*s)[1];
- if (c != 'p' && c != 'P')
- return kParseNothing;
-
- // Committed to parse. Results:
- int sign = +1; // -1 = negated char class
- if (c == 'P')
- sign = -1;
- StringPiece seq = *s; // \p{Han} or \pL
- StringPiece name; // Han or L
- s->remove_prefix(2); // '\\', 'p'
-
- if (!StringPieceToRune(&c, s, status))
- return kParseError;
- if (c != '{') {
- // Name is the bit of string we just skipped over for c.
- const char* p = seq.begin() + 2;
- name = StringPiece(p, static_cast<int>(s->begin() - p));
- } else {
- // Name is in braces. Look for closing }
- size_t end = s->find('}', 0);
- if (end == s->npos) {
- if (!IsValidUTF8(seq, status))
- return kParseError;
- status->set_code(kRegexpBadCharRange);
- status->set_error_arg(seq);
- return kParseError;
- }
- name = StringPiece(s->begin(), static_cast<int>(end)); // without '}'
- s->remove_prefix(static_cast<int>(end) + 1); // with '}'
- if (!IsValidUTF8(name, status))
- return kParseError;
- }
-
- // Chop seq where s now begins.
- seq = StringPiece(seq.begin(), static_cast<int>(s->begin() - seq.begin()));
-
- // Look up group
- if (name.size() > 0 && name[0] == '^') {
- sign = -sign;
- name.remove_prefix(1); // '^'
- }
- const UGroup *g = LookupUnicodeGroup(name);
- if (g == NULL) {
- status->set_code(kRegexpBadCharRange);
- status->set_error_arg(seq);
- return kParseError;
- }
-
- AddUGroup(cc, g, sign, parse_flags);
- return kParseOk;
-}
-
-// Parses a character class name like [:alnum:].
-// Sets *s to span the remainder of the string.
-// Adds the ranges corresponding to the class to ranges.
-static ParseStatus ParseCCName(StringPiece* s, Regexp::ParseFlags parse_flags,
- CharClassBuilder *cc,
- RegexpStatus* status) {
- // Check begins with [:
- const char* p = s->data();
- const char* ep = s->data() + s->size();
- if (ep - p < 2 || p[0] != '[' || p[1] != ':')
- return kParseNothing;
-
- // Look for closing :].
- const char* q;
- for (q = p+2; q <= ep-2 && (*q != ':' || *(q+1) != ']'); q++)
- ;
-
- // If no closing :], then ignore.
- if (q > ep-2)
- return kParseNothing;
-
- // Got it. Check that it's valid.
- q += 2;
- StringPiece name(p, static_cast<int>(q-p));
-
- const UGroup *g = LookupPosixGroup(name);
- if (g == NULL) {
- status->set_code(kRegexpBadCharRange);
- status->set_error_arg(name);
- return kParseError;
- }
-
- s->remove_prefix(name.size());
- AddUGroup(cc, g, g->sign, parse_flags);
- return kParseOk;
-}
-
-// Parses a character inside a character class.
-// There are fewer special characters here than in the rest of the regexp.
-// Sets *s to span the remainder of the string.
-// Sets *rp to the character.
-bool Regexp::ParseState::ParseCCCharacter(StringPiece* s, Rune *rp,
- const StringPiece& whole_class,
- RegexpStatus* status) {
- if (s->size() == 0) {
- status->set_code(kRegexpMissingBracket);
- status->set_error_arg(whole_class);
- return false;
- }
-
- // Allow regular escape sequences even though
- // many need not be escaped in this context.
- if (s->size() >= 1 && (*s)[0] == '\\')
- return ParseEscape(s, rp, status, rune_max_);
-
- // Otherwise take the next rune.
- return StringPieceToRune(rp, s, status) >= 0;
-}
-
-// Parses a character class character, or, if the character
-// is followed by a hyphen, parses a character class range.
-// For single characters, rr->lo == rr->hi.
-// Sets *s to span the remainder of the string.
-// Sets *rp to the character.
-bool Regexp::ParseState::ParseCCRange(StringPiece* s, RuneRange* rr,
- const StringPiece& whole_class,
- RegexpStatus* status) {
- StringPiece os = *s;
- if (!ParseCCCharacter(s, &rr->lo, whole_class, status))
- return false;
- // [a-] means (a|-), so check for final ].
