| Index: third_party/re2/re2/nfa.cc
|
| diff --git a/third_party/re2/re2/nfa.cc b/third_party/re2/re2/nfa.cc
|
| deleted file mode 100644
|
| index bc8996c420f3b709dd4ea539a303a69a2eca8ee2..0000000000000000000000000000000000000000
|
| --- a/third_party/re2/re2/nfa.cc
|
| +++ /dev/null
|
| @@ -1,758 +0,0 @@
|
| -// Copyright 2006-2007 The RE2 Authors. All Rights Reserved.
|
| -// Use of this source code is governed by a BSD-style
|
| -// license that can be found in the LICENSE file.
|
| -
|
| -// Tested by search_test.cc.
|
| -//
|
| -// Prog::SearchNFA, an NFA search.
|
| -// This is an actual NFA like the theorists talk about,
|
| -// not the pseudo-NFA found in backtracking regexp implementations.
|
| -//
|
| -// IMPLEMENTATION
|
| -//
|
| -// This algorithm is a variant of one that appeared in Rob Pike's sam editor,
|
| -// which is a variant of the one described in Thompson's 1968 CACM paper.
|
| -// See http://swtch.com/~rsc/regexp/ for various history. The main feature
|
| -// over the DFA implementation is that it tracks submatch boundaries.
|
| -//
|
| -// When the choice of submatch boundaries is ambiguous, this particular
|
| -// implementation makes the same choices that traditional backtracking
|
| -// implementations (in particular, Perl and PCRE) do.
|
| -// Note that unlike in Perl and PCRE, this algorithm *cannot* take exponential
|
| -// time in the length of the input.
|
| -//
|
| -// Like Thompson's original machine and like the DFA implementation, this
|
| -// implementation notices a match only once it is one byte past it.
|
| -
|
| -#include "re2/prog.h"
|
| -#include "re2/regexp.h"
|
| -#include "util/sparse_array.h"
|
| -#include "util/sparse_set.h"
|
| -
|
| -namespace re2 {
|
| -
|
| -class NFA {
|
| - public:
|
| - NFA(Prog* prog);
|
| - ~NFA();
|
| -
|
| - // Searches for a matching string.
|
| - // * If anchored is true, only considers matches starting at offset.
|
| - // Otherwise finds lefmost match at or after offset.
|
| - // * If longest is true, returns the longest match starting
|
| - // at the chosen start point. Otherwise returns the so-called
|
| - // left-biased match, the one traditional backtracking engines
|
| - // (like Perl and PCRE) find.
|
| - // Records submatch boundaries in submatch[1..nsubmatch-1].
|
| - // Submatch[0] is the entire match. When there is a choice in
|
| - // which text matches each subexpression, the submatch boundaries
|
| - // are chosen to match what a backtracking implementation would choose.
|
| - bool Search(const StringPiece& text, const StringPiece& context,
|
| - bool anchored, bool longest,
|
| - StringPiece* submatch, int nsubmatch);
|
| -
|
| - static const int Debug = 0;
|
| -
|
| - private:
|
| - struct Thread {
|
| - union {
|
| - int id;
|
| - Thread* next; // when on free list
|
| - };
|
| - const char** capture;
|
| - };
|
| -
|
| - // State for explicit stack in AddToThreadq.
|
| - struct AddState {
|
| - int id; // Inst to process
|
| - int j;
|
| - const char* cap_j; // if j>=0, set capture[j] = cap_j before processing ip
|
| -
|
| - AddState()
|
| - : id(0), j(-1), cap_j(NULL) {}
|
| - explicit AddState(int id)
|
| - : id(id), j(-1), cap_j(NULL) {}
|
| - AddState(int id, const char* cap_j, int j)
|
| - : id(id), j(j), cap_j(cap_j) {}
|
| - };
|
| -
|
| - // Threadq is a list of threads. The list is sorted by the order
|
| - // in which Perl would explore that particular state -- the earlier
|
| - // choices appear earlier in the list.
|
| - typedef SparseArray<Thread*> Threadq;
|
| -
|
| - inline Thread* AllocThread();
|
| - inline void FreeThread(Thread*);
|
| -
|
| - // Add id (or its children, following unlabeled arrows)
|
| - // to the workqueue q with associated capture info.
