Index: third_party/re2/re2/nfa.cc |
diff --git a/third_party/re2/re2/nfa.cc b/third_party/re2/re2/nfa.cc |
deleted file mode 100644 |
index bc8996c420f3b709dd4ea539a303a69a2eca8ee2..0000000000000000000000000000000000000000 |
--- a/third_party/re2/re2/nfa.cc |
+++ /dev/null |
@@ -1,758 +0,0 @@ |
-// Copyright 2006-2007 The RE2 Authors. All Rights Reserved. |
-// Use of this source code is governed by a BSD-style |
-// license that can be found in the LICENSE file. |
- |
-// Tested by search_test.cc. |
-// |
-// Prog::SearchNFA, an NFA search. |
-// This is an actual NFA like the theorists talk about, |
-// not the pseudo-NFA found in backtracking regexp implementations. |
-// |
-// IMPLEMENTATION |
-// |
-// This algorithm is a variant of one that appeared in Rob Pike's sam editor, |
-// which is a variant of the one described in Thompson's 1968 CACM paper. |
-// See http://swtch.com/~rsc/regexp/ for various history. The main feature |
-// over the DFA implementation is that it tracks submatch boundaries. |
-// |
-// When the choice of submatch boundaries is ambiguous, this particular |
-// implementation makes the same choices that traditional backtracking |
-// implementations (in particular, Perl and PCRE) do. |
-// Note that unlike in Perl and PCRE, this algorithm *cannot* take exponential |
-// time in the length of the input. |
-// |
-// Like Thompson's original machine and like the DFA implementation, this |
-// implementation notices a match only once it is one byte past it. |
- |
-#include "re2/prog.h" |
-#include "re2/regexp.h" |
-#include "util/sparse_array.h" |
-#include "util/sparse_set.h" |
- |
-namespace re2 { |
- |
-class NFA { |
- public: |
- NFA(Prog* prog); |
- ~NFA(); |
- |
- // Searches for a matching string. |
- // * If anchored is true, only considers matches starting at offset. |
- // Otherwise finds lefmost match at or after offset. |
- // * If longest is true, returns the longest match starting |
- // at the chosen start point. Otherwise returns the so-called |
- // left-biased match, the one traditional backtracking engines |
- // (like Perl and PCRE) find. |
- // Records submatch boundaries in submatch[1..nsubmatch-1]. |
- // Submatch[0] is the entire match. When there is a choice in |
- // which text matches each subexpression, the submatch boundaries |
- // are chosen to match what a backtracking implementation would choose. |
- bool Search(const StringPiece& text, const StringPiece& context, |
- bool anchored, bool longest, |
- StringPiece* submatch, int nsubmatch); |
- |
- static const int Debug = 0; |
- |
- private: |
- struct Thread { |
- union { |
- int id; |
- Thread* next; // when on free list |
- }; |
- const char** capture; |
- }; |
- |
- // State for explicit stack in AddToThreadq. |
- struct AddState { |
- int id; // Inst to process |
- int j; |
- const char* cap_j; // if j>=0, set capture[j] = cap_j before processing ip |
- |
- AddState() |
- : id(0), j(-1), cap_j(NULL) {} |
- explicit AddState(int id) |
- : id(id), j(-1), cap_j(NULL) {} |
- AddState(int id, const char* cap_j, int j) |
- : id(id), j(j), cap_j(cap_j) {} |
- }; |
- |
- // Threadq is a list of threads. The list is sorted by the order |
- // in which Perl would explore that particular state -- the earlier |
- // choices appear earlier in the list. |
- typedef SparseArray<Thread*> Threadq; |
- |
- inline Thread* AllocThread(); |
- inline void FreeThread(Thread*); |
- |
- // Add id (or its children, following unlabeled arrows) |
- // to the workqueue q with associated capture info. |
- void AddToThreadq(Threadq* q, int id, int flag, |
- const char* p, const char** capture); |
- |
- // Run runq on byte c, appending new states to nextq. |