- if (s->size() >= 2 && (*s)[0] == '-' && (*s)[1] != ']') {
- s->remove_prefix(1); // '-'
- if (!ParseCCCharacter(s, &rr->hi, whole_class, status))
- return false;
- if (rr->hi < rr->lo) {
- status->set_code(kRegexpBadCharRange);
- status->set_error_arg(
- StringPiece(os.data(), static_cast<int>(s->data() - os.data())));
- return false;
- }
- } else {
- rr->hi = rr->lo;
- }
- return true;
-}
-
-// Parses a possibly-negated character class expression like [^abx-z[:digit:]].
-// Sets *s to span the remainder of the string.
-// Sets *out_re to the regexp for the class.
-bool Regexp::ParseState::ParseCharClass(StringPiece* s,
- Regexp** out_re,
- RegexpStatus* status) {
- StringPiece whole_class = *s;
- if (s->size() == 0 || (*s)[0] != '[') {
- // Caller checked this.
- status->set_code(kRegexpInternalError);
- status->set_error_arg(NULL);
- return false;
- }
- bool negated = false;
- Regexp* re = new Regexp(kRegexpCharClass, flags_ & ~FoldCase);
- re->ccb_ = new CharClassBuilder;
- s->remove_prefix(1); // '['
- if (s->size() > 0 && (*s)[0] == '^') {
- s->remove_prefix(1); // '^'
- negated = true;
- if (!(flags_ & ClassNL) || (flags_ & NeverNL)) {
- // If NL can't match implicitly, then pretend
- // negated classes include a leading \n.
- re->ccb_->AddRange('\n', '\n');
- }
- }
- bool first = true; // ] is okay as first char in class
- while (s->size() > 0 && ((*s)[0] != ']' || first)) {
- // - is only okay unescaped as first or last in class.
- // Except that Perl allows - anywhere.
- if ((*s)[0] == '-' && !first && !(flags_&PerlX) &&
- (s->size() == 1 || (*s)[1] != ']')) {
- StringPiece t = *s;
- t.remove_prefix(1); // '-'
- Rune r;
- int n = StringPieceToRune(&r, &t, status);
- if (n < 0) {
- re->Decref();
- return false;
- }
- status->set_code(kRegexpBadCharRange);
- status->set_error_arg(StringPiece(s->data(), 1+n));
- re->Decref();
- return false;
- }
- first = false;
-
- // Look for [:alnum:] etc.
- if (s->size() > 2 && (*s)[0] == '[' && (*s)[1] == ':') {
- switch (ParseCCName(s, flags_, re->ccb_, status)) {
- case kParseOk:
- continue;
- case kParseError:
- re->Decref();
- return false;
- case kParseNothing:
- break;
- }
- }
-
- // Look for Unicode character group like \p{Han}
- if (s->size() > 2 &&
- (*s)[0] == '\\' &&
- ((*s)[1] == 'p' || (*s)[1] == 'P')) {
- switch (ParseUnicodeGroup(s, flags_, re->ccb_, status)) {
- case kParseOk:
- continue;
- case kParseError:
- re->Decref();
- return false;
- case kParseNothing:
- break;
- }
- }
-
- // Look for Perl character class symbols (extension).
- const UGroup *g = MaybeParsePerlCCEscape(s, flags_);
- if (g != NULL) {
- AddUGroup(re->ccb_, g, g->sign, flags_);
- continue;
- }
-
- // Otherwise assume single character or simple range.
- RuneRange rr;
- if (!ParseCCRange(s, &rr, whole_class, status)) {
- re->Decref();
- return false;
- }
- // AddRangeFlags is usually called in response to a class like
- // \p{Foo} or [[:foo:]]; for those, it filters \n out unless
- // Regexp::ClassNL is set. In an explicit range or singleton
- // like we just parsed, we do not filter \n out, so set ClassNL
- // in the flags.
- re->ccb_->AddRangeFlags(rr.lo, rr.hi, flags_ | Regexp::ClassNL);
- }
- if (s->size() == 0) {
- status->set_code(kRegexpMissingBracket);
- status->set_error_arg(whole_class);
- re->Decref();
- return false;
- }
- s->remove_prefix(1); // ']'
-
- if (negated)
- re->ccb_->Negate();
-
- *out_re = re;
- return true;
-}
-
-// Is this a valid capture name? [A-Za-z0-9_]+
-// PCRE limits names to 32 bytes.
-// Python rejects names starting with digits.
-// We don't enforce either of those.