|
| - void AddToThreadq(Threadq* q, int id, int flag,
|
| - const char* p, const char** capture);
|
| -
|
| - // Run runq on byte c, appending new states to nextq.
|
| - // Updates matched_ and match_ as new, better matches are found.
|
| - // p is position of the next byte (the one after c)
|
| - // in the input string, used when processing capturing parens.
|
| - // flag is the bitwise or of Bol, Eol, etc., specifying whether
|
| - // ^, $ and \b match the current input point (after c).
|
| - inline int Step(Threadq* runq, Threadq* nextq, int c, int flag, const char* p);
|
| -
|
| - // Returns text version of capture information, for debugging.
|
| - string FormatCapture(const char** capture);
|
| -
|
| - inline void CopyCapture(const char** dst, const char** src);
|
| -
|
| - // Computes whether all matches must begin with the same first
|
| - // byte, and if so, returns that byte. If not, returns -1.
|
| - int ComputeFirstByte();
|
| -
|
| - Prog* prog_; // underlying program
|
| - int start_; // start instruction in program
|
| - int ncapture_; // number of submatches to track
|
| - bool longest_; // whether searching for longest match
|
| - bool endmatch_; // whether match must end at text.end()
|
| - const char* btext_; // beginning of text being matched (for FormatSubmatch)
|
| - const char* etext_; // end of text being matched (for endmatch_)
|
| - Threadq q0_, q1_; // pre-allocated for Search.
|
| - const char** match_; // best match so far
|
| - bool matched_; // any match so far?
|
| - AddState* astack_; // pre-allocated for AddToThreadq
|
| - int nastack_;
|
| - int first_byte_; // required first byte for match, or -1 if none
|
| -
|
| - Thread* free_threads_; // free list
|
| -
|
| - DISALLOW_COPY_AND_ASSIGN(NFA);
|
| -};
|
| -
|
| -NFA::NFA(Prog* prog) {
|
| - prog_ = prog;
|
| - start_ = prog->start();
|
| - ncapture_ = 0;
|
| - longest_ = false;
|
| - endmatch_ = false;
|
| - btext_ = NULL;
|
| - etext_ = NULL;
|
| - q0_.resize(prog_->size());
|
| - q1_.resize(prog_->size());
|
| - nastack_ = 2*prog_->size();
|
| - astack_ = new AddState[nastack_];
|
| - match_ = NULL;
|
| - matched_ = false;
|
| - free_threads_ = NULL;
|
| - first_byte_ = ComputeFirstByte();
|
| -}
|
| -
|
| -NFA::~NFA() {
|
| - delete[] match_;
|
| - delete[] astack_;
|
| - Thread* next;
|
| - for (Thread* t = free_threads_; t; t = next) {
|
| - next = t->next;
|
| - delete[] t->capture;
|
| - delete t;
|
| - }
|
| -}
|
| -
|
| -void NFA::FreeThread(Thread *t) {
|
| - if (t == NULL)
|
| - return;
|
| - t->next = free_threads_;
|
| - free_threads_ = t;
|
| -}
|
| -
|
| -NFA::Thread* NFA::AllocThread() {
|
| - Thread* t = free_threads_;
|
| - if (t == NULL) {
|
| - t = new Thread;
|
| - t->capture = new const char*[ncapture_];
|
| - return t;
|
| - }
|
| - free_threads_ = t->next;
|
| - return t;
|
| -}
|
| -
|
| -void NFA::CopyCapture(const char** dst, const char** src) {
|
| - for (int i = 0; i < ncapture_; i+=2) {
|
| - dst[i] = src[i];
|
| - dst[i+1] = src[i+1];
|
| - }
|
| -}
|
| -
|
| -// Follows all empty arrows from id0 and enqueues all the states reached.
|
| -// The bits in flag (Bol, Eol, etc.) specify whether ^, $ and \b match.
|
| -// The pointer p is the current input position, and m is the
|
| -// current set of match boundaries.
|
| -void NFA::AddToThreadq(Threadq* q, int id0, int flag,
|
| - const char* p, const char** capture) {
|
| - if (id0 == 0)
|
| - return;
|
| -
|
| - // Astack_ is pre-allocated to avoid resize operations.