- // Updates matched_ and match_ as new, better matches are found. |
- // p is position of the next byte (the one after c) |
- // in the input string, used when processing capturing parens. |
- // flag is the bitwise or of Bol, Eol, etc., specifying whether |
- // ^, $ and \b match the current input point (after c). |
- inline int Step(Threadq* runq, Threadq* nextq, int c, int flag, const char* p); |
- |
- // Returns text version of capture information, for debugging. |
- string FormatCapture(const char** capture); |
- |
- inline void CopyCapture(const char** dst, const char** src); |
- |
- // Computes whether all matches must begin with the same first |
- // byte, and if so, returns that byte. If not, returns -1. |
- int ComputeFirstByte(); |
- |
- Prog* prog_; // underlying program |
- int start_; // start instruction in program |
- int ncapture_; // number of submatches to track |
- bool longest_; // whether searching for longest match |
- bool endmatch_; // whether match must end at text.end() |
- const char* btext_; // beginning of text being matched (for FormatSubmatch) |
- const char* etext_; // end of text being matched (for endmatch_) |
- Threadq q0_, q1_; // pre-allocated for Search. |
- const char** match_; // best match so far |
- bool matched_; // any match so far? |
- AddState* astack_; // pre-allocated for AddToThreadq |
- int nastack_; |
- int first_byte_; // required first byte for match, or -1 if none |
- |
- Thread* free_threads_; // free list |
- |
- DISALLOW_COPY_AND_ASSIGN(NFA); |
-}; |
- |
-NFA::NFA(Prog* prog) { |
- prog_ = prog; |
- start_ = prog->start(); |
- ncapture_ = 0; |
- longest_ = false; |
- endmatch_ = false; |
- btext_ = NULL; |
- etext_ = NULL; |
- q0_.resize(prog_->size()); |
- q1_.resize(prog_->size()); |
- nastack_ = 2*prog_->size(); |
- astack_ = new AddState[nastack_]; |
- match_ = NULL; |
- matched_ = false; |
- free_threads_ = NULL; |
- first_byte_ = ComputeFirstByte(); |
-} |
- |
-NFA::~NFA() { |
- delete[] match_; |
- delete[] astack_; |
- Thread* next; |
- for (Thread* t = free_threads_; t; t = next) { |
- next = t->next; |
- delete[] t->capture; |
- delete t; |
- } |
-} |
- |
-void NFA::FreeThread(Thread *t) { |
- if (t == NULL) |
- return; |
- t->next = free_threads_; |
- free_threads_ = t; |
-} |
- |
-NFA::Thread* NFA::AllocThread() { |
- Thread* t = free_threads_; |
- if (t == NULL) { |
- t = new Thread; |
- t->capture = new const char*[ncapture_]; |
- return t; |
- } |
- free_threads_ = t->next; |
- return t; |
-} |
- |
-void NFA::CopyCapture(const char** dst, const char** src) { |
- for (int i = 0; i < ncapture_; i+=2) { |
- dst[i] = src[i]; |
- dst[i+1] = src[i+1]; |
- } |
-} |
- |
-// Follows all empty arrows from id0 and enqueues all the states reached. |
-// The bits in flag (Bol, Eol, etc.) specify whether ^, $ and \b match. |
-// The pointer p is the current input position, and m is the |
-// current set of match boundaries. |
-void NFA::AddToThreadq(Threadq* q, int id0, int flag, |
- const char* p, const char** capture) { |
- if (id0 == 0) |
- return; |
- |
- // Astack_ is pre-allocated to avoid resize operations. |
- // It has room for 2*prog_->size() entries, which is enough: |
- // Each inst in prog can be processed at most once, |
- // pushing at most two entries on stk. |
- |
- int nstk = 0; |
- AddState* stk = astack_; |
- stk[nstk++] = AddState(id0); |
- |
- while (nstk > 0) { |
- DCHECK_LE(nstk, nastack_); |
- const AddState& a = stk[--nstk]; |
- if (a.j >= 0) |
- capture[a.j] = a.cap_j; |
- |
- int id = a.id; |
- if (id == 0) |
- continue; |
- if (q->has_index(id)) { |
- if (Debug) |
- fprintf(stderr, " [%d%s]\n", id, FormatCapture(capture).c_str()); |
- continue; |
