| Index: third_party/re2/re2/bitstate.cc
|
| diff --git a/third_party/re2/re2/bitstate.cc b/third_party/re2/re2/bitstate.cc
|
| deleted file mode 100644
|
| index 5740daa486679549cfb33ef569d35c6225c72cfa..0000000000000000000000000000000000000000
|
| --- a/third_party/re2/re2/bitstate.cc
|
| +++ /dev/null
|
| @@ -1,381 +0,0 @@
|
| -// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
| -// Use of this source code is governed by a BSD-style
|
| -// license that can be found in the LICENSE file.
|
| -
|
| -// Tested by search_test.cc, exhaustive_test.cc, tester.cc
|
| -
|
| -// Prog::SearchBitState is a regular expression search with submatch
|
| -// tracking for small regular expressions and texts. Like
|
| -// testing/backtrack.cc, it allocates a bit vector with (length of
|
| -// text) * (length of prog) bits, to make sure it never explores the
|
| -// same (character position, instruction) state multiple times. This
|
| -// limits the search to run in time linear in the length of the text.
|
| -//
|
| -// Unlike testing/backtrack.cc, SearchBitState is not recursive
|
| -// on the text.
|
| -//
|
| -// SearchBitState is a fast replacement for the NFA code on small
|
| -// regexps and texts when SearchOnePass cannot be used.
|
| -
|
| -#include "re2/prog.h"
|
| -#include "re2/regexp.h"
|
| -
|
| -namespace re2 {
|
| -
|
| -struct Job {
|
| - int id;
|
| - int arg;
|
| - const char* p;
|
| -};
|
| -
|
| -class BitState {
|
| - public:
|
| - explicit BitState(Prog* prog);
|
| - ~BitState();
|
| -
|
| - // The usual Search prototype.
|
| - // Can only call Search once per BitState.
|
| - bool Search(const StringPiece& text, const StringPiece& context,
|
| - bool anchored, bool longest,
|
| - StringPiece* submatch, int nsubmatch);
|
| -
|
| - private:
|
| - inline bool ShouldVisit(int id, const char* p);
|
| - void Push(int id, const char* p, int arg);
|
| - bool GrowStack();
|
| - bool TrySearch(int id, const char* p);
|
| -
|
| - // Search parameters
|
| - Prog* prog_; // program being run
|
| - StringPiece text_; // text being searched
|
| - StringPiece context_; // greater context of text being searched
|
| - bool anchored_; // whether search is anchored at text.begin()
|
| - bool longest_; // whether search wants leftmost-longest match
|
| - bool endmatch_; // whether match must end at text.end()
|
| - StringPiece *submatch_; // submatches to fill in
|
| - int nsubmatch_; // # of submatches to fill in
|
| -
|
| - // Search state
|
| - const char** cap_; // capture registers
|
| - int ncap_;
|
| -
|
| - static const int VisitedBits = 32;
|
| - uint32 *visited_; // bitmap: (Inst*, char*) pairs already backtracked
|
| - int nvisited_; // # of words in bitmap
|
| -
|
| - Job *job_; // stack of text positions to explore
|
| - int njob_;
|
| - int maxjob_;
|
| -};
|
| -
|
| -BitState::BitState(Prog* prog)
|
| - : prog_(prog),
|
| - anchored_(false),
|
| - longest_(false),
|
| - endmatch_(false),
|
| - submatch_(NULL),
|
| - nsubmatch_(0),
|
| - cap_(NULL),
|
| - ncap_(0),
|
| - visited_(NULL),
|
| - nvisited_(0),
|
| - job_(NULL),
|
| - njob_(0),
|
| - maxjob_(0) {
|
| -}
|
| -
|
| -BitState::~BitState() {
|
| - delete[] visited_;
|
| - delete[] job_;
|
| - delete[] cap_;
|
| -}
|
| -
|
| -// Should the search visit the pair ip, p?
|
| -// If so, remember that it was visited so that the next time,
|
| -// we don't repeat the visit.
|
| -bool BitState::ShouldVisit(int id, const char* p) {
|
| - size_t n = id * (text_.size() + 1) + (p - text_.begin());
|
| - if (visited_[n/VisitedBits] & (1 << (n & (VisitedBits-1))))
|
| - return false;
|
| - visited_[n/VisitedBits] |= 1 << (n & (VisitedBits-1));
|
| - return true;
|
| -}
|
| -
|
| -// Grow the stack.
|
| -bool BitState::GrowStack() {
|
| - // VLOG(0) << "Reallocate.";
|
| - maxjob_ *= 2;
|
| - Job* newjob = new Job[maxjob_];
|
| - memmove(newjob, job_, njob_*sizeof job_[0]);
|
| - delete[] job_;
|
| - job_ = newjob;
|
| - if (njob_ >= maxjob_) {
|
| - LOG(DFATAL) << "Job stack overflow.";
|
| - return false;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -// Push the triple (id, p, arg) onto the stack, growing it if necessary.