|
| - // It has room for 2*prog_->size() entries, which is enough:
|
| - // Each inst in prog can be processed at most once,
|
| - // pushing at most two entries on stk.
|
| -
|
| - int nstk = 0;
|
| - AddState* stk = astack_;
|
| - stk[nstk++] = AddState(id0);
|
| -
|
| - while (nstk > 0) {
|
| - DCHECK_LE(nstk, nastack_);
|
| - const AddState& a = stk[--nstk];
|
| - if (a.j >= 0)
|
| - capture[a.j] = a.cap_j;
|
| -
|
| - int id = a.id;
|
| - if (id == 0)
|
| - continue;
|
| - if (q->has_index(id)) {
|
| - if (Debug)
|
| - fprintf(stderr, " [%d%s]\n", id, FormatCapture(capture).c_str());
|
| - continue;
|
| - }
|
| -
|
| - // Create entry in q no matter what. We might fill it in below,
|
| - // or we might not. Even if not, it is necessary to have it,
|
| - // so that we don't revisit id0 during the recursion.
|
| - q->set_new(id, NULL);
|
| -
|
| - Thread** tp = &q->find(id)->second;
|
| - int j;
|
| - Thread* t;
|
| - Prog::Inst* ip = prog_->inst(id);
|
| - switch (ip->opcode()) {
|
| - default:
|
| - LOG(DFATAL) << "unhandled " << ip->opcode() << " in AddToThreadq";
|
| - break;
|
| -
|
| - case kInstFail:
|
| - break;
|
| -
|
| - case kInstAltMatch:
|
| - // Save state; will pick up at next byte.
|
| - t = AllocThread();
|
| - t->id = id;
|
| - CopyCapture(t->capture, capture);
|
| - *tp = t;
|
| - // fall through
|
| -
|
| - case kInstAlt:
|
| - // Explore alternatives.
|
| - stk[nstk++] = AddState(ip->out1());
|
| - stk[nstk++] = AddState(ip->out());
|
| - break;
|
| -
|
| - case kInstNop:
|
| - // Continue on.
|
| - stk[nstk++] = AddState(ip->out());
|
| - break;
|
| -
|
| - case kInstCapture:
|
| - if ((j=ip->cap()) < ncapture_) {
|
| - // Push a dummy whose only job is to restore capture[j]
|
| - // once we finish exploring this possibility.
|
| - stk[nstk++] = AddState(0, capture[j], j);
|
| -
|
| - // Record capture.
|
| - capture[j] = p;
|
| - }
|
| - stk[nstk++] = AddState(ip->out());
|
| - break;
|
| -
|
| - case kInstMatch:
|
| - case kInstByteRange:
|
| - // Save state; will pick up at next byte.
|
| - t = AllocThread();
|
| - t->id = id;
|
| - CopyCapture(t->capture, capture);
|
| - *tp = t;
|
| - if (Debug)
|
| - fprintf(stderr, " + %d%s [%p]\n", id, FormatCapture(t->capture).c_str(), t);
|
| - break;
|
| -
|
| - case kInstEmptyWidth:
|
| - // Continue on if we have all the right flag bits.
|
| - if (ip->empty() & ~flag)
|
| - break;
|
| - stk[nstk++] = AddState(ip->out());
|
| - break;
|
| - }
|
| - }
|
| -}
|
| -
|
| -// Run runq on byte c, appending new states to nextq.
|
| -// Updates match as new, better matches are found.
|
| -// p is position of the byte c in the input string,
|
| -// used when processing capturing parens.
|
| -// flag is the bitwise or of Bol, Eol, etc., specifying whether
|
| -// ^, $ and \b match the current input point (after c).
|
| -// Frees all the threads on runq.
|
| -// If there is a shortcut to the end, returns that shortcut.
|
| -int NFA::Step(Threadq* runq, Threadq* nextq, int c, int flag, const char* p) {
|
| - nextq->clear();
|
| -
|
| - for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) {
|
| - Thread* t = i->second;
|
| - if (t == NULL)
|
| - continue;
|
| -
|
| - if (longest_) {
|
| - // Can skip any threads started after our current best match.
