Index: third_party/re2/re2/bitstate.cc |
diff --git a/third_party/re2/re2/bitstate.cc b/third_party/re2/re2/bitstate.cc |
deleted file mode 100644 |
index 5740daa486679549cfb33ef569d35c6225c72cfa..0000000000000000000000000000000000000000 |
--- a/third_party/re2/re2/bitstate.cc |
+++ /dev/null |
@@ -1,381 +0,0 @@ |
-// Copyright 2008 The RE2 Authors. All Rights Reserved. |
-// Use of this source code is governed by a BSD-style |
-// license that can be found in the LICENSE file. |
- |
-// Tested by search_test.cc, exhaustive_test.cc, tester.cc |
- |
-// Prog::SearchBitState is a regular expression search with submatch |
-// tracking for small regular expressions and texts. Like |
-// testing/backtrack.cc, it allocates a bit vector with (length of |
-// text) * (length of prog) bits, to make sure it never explores the |
-// same (character position, instruction) state multiple times. This |
-// limits the search to run in time linear in the length of the text. |
-// |
-// Unlike testing/backtrack.cc, SearchBitState is not recursive |
-// on the text. |
-// |
-// SearchBitState is a fast replacement for the NFA code on small |
-// regexps and texts when SearchOnePass cannot be used. |
- |
-#include "re2/prog.h" |
-#include "re2/regexp.h" |
- |
-namespace re2 { |
- |
-struct Job { |
- int id; |
- int arg; |
- const char* p; |
-}; |
- |
-class BitState { |
- public: |
- explicit BitState(Prog* prog); |
- ~BitState(); |
- |
- // The usual Search prototype. |
- // Can only call Search once per BitState. |
- bool Search(const StringPiece& text, const StringPiece& context, |
- bool anchored, bool longest, |
- StringPiece* submatch, int nsubmatch); |
- |
- private: |
- inline bool ShouldVisit(int id, const char* p); |
- void Push(int id, const char* p, int arg); |
- bool GrowStack(); |
- bool TrySearch(int id, const char* p); |
- |
- // Search parameters |
- Prog* prog_; // program being run |
- StringPiece text_; // text being searched |
- StringPiece context_; // greater context of text being searched |
- bool anchored_; // whether search is anchored at text.begin() |
- bool longest_; // whether search wants leftmost-longest match |
- bool endmatch_; // whether match must end at text.end() |
- StringPiece *submatch_; // submatches to fill in |
- int nsubmatch_; // # of submatches to fill in |
- |
- // Search state |
- const char** cap_; // capture registers |
- int ncap_; |
- |
- static const int VisitedBits = 32; |
- uint32 *visited_; // bitmap: (Inst*, char*) pairs already backtracked |
- int nvisited_; // # of words in bitmap |
- |
- Job *job_; // stack of text positions to explore |
- int njob_; |
- int maxjob_; |
-}; |
- |
-BitState::BitState(Prog* prog) |
- : prog_(prog), |
- anchored_(false), |
- longest_(false), |
- endmatch_(false), |
- submatch_(NULL), |
- nsubmatch_(0), |
- cap_(NULL), |
- ncap_(0), |
- visited_(NULL), |
- nvisited_(0), |
- job_(NULL), |
- njob_(0), |
- maxjob_(0) { |
-} |
- |
-BitState::~BitState() { |
- delete[] visited_; |
- delete[] job_; |
- delete[] cap_; |
-} |
- |
-// Should the search visit the pair ip, p? |
-// If so, remember that it was visited so that the next time, |
-// we don't repeat the visit. |
-bool BitState::ShouldVisit(int id, const char* p) { |
- size_t n = id * (text_.size() + 1) + (p - text_.begin()); |
- if (visited_[n/VisitedBits] & (1 << (n & (VisitedBits-1)))) |
- return false; |
- visited_[n/VisitedBits] |= 1 << (n & (VisitedBits-1)); |
- return true; |
-} |
- |
-// Grow the stack. |
-bool BitState::GrowStack() { |
- // VLOG(0) << "Reallocate."; |
- maxjob_ *= 2; |
- Job* newjob = new Job[maxjob_]; |
- memmove(newjob, job_, njob_*sizeof job_[0]); |
- delete[] job_; |
- job_ = newjob; |