|
| -void BitState::Push(int id, const char* p, int arg) {
|
| - if (njob_ >= maxjob_) {
|
| - if (!GrowStack())
|
| - return;
|
| - }
|
| - int op = prog_->inst(id)->opcode();
|
| - if (op == kInstFail)
|
| - return;
|
| -
|
| - // Only check ShouldVisit when arg == 0.
|
| - // When arg > 0, we are continuing a previous visit.
|
| - if (arg == 0 && !ShouldVisit(id, p))
|
| - return;
|
| -
|
| - Job* j = &job_[njob_++];
|
| - j->id = id;
|
| - j->p = p;
|
| - j->arg = arg;
|
| -}
|
| -
|
| -// Try a search from instruction id0 in state p0.
|
| -// Return whether it succeeded.
|
| -bool BitState::TrySearch(int id0, const char* p0) {
|
| - bool matched = false;
|
| - const char* end = text_.end();
|
| - njob_ = 0;
|
| - Push(id0, p0, 0);
|
| - while (njob_ > 0) {
|
| - // Pop job off stack.
|
| - --njob_;
|
| - int id = job_[njob_].id;
|
| - const char* p = job_[njob_].p;
|
| - int arg = job_[njob_].arg;
|
| -
|
| - // Optimization: rather than push and pop,
|
| - // code that is going to Push and continue
|
| - // the loop simply updates ip, p, and arg
|
| - // and jumps to CheckAndLoop. We have to
|
| - // do the ShouldVisit check that Push
|
| - // would have, but we avoid the stack
|
| - // manipulation.
|
| - if (0) {
|
| - CheckAndLoop:
|
| - if (!ShouldVisit(id, p))
|
| - continue;
|
| - }
|
| -
|
| - // Visit ip, p.
|
| - // VLOG(0) << "Job: " << ip->id() << " "
|
| - // << (p - text_.begin()) << " " << arg;
|
| - Prog::Inst* ip = prog_->inst(id);
|
| - switch (ip->opcode()) {
|
| - case kInstFail:
|
| - return false;
|
| -
|
| - default:
|
| - LOG(DFATAL) << "Unexpected opcode: " << ip->opcode() << " arg " << arg;
|
| - return false;
|
| -
|
| - case kInstAlt:
|
| - // Cannot just
|
| - // Push(ip->out1(), p, 0);
|
| - // Push(ip->out(), p, 0);
|
| - // If, during the processing of ip->out(), we encounter
|
| - // ip->out1() via another path, we want to process it then.
|
| - // Pushing it here will inhibit that. Instead, re-push
|
| - // ip with arg==1 as a reminder to push ip->out1() later.
|
| - switch (arg) {
|
| - case 0:
|
| - Push(id, p, 1); // come back when we're done
|
| - id = ip->out();
|
| - goto CheckAndLoop;
|
| -
|
| - case 1:
|
| - // Finished ip->out(); try ip->out1().
|
| - arg = 0;
|
| - id = ip->out1();
|
| - goto CheckAndLoop;
|
| - }
|
| - LOG(DFATAL) << "Bad arg in kInstCapture: " << arg;
|
| - continue;
|
| -
|
| - case kInstAltMatch:
|
| - // One opcode is byte range; the other leads to match.
|
| - if (ip->greedy(prog_)) {
|
| - // out1 is the match
|
| - Push(ip->out1(), p, 0);
|
| - id = ip->out1();
|
| - p = end;
|
| - goto CheckAndLoop;
|
| - }
|
| - // out is the match - non-greedy
|
| - Push(ip->out(), end, 0);
|
| - id = ip->out();
|
| - goto CheckAndLoop;
|
| -
|
| - case kInstByteRange: {
|
| - int c = -1;
|
| - if (p < end)
|
| - c = *p & 0xFF;
|
| - if (ip->Matches(c)) {
|
| - id = ip->out();
|
| - p++;
|
| - goto CheckAndLoop;
|
| - }
|
| - continue;
|
| - }
|
| -
|
| - case kInstCapture:
|
| - switch (arg) {
|
| - case 0:
|
| - if (0 <= ip->cap() && ip->cap() < ncap_) {
|
| - // Capture p to register, but save old value.
|
| - Push(id, cap_[ip->cap()], 1); // come back when we're done
|
| - cap_[ip->cap()] = p;
|
| - }
|
| - // Continue on.
|
| - id = ip->out();
|
| - goto CheckAndLoop;
|
| - case 1:
|
| - // Finished ip->out(); restore the old value.
|
| - cap_[ip->cap()] = p;
|
| - continue;
|
| - }
|
| - LOG(DFATAL) << "Bad arg in kInstCapture: " << arg;
|
| - continue;
|
| -
|
| - case kInstEmptyWidth:
|
| - if (ip->empty() & ~Prog::EmptyFlags(context_, p))
|
| - continue;
|
| - id = ip->out();
|
| - goto CheckAndLoop;
|
| -
|
| - case kInstNop:
|
| - id = ip->out();
|
| - goto CheckAndLoop;
|
| -
|
| - case kInstMatch: {
|
| - if (endmatch_ && p != text_.end())
|
| - continue;
|
| -
|
| - // VLOG(0) << "Found match.";
|
| - // We found a match. If the caller doesn't care
|
| - // where the match is, no point going further.