- } |
- |
- // Create entry in q no matter what. We might fill it in below, |
- // or we might not. Even if not, it is necessary to have it, |
- // so that we don't revisit id0 during the recursion. |
- q->set_new(id, NULL); |
- |
- Thread** tp = &q->find(id)->second; |
- int j; |
- Thread* t; |
- Prog::Inst* ip = prog_->inst(id); |
- switch (ip->opcode()) { |
- default: |
- LOG(DFATAL) << "unhandled " << ip->opcode() << " in AddToThreadq"; |
- break; |
- |
- case kInstFail: |
- break; |
- |
- case kInstAltMatch: |
- // Save state; will pick up at next byte. |
- t = AllocThread(); |
- t->id = id; |
- CopyCapture(t->capture, capture); |
- *tp = t; |
- // fall through |
- |
- case kInstAlt: |
- // Explore alternatives. |
- stk[nstk++] = AddState(ip->out1()); |
- stk[nstk++] = AddState(ip->out()); |
- break; |
- |
- case kInstNop: |
- // Continue on. |
- stk[nstk++] = AddState(ip->out()); |
- break; |
- |
- case kInstCapture: |
- if ((j=ip->cap()) < ncapture_) { |
- // Push a dummy whose only job is to restore capture[j] |
- // once we finish exploring this possibility. |
- stk[nstk++] = AddState(0, capture[j], j); |
- |
- // Record capture. |
- capture[j] = p; |
- } |
- stk[nstk++] = AddState(ip->out()); |
- break; |
- |
- case kInstMatch: |
- case kInstByteRange: |
- // Save state; will pick up at next byte. |
- t = AllocThread(); |
- t->id = id; |
- CopyCapture(t->capture, capture); |
- *tp = t; |
- if (Debug) |
- fprintf(stderr, " + %d%s [%p]\n", id, FormatCapture(t->capture).c_str(), t); |
- break; |
- |
- case kInstEmptyWidth: |
- // Continue on if we have all the right flag bits. |
- if (ip->empty() & ~flag) |
- break; |
- stk[nstk++] = AddState(ip->out()); |
- break; |
- } |
- } |
-} |
- |
-// Run runq on byte c, appending new states to nextq. |
-// Updates match as new, better matches are found. |
-// p is position of the byte c in the input string, |
-// used when processing capturing parens. |
-// flag is the bitwise or of Bol, Eol, etc., specifying whether |
-// ^, $ and \b match the current input point (after c). |
-// Frees all the threads on runq. |
-// If there is a shortcut to the end, returns that shortcut. |
-int NFA::Step(Threadq* runq, Threadq* nextq, int c, int flag, const char* p) { |
- nextq->clear(); |
- |
- for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) { |
- Thread* t = i->second; |
- if (t == NULL) |
- continue; |
- |
- if (longest_) { |
- // Can skip any threads started after our current best match. |
- if (matched_ && match_[0] < t->capture[0]) { |
- FreeThread(t); |
- continue; |
- } |
- } |
- |
- int id = t->id; |
- Prog::Inst* ip = prog_->inst(id); |
- |
- switch (ip->opcode()) { |
- default: |
- // Should only see the values handled below. |
- LOG(DFATAL) << "Unhandled " << ip->opcode() << " in step"; |
- break; |
- |
- case kInstByteRange: |
- if (ip->Matches(c)) |
- AddToThreadq(nextq, ip->out(), flag, p+1, t->capture); |
- break; |
- |
- case kInstAltMatch: |
- if (i != runq->begin()) |
- break; |
- // The match is ours if we want it. |
- if (ip->greedy(prog_) || longest_) { |
- CopyCapture((const char**)match_, t->capture); |
- FreeThread(t); |
- for (++i; i != runq->end(); ++i) |
- FreeThread(i->second); |
- runq->clear(); |
- matched_ = true; |
- if (ip->greedy(prog_)) |
- return ip->out1(); |
- return ip->out(); |
- } |
- break; |
- |
- case kInstMatch: |
- if (endmatch_ && p != etext_) |
- break; |
- |
- const char* old = t->capture[1]; // previous end pointer |
- t->capture[1] = p; |
- if (longest_) { |
- // Leftmost-longest mode: save this match only if |
- // it is either farther to the left or at the same |
- // point but longer than an existing match. |