|
| - if (matched_ && match_[0] < t->capture[0]) {
|
| - FreeThread(t);
|
| - continue;
|
| - }
|
| - }
|
| -
|
| - int id = t->id;
|
| - Prog::Inst* ip = prog_->inst(id);
|
| -
|
| - switch (ip->opcode()) {
|
| - default:
|
| - // Should only see the values handled below.
|
| - LOG(DFATAL) << "Unhandled " << ip->opcode() << " in step";
|
| - break;
|
| -
|
| - case kInstByteRange:
|
| - if (ip->Matches(c))
|
| - AddToThreadq(nextq, ip->out(), flag, p+1, t->capture);
|
| - break;
|
| -
|
| - case kInstAltMatch:
|
| - if (i != runq->begin())
|
| - break;
|
| - // The match is ours if we want it.
|
| - if (ip->greedy(prog_) || longest_) {
|
| - CopyCapture((const char**)match_, t->capture);
|
| - FreeThread(t);
|
| - for (++i; i != runq->end(); ++i)
|
| - FreeThread(i->second);
|
| - runq->clear();
|
| - matched_ = true;
|
| - if (ip->greedy(prog_))
|
| - return ip->out1();
|
| - return ip->out();
|
| - }
|
| - break;
|
| -
|
| - case kInstMatch:
|
| - if (endmatch_ && p != etext_)
|
| - break;
|
| -
|
| - const char* old = t->capture[1]; // previous end pointer
|
| - t->capture[1] = p;
|
| - if (longest_) {
|
| - // Leftmost-longest mode: save this match only if
|
| - // it is either farther to the left or at the same
|
| - // point but longer than an existing match.
|
| - if (!matched_ || t->capture[0] < match_[0] ||
|
| - (t->capture[0] == match_[0] && t->capture[1] > match_[1]))
|
| - CopyCapture((const char**)match_, t->capture);
|
| - } else {
|
| - // Leftmost-biased mode: this match is by definition
|
| - // better than what we've already found (see next line).
|
| - CopyCapture((const char**)match_, t->capture);
|
| -
|
| - // Cut off the threads that can only find matches
|
| - // worse than the one we just found: don't run the
|
| - // rest of the current Threadq.
|
| - t->capture[0] = old;
|
| - FreeThread(t);
|
| - for (++i; i != runq->end(); ++i)
|
| - FreeThread(i->second);
|
| - runq->clear();
|
| - matched_ = true;
|
| - return 0;
|
| - }
|
| - t->capture[0] = old;
|
| - matched_ = true;
|
| - break;
|
| - }
|
| - FreeThread(t);
|
| - }
|
| - runq->clear();
|
| - return 0;
|
| -}
|
| -
|
| -string NFA::FormatCapture(const char** capture) {
|
| - string s;
|
| -
|
| - for (int i = 0; i < ncapture_; i+=2) {
|
| - if (capture[i] == NULL)
|
| - StringAppendF(&s, "(?,?)");
|
| - else if (capture[i+1] == NULL)
|
| - StringAppendF(&s, "(%d,?)", (int)(capture[i] - btext_));
|
| - else
|
| - StringAppendF(&s, "(%d,%d)",
|
| - (int)(capture[i] - btext_),
|
| - (int)(capture[i+1] - btext_));
|
| - }
|
| - return s;
|
| -}
|
| -
|
| -// Returns whether haystack contains needle's memory.
|
| -static bool StringPieceContains(const StringPiece haystack, const StringPiece needle) {
|
| - return haystack.begin() <= needle.begin() &&
|
| - haystack.end() >= needle.end();
|
| -}
|
| -
|
| -bool NFA::Search(const StringPiece& text, const StringPiece& const_context,
|
| - bool anchored, bool longest,
|
| - StringPiece* submatch, int nsubmatch) {
|
| - if (start_ == 0)
|
| - return false;
|
| -
|
| - StringPiece context = const_context;
|
| - if (context.begin() == NULL)
|
| - context = text;
|
| -
|
| - if (!StringPieceContains(context, text)) {
|
| - LOG(FATAL) << "Bad args: context does not contain text "
|
| - << reinterpret_cast<const void*>(context.begin())
|
| - << "+" << context.size() << " "
|
| - << reinterpret_cast<const void*>(text.begin())
|
| - << "+" << text.size();
|
| - return false;
|
| - }
|
| -
|
| - if (prog_->anchor_start() && context.begin() != text.begin())
|
| - return false;
|
| - if (prog_->anchor_end() && context.end() != text.end())
|
| - return false;
|
| - anchored |= prog_->anchor_start();
|
| - if (prog_->anchor_end()) {
|
| - longest = true;
|
| - endmatch_ = true;
|
| - etext_ = text.end();
|
| - }
|
| -
|
| - if (nsubmatch < 0) {
|
| - LOG(DFATAL) << "Bad args: nsubmatch=" << nsubmatch;
|
| - return false;
|
| - }
|
| -
|
| - // Save search parameters.