-static bool IsValidCaptureName(const StringPiece& name) {
- if (name.size() == 0)
- return false;
- for (int i = 0; i < name.size(); i++) {
- int c = name[i];
- if (('0' <= c && c <= '9') ||
- ('a' <= c && c <= 'z') ||
- ('A' <= c && c <= 'Z') ||
- c == '_')
- continue;
- return false;
- }
- return true;
-}
-
-// Parses a Perl flag setting or non-capturing group or both,
-// like (?i) or (?: or (?i:. Removes from s, updates parse state.
-// The caller must check that s begins with "(?".
-// Returns true on success. If the Perl flag is not
-// well-formed or not supported, sets status_ and returns false.
-bool Regexp::ParseState::ParsePerlFlags(StringPiece* s) {
- StringPiece t = *s;
-
- // Caller is supposed to check this.
- if (!(flags_ & PerlX) || t.size() < 2 || t[0] != '(' || t[1] != '?') {
- LOG(DFATAL) << "Bad call to ParseState::ParsePerlFlags";
- status_->set_code(kRegexpInternalError);
- return false;
- }
-
- t.remove_prefix(2); // "(?"
-
- // Check for named captures, first introduced in Python's regexp library.
- // As usual, there are three slightly different syntaxes:
- //
- // (?P<name>expr) the original, introduced by Python
- // (?<name>expr) the .NET alteration, adopted by Perl 5.10
- // (?'name'expr) another .NET alteration, adopted by Perl 5.10
- //
- // Perl 5.10 gave in and implemented the Python version too,
- // but they claim that the last two are the preferred forms.
- // PCRE and languages based on it (specifically, PHP and Ruby)
- // support all three as well. EcmaScript 4 uses only the Python form.
- //
- // In both the open source world (via Code Search) and the
- // Google source tree, (?P<expr>name) is the dominant form,
- // so that's the one we implement. One is enough.
- if (t.size() > 2 && t[0] == 'P' && t[1] == '<') {
- // Pull out name.
- size_t end = t.find('>', 2);
- if (end == t.npos) {
- if (!IsValidUTF8(*s, status_))
- return false;
- status_->set_code(kRegexpBadNamedCapture);
- status_->set_error_arg(*s);
- return false;
- }
-
- // t is "P<name>...", t[end] == '>'
- StringPiece capture(t.begin()-2, static_cast<int>(end)+3); // "(?P<name>"
- StringPiece name(t.begin()+2, static_cast<int>(end)-2); // "name"
- if (!IsValidUTF8(name, status_))
- return false;
- if (!IsValidCaptureName(name)) {
- status_->set_code(kRegexpBadNamedCapture);
- status_->set_error_arg(capture);
- return false;
- }
-
- if (!DoLeftParen(name)) {
- // DoLeftParen's failure set status_.
- return false;
- }
-
- s->remove_prefix(static_cast<int>(capture.end() - s->begin()));
- return true;
- }
-
- bool negated = false;
- bool sawflags = false;
- int nflags = flags_;
- Rune c;
- for (bool done = false; !done; ) {
- if (t.size() == 0)
- goto BadPerlOp;
- if (StringPieceToRune(&c, &t, status_) < 0)
- return false;
- switch (c) {
- default:
- goto BadPerlOp;
-
- // Parse flags.
- case 'i':
- sawflags = true;
- if (negated)
- nflags &= ~FoldCase;
- else
- nflags |= FoldCase;
- break;
-
- case 'm': // opposite of our OneLine
- sawflags = true;
- if (negated)
- nflags |= OneLine;
- else
- nflags &= ~OneLine;
- break;
-
- case 's':
- sawflags = true;
- if (negated)
- nflags &= ~DotNL;
- else
- nflags |= DotNL;
- break;
-
- case 'U':
- sawflags = true;
- if (negated)
- nflags &= ~NonGreedy;
- else
- nflags |= NonGreedy;
- break;
-
- // Negation
- case '-':
- if (negated)
- goto BadPerlOp;
- negated = true;
- sawflags = false;
- break;
-
- // Open new group.
- case ':':
- if (!DoLeftParenNoCapture()) {
- // DoLeftParenNoCapture's failure set status_.
- return false;
- }
- done = true;
- break;
-
- // Finish flags.
- case ')':
- done = true;
- break;
- }
- }
-
- if (negated && !sawflags)
- goto BadPerlOp;
-
- flags_ = static_cast<Regexp::ParseFlags>(nflags);
- *s = t;
- return true;
-
-BadPerlOp:
- status_->set_code(kRegexpBadPerlOp);
- status_->set_error_arg(
- StringPiece(s->begin(), static_cast<int>(t.begin() - s->begin())));
- return false;
-}
-
-// Converts latin1 (assumed to be encoded as Latin1 bytes)
-// into UTF8 encoding in string.