|
| - if (nsubmatch_ == 0)
|
| - return true;
|
| -
|
| - // Record best match so far.
|
| - // Only need to check end point, because this entire
|
| - // call is only considering one start position.
|
| - matched = true;
|
| - cap_[1] = p;
|
| - if (submatch_[0].data() == NULL ||
|
| - (longest_ && p > submatch_[0].end())) {
|
| - for (int i = 0; i < nsubmatch_; i++)
|
| - submatch_[i].set(cap_[2*i],
|
| - static_cast<int>(cap_[2*i+1] - cap_[2*i]));
|
| - }
|
| -
|
| - // If going for first match, we're done.
|
| - if (!longest_)
|
| - return true;
|
| -
|
| - // If we used the entire text, no longer match is possible.
|
| - if (p == text_.end())
|
| - return true;
|
| -
|
| - // Otherwise, continue on in hope of a longer match.
|
| - continue;
|
| - }
|
| - }
|
| - }
|
| - return matched;
|
| -}
|
| -
|
| -// Search text (within context) for prog_.
|
| -bool BitState::Search(const StringPiece& text, const StringPiece& context,
|
| - bool anchored, bool longest,
|
| - StringPiece* submatch, int nsubmatch) {
|
| - // Search parameters.
|
| - text_ = text;
|
| - context_ = context;
|
| - if (context_.begin() == NULL)
|
| - context_ = text;
|
| - if (prog_->anchor_start() && context_.begin() != text.begin())
|
| - return false;
|
| - if (prog_->anchor_end() && context_.end() != text.end())
|
| - return false;
|
| - anchored_ = anchored || prog_->anchor_start();
|
| - longest_ = longest || prog_->anchor_end();
|
| - endmatch_ = prog_->anchor_end();
|
| - submatch_ = submatch;
|
| - nsubmatch_ = nsubmatch;
|
| - for (int i = 0; i < nsubmatch_; i++)
|
| - submatch_[i] = NULL;
|
| -
|
| - // Allocate scratch space.
|
| - nvisited_ = (prog_->size() * (text.size()+1) + VisitedBits-1) / VisitedBits;
|
| - visited_ = new uint32[nvisited_];
|
| - memset(visited_, 0, nvisited_*sizeof visited_[0]);
|
| - // VLOG(0) << "nvisited_ = " << nvisited_;
|
| -
|
| - ncap_ = 2*nsubmatch;
|
| - if (ncap_ < 2)
|
| - ncap_ = 2;
|
| - cap_ = new const char*[ncap_];
|
| - memset(cap_, 0, ncap_*sizeof cap_[0]);
|
| -
|
| - maxjob_ = 256;
|
| - job_ = new Job[maxjob_];
|
| -
|
| - // Anchored search must start at text.begin().
|
| - if (anchored_) {
|
| - cap_[0] = text.begin();
|
| - return TrySearch(prog_->start(), text.begin());
|
| - }
|
| -
|
| - // Unanchored search, starting from each possible text position.
|
| - // Notice that we have to try the empty string at the end of
|
| - // the text, so the loop condition is p <= text.end(), not p < text.end().
|
| - // This looks like it's quadratic in the size of the text,
|
| - // but we are not clearing visited_ between calls to TrySearch,
|
| - // so no work is duplicated and it ends up still being linear.
|
| - for (const char* p = text.begin(); p <= text.end(); p++) {
|
| - cap_[0] = p;
|
| - if (TrySearch(prog_->start(), p)) // Match must be leftmost; done.
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -// Bit-state search.
|
| -bool Prog::SearchBitState(const StringPiece& text,
|
| - const StringPiece& context,
|
| - Anchor anchor,
|
| - MatchKind kind,
|
| - StringPiece* match,
|
| - int nmatch) {
|
| - // If full match, we ask for an anchored longest match
|
| - // and then check that match[0] == text.
|
| - // So make sure match[0] exists.
|
| - StringPiece sp0;
|
| - if (kind == kFullMatch) {
|
| - anchor = kAnchored;
|
| - if (nmatch < 1) {
|
| - match = &sp0;
|
| - nmatch = 1;
|
| - }
|
| - }
|
| -
|
| - // Run the search.
|
| - BitState b(this);
|
| - bool anchored = anchor == kAnchored;
|
| - bool longest = kind != kFirstMatch;
|
| - if (!b.Search(text, context, anchored, longest, match, nmatch))
|
| - return false;
|
| - if (kind == kFullMatch && match[0].end() != text.end())
|
| - return false;
|
| - return true;
|
| -}
|
| -
|
| -} // namespace re2
|
|
|