|
| - ncapture_ = 2*nsubmatch;
|
| - longest_ = longest;
|
| -
|
| - if (nsubmatch == 0) {
|
| - // We need to maintain match[0], both to distinguish the
|
| - // longest match (if longest is true) and also to tell
|
| - // whether we've seen any matches at all.
|
| - ncapture_ = 2;
|
| - }
|
| -
|
| - match_ = new const char*[ncapture_];
|
| - matched_ = false;
|
| - memset(match_, 0, ncapture_*sizeof match_[0]);
|
| -
|
| - // For debugging prints.
|
| - btext_ = context.begin();
|
| -
|
| - if (Debug) {
|
| - fprintf(stderr, "NFA::Search %s (context: %s) anchored=%d longest=%d\n",
|
| - text.as_string().c_str(), context.as_string().c_str(), anchored,
|
| - longest);
|
| - }
|
| -
|
| - // Set up search.
|
| - Threadq* runq = &q0_;
|
| - Threadq* nextq = &q1_;
|
| - runq->clear();
|
| - nextq->clear();
|
| - memset(&match_[0], 0, ncapture_*sizeof match_[0]);
|
| - const char* bp = context.begin();
|
| - int c = -1;
|
| - int wasword = 0;
|
| -
|
| - if (text.begin() > context.begin()) {
|
| - c = text.begin()[-1] & 0xFF;
|
| - wasword = Prog::IsWordChar(static_cast<uint8>(c));
|
| - }
|
| -
|
| - // Loop over the text, stepping the machine.
|
| - for (const char* p = text.begin();; p++) {
|
| - // Check for empty-width specials.
|
| - int flag = 0;
|
| -
|
| - // ^ and \A
|
| - if (p == context.begin())
|
| - flag |= kEmptyBeginText | kEmptyBeginLine;
|
| - else if (p <= context.end() && p[-1] == '\n')
|
| - flag |= kEmptyBeginLine;
|
| -
|
| - // $ and \z
|
| - if (p == context.end())
|
| - flag |= kEmptyEndText | kEmptyEndLine;
|
| - else if (p < context.end() && p[0] == '\n')
|
| - flag |= kEmptyEndLine;
|
| -
|
| - // \b and \B
|
| - int isword = 0;
|
| - if (p < context.end())
|
| - isword = Prog::IsWordChar(p[0] & 0xFF);
|
| -
|
| - if (isword != wasword)
|
| - flag |= kEmptyWordBoundary;
|
| - else
|
| - flag |= kEmptyNonWordBoundary;
|
| -
|
| - if (Debug) {
|
| - fprintf(stderr, "%c[%#x/%d/%d]:", p > text.end() ? '$' : p == bp ? '^' : c, flag, isword, wasword);
|
| - for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i) {
|
| - Thread* t = i->second;
|
| - if (t == NULL)
|
| - continue;
|
| - fprintf(stderr, " %d%s", t->id,
|
| - FormatCapture((const char**)t->capture).c_str());
|
| - }
|
| - fprintf(stderr, "\n");
|
| - }
|
| -
|
| - // Process previous character (waited until now to avoid
|
| - // repeating the flag computation above).
|
| - // This is a no-op the first time around the loop, because
|
| - // runq is empty.
|
| - int id = Step(runq, nextq, c, flag, p-1);
|
| - DCHECK_EQ(runq->size(), 0);
|
| - swap(nextq, runq);
|
| - nextq->clear();
|
| - if (id != 0) {
|
| - // We're done: full match ahead.