- if (njob_ >= maxjob_) { |
- LOG(DFATAL) << "Job stack overflow."; |
- return false; |
- } |
- return true; |
-} |
- |
-// Push the triple (id, p, arg) onto the stack, growing it if necessary. |
-void BitState::Push(int id, const char* p, int arg) { |
- if (njob_ >= maxjob_) { |
- if (!GrowStack()) |
- return; |
- } |
- int op = prog_->inst(id)->opcode(); |
- if (op == kInstFail) |
- return; |
- |
- // Only check ShouldVisit when arg == 0. |
- // When arg > 0, we are continuing a previous visit. |
- if (arg == 0 && !ShouldVisit(id, p)) |
- return; |
- |
- Job* j = &job_[njob_++]; |
- j->id = id; |
- j->p = p; |
- j->arg = arg; |
-} |
- |
-// Try a search from instruction id0 in state p0. |
-// Return whether it succeeded. |
-bool BitState::TrySearch(int id0, const char* p0) { |
- bool matched = false; |
- const char* end = text_.end(); |
- njob_ = 0; |
- Push(id0, p0, 0); |
- while (njob_ > 0) { |
- // Pop job off stack. |
- --njob_; |
- int id = job_[njob_].id; |
- const char* p = job_[njob_].p; |
- int arg = job_[njob_].arg; |
- |
- // Optimization: rather than push and pop, |
- // code that is going to Push and continue |
- // the loop simply updates ip, p, and arg |
- // and jumps to CheckAndLoop. We have to |
- // do the ShouldVisit check that Push |
- // would have, but we avoid the stack |
- // manipulation. |
- if (0) { |
- CheckAndLoop: |
- if (!ShouldVisit(id, p)) |
- continue; |
- } |
- |
- // Visit ip, p. |
- // VLOG(0) << "Job: " << ip->id() << " " |
- // << (p - text_.begin()) << " " << arg; |
- Prog::Inst* ip = prog_->inst(id); |
- switch (ip->opcode()) { |
- case kInstFail: |
- return false; |
- |
- default: |
- LOG(DFATAL) << "Unexpected opcode: " << ip->opcode() << " arg " << arg; |
- return false; |
- |
- case kInstAlt: |
- // Cannot just |
- // Push(ip->out1(), p, 0); |
- // Push(ip->out(), p, 0); |
- // If, during the processing of ip->out(), we encounter |
- // ip->out1() via another path, we want to process it then. |
- // Pushing it here will inhibit that. Instead, re-push |
- // ip with arg==1 as a reminder to push ip->out1() later. |
- switch (arg) { |
- case 0: |
- Push(id, p, 1); // come back when we're done |
- id = ip->out(); |
- goto CheckAndLoop; |
- |
- case 1: |
- // Finished ip->out(); try ip->out1(). |
- arg = 0; |
- id = ip->out1(); |
- goto CheckAndLoop; |
- } |
- LOG(DFATAL) << "Bad arg in kInstCapture: " << arg; |
- continue; |
- |
- case kInstAltMatch: |
- // One opcode is byte range; the other leads to match. |
- if (ip->greedy(prog_)) { |
- // out1 is the match |
- Push(ip->out1(), p, 0); |
- id = ip->out1(); |
- p = end; |
- goto CheckAndLoop; |
- } |
- // out is the match - non-greedy |
- Push(ip->out(), end, 0); |
- id = ip->out(); |
- goto CheckAndLoop; |
- |
- case kInstByteRange: { |
- int c = -1; |
- if (p < end) |
- c = *p & 0xFF; |
- if (ip->Matches(c)) { |
- id = ip->out(); |
- p++; |
- goto CheckAndLoop; |
- } |
- continue; |
- } |
- |
- case kInstCapture: |
- switch (arg) { |
- case 0: |
- if (0 <= ip->cap() && ip->cap() < ncap_) { |
- // Capture p to register, but save old value. |
- Push(id, cap_[ip->cap()], 1); // come back when we're done |
- cap_[ip->cap()] = p; |
- } |
- // Continue on. |
- id = ip->out(); |
- goto CheckAndLoop; |
- case 1: |
- // Finished ip->out(); restore the old value. |
- cap_[ip->cap()] = p; |
- continue; |
- } |
- LOG(DFATAL) << "Bad arg in kInstCapture: " << arg; |
- continue; |
- |
- case kInstEmptyWidth: |
- if (ip->empty() & ~Prog::EmptyFlags(context_, p)) |
- continue; |
- id = ip->out(); |
- goto CheckAndLoop; |
- |
- case kInstNop: |
- id = ip->out(); |
- goto CheckAndLoop; |
- |
- case kInstMatch: { |
- if (endmatch_ && p != text_.end()) |