- if (!matched_ || t->capture[0] < match_[0] || |
- (t->capture[0] == match_[0] && t->capture[1] > match_[1])) |
- CopyCapture((const char**)match_, t->capture); |
- } else { |
- // Leftmost-biased mode: this match is by definition |
- // better than what we've already found (see next line). |
- CopyCapture((const char**)match_, t->capture); |
- |
- // Cut off the threads that can only find matches |
- // worse than the one we just found: don't run the |
- // rest of the current Threadq. |
- t->capture[0] = old; |
- FreeThread(t); |
- for (++i; i != runq->end(); ++i) |
- FreeThread(i->second); |
- runq->clear(); |
- matched_ = true; |
- return 0; |
- } |
- t->capture[0] = old; |
- matched_ = true; |
- break; |
- } |
- FreeThread(t); |
- } |
- runq->clear(); |
- return 0; |
-} |
- |
-string NFA::FormatCapture(const char** capture) { |
- string s; |
- |
- for (int i = 0; i < ncapture_; i+=2) { |
- if (capture[i] == NULL) |
- StringAppendF(&s, "(?,?)"); |
- else if (capture[i+1] == NULL) |
- StringAppendF(&s, "(%d,?)", (int)(capture[i] - btext_)); |
- else |
- StringAppendF(&s, "(%d,%d)", |
- (int)(capture[i] - btext_), |
- (int)(capture[i+1] - btext_)); |
- } |
- return s; |
-} |
- |
-// Returns whether haystack contains needle's memory. |
-static bool StringPieceContains(const StringPiece haystack, const StringPiece needle) { |
- return haystack.begin() <= needle.begin() && |
- haystack.end() >= needle.end(); |
-} |
- |
-bool NFA::Search(const StringPiece& text, const StringPiece& const_context, |
- bool anchored, bool longest, |
- StringPiece* submatch, int nsubmatch) { |
- if (start_ == 0) |
- return false; |
- |
- StringPiece context = const_context; |
- if (context.begin() == NULL) |
- context = text; |
- |
- if (!StringPieceContains(context, text)) { |
- LOG(FATAL) << "Bad args: context does not contain text " |
- << reinterpret_cast<const void*>(context.begin()) |
- << "+" << context.size() << " " |
- << reinterpret_cast<const void*>(text.begin()) |
- << "+" << text.size(); |
- return false; |
- } |
- |
- if (prog_->anchor_start() && context.begin() != text.begin()) |
- return false; |
- if (prog_->anchor_end() && context.end() != text.end()) |
- return false; |
- anchored |= prog_->anchor_start(); |
- if (prog_->anchor_end()) { |
- longest = true; |
- endmatch_ = true; |
- etext_ = text.end(); |
- } |
- |
- if (nsubmatch < 0) { |
- LOG(DFATAL) << "Bad args: nsubmatch=" << nsubmatch; |
- return false; |
- } |
- |
- // Save search parameters. |
- ncapture_ = 2*nsubmatch; |
- longest_ = longest; |
- |
- if (nsubmatch == 0) { |
- // We need to maintain match[0], both to distinguish the |
- // longest match (if longest is true) and also to tell |
- // whether we've seen any matches at all. |
- ncapture_ = 2; |
- } |
- |
- match_ = new const char*[ncapture_]; |
- matched_ = false; |
- memset(match_, 0, ncapture_*sizeof match_[0]); |
- |
- // For debugging prints. |
- btext_ = context.begin(); |
- |
- if (Debug) { |
- fprintf(stderr, "NFA::Search %s (context: %s) anchored=%d longest=%d\n", |
- text.as_string().c_str(), context.as_string().c_str(), anchored, |
- longest); |
- } |
- |
- // Set up search. |
- Threadq* runq = &q0_; |
- Threadq* nextq = &q1_; |
- runq->clear(); |
- nextq->clear(); |
- memset(&match_[0], 0, ncapture_*sizeof match_[0]); |
- const char* bp = context.begin(); |
- int c = -1; |
- int wasword = 0; |
- |
- if (text.begin() > context.begin()) { |
- c = text.begin()[-1] & 0xFF; |
- wasword = Prog::IsWordChar(static_cast<uint8>(c)); |
- } |
- |
- // Loop over the text, stepping the machine. |
- for (const char* p = text.begin();; p++) { |
- // Check for empty-width specials. |
- int flag = 0; |
- |
- // ^ and \A |
- if (p == context.begin()) |