-// Can't use EncodingUtils::EncodeLatin1AsUTF8 because it is
-// deprecated and because it rejects code points 0x80-0x9F.
-void ConvertLatin1ToUTF8(const StringPiece& latin1, string* utf) {
- char buf[UTFmax];
-
- utf->clear();
- for (int i = 0; i < latin1.size(); i++) {
- Rune r = latin1[i] & 0xFF;
- int n = runetochar(buf, &r);
- utf->append(buf, n);
- }
-}
-
-// Parses the regular expression given by s,
-// returning the corresponding Regexp tree.
-// The caller must Decref the return value when done with it.
-// Returns NULL on error.
-Regexp* Regexp::Parse(const StringPiece& s, ParseFlags global_flags,
- RegexpStatus* status) {
- // Make status non-NULL (easier on everyone else).
- RegexpStatus xstatus;
- if (status == NULL)
- status = &xstatus;
-
- ParseState ps(global_flags, s, status);
- StringPiece t = s;
-
- // Convert regexp to UTF-8 (easier on the rest of the parser).
- if (global_flags & Latin1) {
- string* tmp = new string;
- ConvertLatin1ToUTF8(t, tmp);
- status->set_tmp(tmp);
- t = *tmp;
- }
-
- if (global_flags & Literal) {
- // Special parse loop for literal string.
- while (t.size() > 0) {
- Rune r;
- if (StringPieceToRune(&r, &t, status) < 0)
- return NULL;
- if (!ps.PushLiteral(r))
- return NULL;
- }
- return ps.DoFinish();
- }
-
- StringPiece lastunary = NULL;
- while (t.size() > 0) {
- StringPiece isunary = NULL;
- switch (t[0]) {
- default: {
- Rune r;
- if (StringPieceToRune(&r, &t, status) < 0)
- return NULL;
- if (!ps.PushLiteral(r))
- return NULL;
- break;
- }
-
- case '(':
- // "(?" introduces Perl escape.
- if ((ps.flags() & PerlX) && (t.size() >= 2 && t[1] == '?')) {
- // Flag changes and non-capturing groups.
- if (!ps.ParsePerlFlags(&t))
- return NULL;
- break;
- }
- if (ps.flags() & NeverCapture) {
- if (!ps.DoLeftParenNoCapture())
- return NULL;
- } else {
- if (!ps.DoLeftParen(NULL))
- return NULL;
- }
- t.remove_prefix(1); // '('
- break;
-
- case '|':
- if (!ps.DoVerticalBar())
- return NULL;
- t.remove_prefix(1); // '|'
- break;
-
- case ')':
- if (!ps.DoRightParen())
- return NULL;
- t.remove_prefix(1); // ')'
- break;
-
- case '^': // Beginning of line.
- if (!ps.PushCarat())
- return NULL;
- t.remove_prefix(1); // '^'
- break;
-
- case '$': // End of line.
- if (!ps.PushDollar())
- return NULL;
- t.remove_prefix(1); // '$'
- break;
-
- case '.': // Any character (possibly except newline).
- if (!ps.PushDot())
- return NULL;
- t.remove_prefix(1); // '.'
- break;
-
- case '[': { // Character class.
- Regexp* re;
- if (!ps.ParseCharClass(&t, &re, status))
- return NULL;
- if (!ps.PushRegexp(re))
- return NULL;
- break;
- }
-
- case '*': { // Zero or more.
- RegexpOp op;
- op = kRegexpStar;
- goto Rep;
- case '+': // One or more.
- op = kRegexpPlus;
- goto Rep;
- case '?': // Zero or one.
- op = kRegexpQuest;
- goto Rep;
- Rep:
- StringPiece opstr = t;
- bool nongreedy = false;
- t.remove_prefix(1); // '*' or '+' or '?'
- if (ps.flags() & PerlX) {
- if (t.size() > 0 && t[0] == '?') {
- nongreedy = true;
- t.remove_prefix(1); // '?'
- }
- if (lastunary.size() > 0) {
- // In Perl it is not allowed to stack repetition operators:
- // a** is a syntax error, not a double-star.
- // (and a++ means something else entirely, which we don't support!)
- status->set_code(kRegexpRepeatOp);
- status->set_error_arg(
- StringPiece(lastunary.begin(),
- static_cast<int>(t.begin() - lastunary.begin())));
- return NULL;
- }
- }
- opstr.set(opstr.data(), static_cast<int>(t.data() - opstr.data()));
- if (!ps.PushRepeatOp(op, opstr, nongreedy))
- return NULL;
- isunary = opstr;
- break;
- }
-
- case '{': { // Counted repetition.