- continue; |
- |
- // VLOG(0) << "Found match."; |
- // We found a match. If the caller doesn't care |
- // where the match is, no point going further. |
- if (nsubmatch_ == 0) |
- return true; |
- |
- // Record best match so far. |
- // Only need to check end point, because this entire |
- // call is only considering one start position. |
- matched = true; |
- cap_[1] = p; |
- if (submatch_[0].data() == NULL || |
- (longest_ && p > submatch_[0].end())) { |
- for (int i = 0; i < nsubmatch_; i++) |
- submatch_[i].set(cap_[2*i], |
- static_cast<int>(cap_[2*i+1] - cap_[2*i])); |
- } |
- |
- // If going for first match, we're done. |
- if (!longest_) |
- return true; |
- |
- // If we used the entire text, no longer match is possible. |
- if (p == text_.end()) |
- return true; |
- |
- // Otherwise, continue on in hope of a longer match. |
- continue; |
- } |
- } |
- } |
- return matched; |
-} |
- |
-// Search text (within context) for prog_. |
-bool BitState::Search(const StringPiece& text, const StringPiece& context, |
- bool anchored, bool longest, |
- StringPiece* submatch, int nsubmatch) { |
- // Search parameters. |
- text_ = text; |
- context_ = context; |
- if (context_.begin() == NULL) |
- context_ = text; |
- if (prog_->anchor_start() && context_.begin() != text.begin()) |
- return false; |
- if (prog_->anchor_end() && context_.end() != text.end()) |
- return false; |
- anchored_ = anchored || prog_->anchor_start(); |
- longest_ = longest || prog_->anchor_end(); |
- endmatch_ = prog_->anchor_end(); |
- submatch_ = submatch; |
- nsubmatch_ = nsubmatch; |
- for (int i = 0; i < nsubmatch_; i++) |
- submatch_[i] = NULL; |
- |
- // Allocate scratch space. |
- nvisited_ = (prog_->size() * (text.size()+1) + VisitedBits-1) / VisitedBits; |
- visited_ = new uint32[nvisited_]; |
- memset(visited_, 0, nvisited_*sizeof visited_[0]); |
- // VLOG(0) << "nvisited_ = " << nvisited_; |
- |
- ncap_ = 2*nsubmatch; |
- if (ncap_ < 2) |
- ncap_ = 2; |
- cap_ = new const char*[ncap_]; |
- memset(cap_, 0, ncap_*sizeof cap_[0]); |
- |
- maxjob_ = 256; |
- job_ = new Job[maxjob_]; |
- |
- // Anchored search must start at text.begin(). |
- if (anchored_) { |
- cap_[0] = text.begin(); |
- return TrySearch(prog_->start(), text.begin()); |
- } |
- |
- // Unanchored search, starting from each possible text position. |
- // Notice that we have to try the empty string at the end of |
- // the text, so the loop condition is p <= text.end(), not p < text.end(). |
- // This looks like it's quadratic in the size of the text, |
- // but we are not clearing visited_ between calls to TrySearch, |
- // so no work is duplicated and it ends up still being linear. |
- for (const char* p = text.begin(); p <= text.end(); p++) { |
- cap_[0] = p; |
- if (TrySearch(prog_->start(), p)) // Match must be leftmost; done. |
- return true; |
- } |
- return false; |
-} |
- |
-// Bit-state search. |
-bool Prog::SearchBitState(const StringPiece& text, |
- const StringPiece& context, |
- Anchor anchor, |
- MatchKind kind, |
- StringPiece* match, |
- int nmatch) { |
- // If full match, we ask for an anchored longest match |
- // and then check that match[0] == text. |
- // So make sure match[0] exists. |
- StringPiece sp0; |
- if (kind == kFullMatch) { |
- anchor = kAnchored; |
- if (nmatch < 1) { |
- match = &sp0; |
- nmatch = 1; |
- } |
- } |
- |
- // Run the search. |
- BitState b(this); |
- bool anchored = anchor == kAnchored; |
- bool longest = kind != kFirstMatch; |
- if (!b.Search(text, context, anchored, longest, match, nmatch)) |
- return false; |
- if (kind == kFullMatch && match[0].end() != text.end()) |
- return false; |
- return true; |
-} |
- |
-} // namespace re2 |