- flag |= kEmptyBeginText | kEmptyBeginLine; |
- else if (p <= context.end() && p[-1] == '\n') |
- flag |= kEmptyBeginLine; |
- |
- // $ and \z |
- if (p == context.end()) |
- flag |= kEmptyEndText | kEmptyEndLine; |
- else if (p < context.end() && p[0] == '\n') |
- flag |= kEmptyEndLine; |
- |
- // \b and \B |
- int isword = 0; |
- if (p < context.end()) |
- isword = Prog::IsWordChar(p[0] & 0xFF); |
- |
- if (isword != wasword) |
- flag |= kEmptyWordBoundary; |
- else |
- flag |= kEmptyNonWordBoundary; |
- |
- if (Debug) { |
- fprintf(stderr, "%c[%#x/%d/%d]:", p > text.end() ? '$' : p == bp ? '^' : c, flag, isword, wasword); |
- for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) { |
- Thread* t = i->second; |
- if (t == NULL) |
- continue; |
- fprintf(stderr, " %d%s", t->id, |
- FormatCapture((const char**)t->capture).c_str()); |
- } |
- fprintf(stderr, "\n"); |
- } |
- |
- // Process previous character (waited until now to avoid |
- // repeating the flag computation above). |
- // This is a no-op the first time around the loop, because |
- // runq is empty. |
- int id = Step(runq, nextq, c, flag, p-1); |
- DCHECK_EQ(runq->size(), 0); |
- swap(nextq, runq); |
- nextq->clear(); |
- if (id != 0) { |
- // We're done: full match ahead. |
- p = text.end(); |
- for (;;) { |
- Prog::Inst* ip = prog_->inst(id); |
- switch (ip->opcode()) { |
- default: |
- LOG(DFATAL) << "Unexpected opcode in short circuit: " << ip->opcode(); |
- break; |
- |
- case kInstCapture: |
- if (ip->cap() < ncapture_) |
- match_[ip->cap()] = p; |
- id = ip->out(); |
- continue; |
- |
- case kInstNop: |
- id = ip->out(); |
- continue; |
- |
- case kInstMatch: |
- match_[1] = p; |
- matched_ = true; |
- break; |
- |
- case kInstEmptyWidth: |
- if (ip->empty() & ~(kEmptyEndLine|kEmptyEndText)) { |
- LOG(DFATAL) << "Unexpected empty-width in short circuit: " << ip->empty(); |
- break; |
- } |
- id = ip->out(); |
- continue; |
- } |
- break; |
- } |
- break; |
- } |
- |
- if (p > text.end()) |
- break; |
- |
- // Start a new thread if there have not been any matches. |
- // (No point in starting a new thread if there have been |
- // matches, since it would be to the right of the match |
- // we already found.) |
- if (!matched_ && (!anchored || p == text.begin())) { |
- // If there's a required first byte for an unanchored search |
- // and we're not in the middle of any possible matches, |
- // use memchr to search for the byte quickly. |
- if (!anchored && first_byte_ >= 0 && runq->size() == 0 && |
- p < text.end() && (p[0] & 0xFF) != first_byte_) { |
- p = reinterpret_cast<const char*>(memchr(p, first_byte_, |
- text.end() - p)); |
- if (p == NULL) { |
- p = text.end(); |
- isword = 0; |
- } else { |
- isword = Prog::IsWordChar(p[0] & 0xFF); |
- } |
- flag = Prog::EmptyFlags(context, p); |
- } |
- |
- // Steal match storage (cleared but unused as of yet) |
- // temporarily to hold match boundaries for new thread. |
- match_[0] = p; |
- AddToThreadq(runq, start_, flag, p, match_); |
- match_[0] = NULL; |
- } |
- |
- // If all the threads have died, stop early. |
- if (runq->size() == 0) { |
- if (Debug) |
- fprintf(stderr, "dead\n"); |
- break; |
- } |
- |
- if (p == text.end()) |
- c = 0; |
- else |
- c = *p & 0xFF; |
- wasword = isword; |
- |
- // Will run step(runq, nextq, c, ...) on next iteration. See above. |
- } |
- |
- for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) |
- FreeThread(i->second); |
- |
- if (matched_) { |
- for (int i = 0; i < nsubmatch; i++) |
- submatch[i].set(match_[2*i], |
- static_cast<int>(match_[2*i+1] - match_[2*i])); |
- if (Debug) |
- fprintf(stderr, "match (%d,%d)\n", |
- static_cast<int>(match_[0] - btext_), |