|
| - p = text.end();
|
| - for (;;) {
|
| - Prog::Inst* ip = prog_->inst(id);
|
| - switch (ip->opcode()) {
|
| - default:
|
| - LOG(DFATAL) << "Unexpected opcode in short circuit: " << ip->opcode();
|
| - break;
|
| -
|
| - case kInstCapture:
|
| - if (ip->cap() < ncapture_)
|
| - match_[ip->cap()] = p;
|
| - id = ip->out();
|
| - continue;
|
| -
|
| - case kInstNop:
|
| - id = ip->out();
|
| - continue;
|
| -
|
| - case kInstMatch:
|
| - match_[1] = p;
|
| - matched_ = true;
|
| - break;
|
| -
|
| - case kInstEmptyWidth:
|
| - if (ip->empty() & ~(kEmptyEndLine|kEmptyEndText)) {
|
| - LOG(DFATAL) << "Unexpected empty-width in short circuit: " << ip->empty();
|
| - break;
|
| - }
|
| - id = ip->out();
|
| - continue;
|
| - }
|
| - break;
|
| - }
|
| - break;
|
| - }
|
| -
|
| - if (p > text.end())
|
| - break;
|
| -
|
| - // Start a new thread if there have not been any matches.
|
| - // (No point in starting a new thread if there have been
|
| - // matches, since it would be to the right of the match
|
| - // we already found.)
|
| - if (!matched_ && (!anchored || p == text.begin())) {
|
| - // If there's a required first byte for an unanchored search
|
| - // and we're not in the middle of any possible matches,
|
| - // use memchr to search for the byte quickly.
|
| - if (!anchored && first_byte_ >= 0 && runq->size() == 0 &&
|
| - p < text.end() && (p[0] & 0xFF) != first_byte_) {
|
| - p = reinterpret_cast<const char*>(memchr(p, first_byte_,
|
| - text.end() - p));
|
| - if (p == NULL) {
|
| - p = text.end();
|
| - isword = 0;
|
| - } else {
|
| - isword = Prog::IsWordChar(p[0] & 0xFF);
|
| - }
|
| - flag = Prog::EmptyFlags(context, p);
|
| - }
|
| -
|
| - // Steal match storage (cleared but unused as of yet)
|
| - // temporarily to hold match boundaries for new thread.
|
| - match_[0] = p;
|
| - AddToThreadq(runq, start_, flag, p, match_);
|
| - match_[0] = NULL;
|
| - }
|
| -
|
| - // If all the threads have died, stop early.
|
| - if (runq->size() == 0) {
|
| - if (Debug)
|
| - fprintf(stderr, "dead\n");
|
| - break;
|
| - }
|
| -
|
| - if (p == text.end())
|
| - c = 0;
|
| - else
|
| - c = *p & 0xFF;
|
| - wasword = isword;
|
| -
|
| - // Will run step(runq, nextq, c, ...) on next iteration. See above.
|
| - }
|
| -
|
| - for (Threadq::iterator i = runq->begin(); i != runq->end(); ++i)
|
| - FreeThread(i->second);
|
| -
|
| - if (matched_) {
|
| - for (int i = 0; i < nsubmatch; i++)
|
| - submatch[i].set(match_[2*i],
|
| - static_cast<int>(match_[2*i+1] - match_[2*i]));
|
| - if (Debug)
|
| - fprintf(stderr, "match (%d,%d)\n",
|
| - static_cast<int>(match_[0] - btext_),
|
| - static_cast<int>(match_[1] - btext_));
|
| - return true;
|
| - }
|
| - VLOG(1) << "No matches found";
|
| - return false;
|
| -}
|
| -
|
| -// Computes whether all successful matches have a common first byte,
|
| -// and if so, returns that byte. If not, returns -1.
|
| -int NFA::ComputeFirstByte() {
|
| - if (start_ == 0)
|
| - return -1;
|
| -
|
| - int b = -1; // first byte, not yet computed
|
| -
|
| - typedef SparseSet Workq;
|
| - Workq q(prog_->size());
|
| - q.insert(start_);
|
| - for (Workq::iterator it = q.begin(); it != q.end(); ++it) {
|
| - int id = *it;
|
| - Prog::Inst* ip = prog_->inst(id);
|
| - switch (ip->opcode()) {
|
| - default:
|
| - LOG(DFATAL) << "unhandled " << ip->opcode() << " in ComputeFirstByte";
|
| - break;
|
| -
|
| - case kInstMatch:
|
| - // The empty string matches: no first byte.