- int lo, hi;
- StringPiece opstr = t;
- if (!MaybeParseRepetition(&t, &lo, &hi)) {
- // Treat like a literal.
- if (!ps.PushLiteral('{'))
- return NULL;
- t.remove_prefix(1); // '{'
- break;
- }
- bool nongreedy = false;
- if (ps.flags() & PerlX) {
- if (t.size() > 0 && t[0] == '?') {
- nongreedy = true;
- t.remove_prefix(1); // '?'
- }
- if (lastunary.size() > 0) {
- // Not allowed to stack repetition operators.
- status->set_code(kRegexpRepeatOp);
- status->set_error_arg(
- StringPiece(lastunary.begin(),
- static_cast<int>(t.begin() - lastunary.begin())));
- return NULL;
- }
- }
- opstr.set(opstr.data(), static_cast<int>(t.data() - opstr.data()));
- if (!ps.PushRepetition(lo, hi, opstr, nongreedy))
- return NULL;
- isunary = opstr;
- break;
- }
-
- case '\\': { // Escaped character or Perl sequence.
- // \b and \B: word boundary or not
- if ((ps.flags() & Regexp::PerlB) &&
- t.size() >= 2 && (t[1] == 'b' || t[1] == 'B')) {
- if (!ps.PushWordBoundary(t[1] == 'b'))
- return NULL;
- t.remove_prefix(2); // '\\', 'b'
- break;
- }
-
- if ((ps.flags() & Regexp::PerlX) && t.size() >= 2) {
- if (t[1] == 'A') {
- if (!ps.PushSimpleOp(kRegexpBeginText))
- return NULL;
- t.remove_prefix(2); // '\\', 'A'
- break;
- }
- if (t[1] == 'z') {
- if (!ps.PushSimpleOp(kRegexpEndText))
- return NULL;
- t.remove_prefix(2); // '\\', 'z'
- break;
- }
- // Do not recognize \Z, because this library can't
- // implement the exact Perl/PCRE semantics.
- // (This library treats "(?-m)$" as \z, even though
- // in Perl and PCRE it is equivalent to \Z.)
-
- if (t[1] == 'C') { // \C: any byte [sic]
- if (!ps.PushSimpleOp(kRegexpAnyByte))
- return NULL;
- t.remove_prefix(2); // '\\', 'C'
- break;
- }
-
- if (t[1] == 'Q') { // \Q ... \E: the ... is always literals
- t.remove_prefix(2); // '\\', 'Q'
- while (t.size() > 0) {
- if (t.size() >= 2 && t[0] == '\\' && t[1] == 'E') {
- t.remove_prefix(2); // '\\', 'E'
- break;
- }
- Rune r;
- if (StringPieceToRune(&r, &t, status) < 0)
- return NULL;
- if (!ps.PushLiteral(r))
- return NULL;
- }
- break;
- }
- }
-
- if (t.size() >= 2 && (t[1] == 'p' || t[1] == 'P')) {
- Regexp* re = new Regexp(kRegexpCharClass, ps.flags() & ~FoldCase);
- re->ccb_ = new CharClassBuilder;
- switch (ParseUnicodeGroup(&t, ps.flags(), re->ccb_, status)) {
- case kParseOk:
- if (!ps.PushRegexp(re))
- return NULL;
- goto Break2;
- case kParseError:
- re->Decref();
- return NULL;
- case kParseNothing:
- re->Decref();
- break;
- }
- }
-
- const UGroup *g = MaybeParsePerlCCEscape(&t, ps.flags());
- if (g != NULL) {
- Regexp* re = new Regexp(kRegexpCharClass, ps.flags() & ~FoldCase);
- re->ccb_ = new CharClassBuilder;
- AddUGroup(re->ccb_, g, g->sign, ps.flags());
- if (!ps.PushRegexp(re))
- return NULL;
- break;
- }
-
- Rune r;
- if (!ParseEscape(&t, &r, status, ps.rune_max()))
- return NULL;
- if (!ps.PushLiteral(r))
- return NULL;
- break;
- }
- }
- Break2:
- lastunary = isunary;
- }
- return ps.DoFinish();
-}
-
-} // namespace re2
« no previous file with comments | « third_party/re2/re2/onepass.cc ('k') | third_party/re2/re2/perl_groups.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698