- static_cast<int>(match_[1] - btext_)); |
- return true; |
- } |
- VLOG(1) << "No matches found"; |
- return false; |
-} |
- |
-// Computes whether all successful matches have a common first byte, |
-// and if so, returns that byte. If not, returns -1. |
-int NFA::ComputeFirstByte() { |
- if (start_ == 0) |
- return -1; |
- |
- int b = -1; // first byte, not yet computed |
- |
- typedef SparseSet Workq; |
- Workq q(prog_->size()); |
- q.insert(start_); |
- for (Workq::iterator it = q.begin(); it != q.end(); ++it) { |
- int id = *it; |
- Prog::Inst* ip = prog_->inst(id); |
- switch (ip->opcode()) { |
- default: |
- LOG(DFATAL) << "unhandled " << ip->opcode() << " in ComputeFirstByte"; |
- break; |
- |
- case kInstMatch: |
- // The empty string matches: no first byte. |
- return -1; |
- |
- case kInstByteRange: |
- // Must match only a single byte |
- if (ip->lo() != ip->hi()) |
- return -1; |
- if (ip->foldcase() && 'a' <= ip->lo() && ip->lo() <= 'z') |
- return -1; |
- // If we haven't seen any bytes yet, record it; |
- // otherwise must match the one we saw before. |
- if (b == -1) |
- b = ip->lo(); |
- else if (b != ip->lo()) |
- return -1; |
- break; |
- |
- case kInstNop: |
- case kInstCapture: |
- case kInstEmptyWidth: |
- // Continue on. |
- // Ignore ip->empty() flags for kInstEmptyWidth |
- // in order to be as conservative as possible |
- // (assume all possible empty-width flags are true). |
- if (ip->out()) |
- q.insert(ip->out()); |
- break; |
- |
- case kInstAlt: |
- case kInstAltMatch: |
- // Explore alternatives. |
- if (ip->out()) |
- q.insert(ip->out()); |
- if (ip->out1()) |
- q.insert(ip->out1()); |
- break; |
- |
- case kInstFail: |
- break; |
- } |
- } |
- return b; |
-} |
- |
-bool |
-Prog::SearchNFA(const StringPiece& text, const StringPiece& context, |
- Anchor anchor, MatchKind kind, |
- StringPiece* match, int nmatch) { |
- if (NFA::Debug) |
- Dump(); |
- |
- NFA nfa(this); |
- StringPiece sp; |
- if (kind == kFullMatch) { |
- anchor = kAnchored; |
- if (nmatch == 0) { |
- match = &sp; |
- nmatch = 1; |
- } |
- } |
- if (!nfa.Search(text, context, anchor == kAnchored, kind != kFirstMatch, match, nmatch)) |
- return false; |
- if (kind == kFullMatch && match[0].end() != text.end()) |
- return false; |
- return true; |
-} |
- |
-// For each instruction i in the program reachable from the start, compute the |
-// number of instructions reachable from i by following only empty transitions |
-// and record that count as fanout[i]. |
-// |
-// fanout holds the results and is also the work queue for the outer iteration. |
-// reachable holds the reached nodes for the inner iteration. |
-void Prog::Fanout(SparseArray<int>* fanout) { |
- DCHECK_EQ(fanout->max_size(), size()); |
- SparseSet reachable(size()); |
- fanout->clear(); |
- fanout->set_new(start(), 0); |
- for (SparseArray<int>::iterator i = fanout->begin(); i != fanout->end(); ++i) { |
- int* count = &i->second; |
- reachable.clear(); |
- reachable.insert(i->index()); |
- for (SparseSet::iterator j = reachable.begin(); j != reachable.end(); ++j) { |
- Prog::Inst* ip = inst(*j); |
- switch (ip->opcode()) { |
- default: |
- LOG(DFATAL) << "unhandled " << ip->opcode() << " in Prog::Fanout()"; |
- break; |
- |
- case kInstByteRange: |
- (*count)++; |
- if (!fanout->has_index(ip->out())) { |
- fanout->set_new(ip->out(), 0); |
- } |
- break; |
- |
- case kInstAlt: |
- case kInstAltMatch: |
- reachable.insert(ip->out1()); |
- // fall through |
- |
- case kInstCapture: |
- case kInstEmptyWidth: |
- case kInstNop: |
- reachable.insert(ip->out()); |
- break; |
- |
- case kInstMatch: |
- case kInstFail: |
- break; |
- } |
- } |
- } |
-} |
- |
-} // namespace re2 |