|
| - return -1;
|
| -
|
| - case kInstByteRange:
|
| - // Must match only a single byte
|
| - if (ip->lo() != ip->hi())
|
| - return -1;
|
| - if (ip->foldcase() && 'a' <= ip->lo() && ip->lo() <= 'z')
|
| - return -1;
|
| - // If we haven't seen any bytes yet, record it;
|
| - // otherwise must match the one we saw before.
|
| - if (b == -1)
|
| - b = ip->lo();
|
| - else if (b != ip->lo())
|
| - return -1;
|
| - break;
|
| -
|
| - case kInstNop:
|
| - case kInstCapture:
|
| - case kInstEmptyWidth:
|
| - // Continue on.
|
| - // Ignore ip->empty() flags for kInstEmptyWidth
|
| - // in order to be as conservative as possible
|
| - // (assume all possible empty-width flags are true).
|
| - if (ip->out())
|
| - q.insert(ip->out());
|
| - break;
|
| -
|
| - case kInstAlt:
|
| - case kInstAltMatch:
|
| - // Explore alternatives.
|
| - if (ip->out())
|
| - q.insert(ip->out());
|
| - if (ip->out1())
|
| - q.insert(ip->out1());
|
| - break;
|
| -
|
| - case kInstFail:
|
| - break;
|
| - }
|
| - }
|
| - return b;
|
| -}
|
| -
|
| -bool
|
| -Prog::SearchNFA(const StringPiece& text, const StringPiece& context,
|
| - Anchor anchor, MatchKind kind,
|
| - StringPiece* match, int nmatch) {
|
| - if (NFA::Debug)
|
| - Dump();
|
| -
|
| - NFA nfa(this);
|
| - StringPiece sp;
|
| - if (kind == kFullMatch) {
|
| - anchor = kAnchored;
|
| - if (nmatch == 0) {
|
| - match = &sp;
|
| - nmatch = 1;
|
| - }
|
| - }
|
| - if (!nfa.Search(text, context, anchor == kAnchored, kind != kFirstMatch, match, nmatch))
|
| - return false;
|
| - if (kind == kFullMatch && match[0].end() != text.end())
|
| - return false;
|
| - return true;
|
| -}
|
| -
|
| -// For each instruction i in the program reachable from the start, compute the
|
| -// number of instructions reachable from i by following only empty transitions
|
| -// and record that count as fanout[i].
|
| -//
|
| -// fanout holds the results and is also the work queue for the outer iteration.
|
| -// reachable holds the reached nodes for the inner iteration.
|
| -void Prog::Fanout(SparseArray<int>* fanout) {
|
| - DCHECK_EQ(fanout->max_size(), size());
|
| - SparseSet reachable(size());
|
| - fanout->clear();
|
| - fanout->set_new(start(), 0);
|
| - for (SparseArray<int>::iterator i = fanout->begin(); i != fanout->end(); ++i) {
|
| - int* count = &i->second;
|
| - reachable.clear();
|
| - reachable.insert(i->index());
|
| - for (SparseSet::iterator j = reachable.begin(); j != reachable.end(); ++j) {
|
| - Prog::Inst* ip = inst(*j);
|
| - switch (ip->opcode()) {
|
| - default:
|
| - LOG(DFATAL) << "unhandled " << ip->opcode() << " in Prog::Fanout()";
|
| - break;
|
| -
|
| - case kInstByteRange:
|
| - (*count)++;
|
| - if (!fanout->has_index(ip->out())) {
|
| - fanout->set_new(ip->out(), 0);
|
| - }
|
| - break;
|
| -
|
| - case kInstAlt:
|
| - case kInstAltMatch:
|
| - reachable.insert(ip->out1());
|
| - // fall through
|
| -
|
| - case kInstCapture:
|
| - case kInstEmptyWidth:
|
| - case kInstNop:
|
| - reachable.insert(ip->out());
|
| - break;
|
| -
|
| - case kInstMatch:
|
| - case kInstFail:
|
| - break;
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -} // namespace re2
|
|
|