| Index: crypto/p224.cc
|
| diff --git a/crypto/p224.cc b/crypto/p224.cc
|
| index a86163f6250e49a20d149bf66291a78278e7a5f9..685a3357439b771ad38dcf864192772feb409736 100644
|
| --- a/crypto/p224.cc
|
| +++ b/crypto/p224.cc
|
| @@ -9,6 +9,8 @@
|
|
|
| #include "crypto/p224.h"
|
|
|
| +#include <stddef.h>
|
| +#include <stdint.h>
|
| #include <string.h>
|
|
|
| #include "base/sys_byteorder.h"
|
| @@ -23,7 +25,7 @@ using base::NetToHost32;
|
| // The field that we're dealing with is ℤ/pℤ where p = 2**224 - 2**96 + 1.
|
| //
|
| // Field elements are represented by a FieldElement, which is a typedef to an
|
| -// array of 8 uint32's. The value of a FieldElement, a, is:
|
| +// array of 8 uint32_t's. The value of a FieldElement, a, is:
|
| // a[0] + 2**28·a[1] + 2**56·a[1] + ... + 2**196·a[7]
|
| //
|
| // Using 28-bit limbs means that there's only 4 bits of headroom, which is less
|
| @@ -41,12 +43,12 @@ const FieldElement kP = {
|
| void Contract(FieldElement* inout);
|
|
|
| // IsZero returns 0xffffffff if a == 0 mod p and 0 otherwise.
|
| -uint32 IsZero(const FieldElement& a) {
|
| +uint32_t IsZero(const FieldElement& a) {
|
| FieldElement minimal;
|
| memcpy(&minimal, &a, sizeof(minimal));
|
| Contract(&minimal);
|
|
|
| - uint32 is_zero = 0, is_p = 0;
|
| + uint32_t is_zero = 0, is_p = 0;
|
| for (unsigned i = 0; i < 8; i++) {
|
| is_zero |= minimal[i];
|
| is_p |= minimal[i] - kP[i];
|
| @@ -68,7 +70,7 @@ uint32 IsZero(const FieldElement& a) {
|
| // For is_zero and is_p, the LSB is 0 iff all the bits are zero.
|
| is_zero &= is_p & 1;
|
| is_zero = (~is_zero) << 31;
|
| - is_zero = static_cast<int32>(is_zero) >> 31;
|
| + is_zero = static_cast<int32_t>(is_zero) >> 31;
|
| return is_zero;
|
| }
|
|
|
| @@ -81,9 +83,9 @@ void Add(FieldElement* out, const FieldElement& a, const FieldElement& b) {
|
| }
|
| }
|
|
|
| -static const uint32 kTwo31p3 = (1u<<31) + (1u<<3);
|
| -static const uint32 kTwo31m3 = (1u<<31) - (1u<<3);
|
| -static const uint32 kTwo31m15m3 = (1u<<31) - (1u<<15) - (1u<<3);
|
| +static const uint32_t kTwo31p3 = (1u << 31) + (1u << 3);
|
| +static const uint32_t kTwo31m3 = (1u << 31) - (1u << 3);
|
| +static const uint32_t kTwo31m15m3 = (1u << 31) - (1u << 15) - (1u << 3);
|
| // kZero31ModP is 0 mod p where bit 31 is set in all limbs so that we can
|
| // subtract smaller amounts without underflow. See the section "Subtraction" in
|
| // [1] for why.
|
| @@ -103,22 +105,22 @@ void Subtract(FieldElement* out, const FieldElement& a, const FieldElement& b) {
|
| }
|
| }
|
|
|
| -static const uint64 kTwo63p35 = (1ull<<63) + (1ull<<35);
|
| -static const uint64 kTwo63m35 = (1ull<<63) - (1ull<<35);
|
| -static const uint64 kTwo63m35m19 = (1ull<<63) - (1ull<<35) - (1ull<<19);
|
| +static const uint64_t kTwo63p35 = (1ull << 63) + (1ull << 35);
|
| +static const uint64_t kTwo63m35 = (1ull << 63) - (1ull << 35);
|
| +static const uint64_t kTwo63m35m19 = (1ull << 63) - (1ull << 35) - (1ull << 19);
|
| // kZero63ModP is 0 mod p where bit 63 is set in all limbs. See the section
|
| // "Subtraction" in [1] for why.
|
| -static const uint64 kZero63ModP[8] = {
|
| - kTwo63p35, kTwo63m35, kTwo63m35, kTwo63m35,
|
| - kTwo63m35m19, kTwo63m35, kTwo63m35, kTwo63m35,
|
| +static const uint64_t kZero63ModP[8] = {
|
| + kTwo63p35, kTwo63m35, kTwo63m35, kTwo63m35,
|
| + kTwo63m35m19, kTwo63m35, kTwo63m35, kTwo63m35,
|
| };
|
|
|
| -static const uint32 kBottom28Bits = 0xfffffff;
|
| +static const uint32_t kBottom28Bits = 0xfffffff;
|
|
|
| // LargeFieldElement also represents an element of the field. The limbs are
|
| // still spaced 28-bits apart and in little-endian order. So the limbs are at
|
| // 0, 28, 56, ..., 392 bits, each 64-bits wide.
|
| -typedef uint64 LargeFieldElement[15];
|
| +typedef uint64_t LargeFieldElement[15];
|
|
|
| // ReduceLarge converts a LargeFieldElement to a FieldElement.
|
| //
|
| @@ -144,21 +146,21 @@ void ReduceLarge(FieldElement* out, LargeFieldElement* inptr) {
|
| // 32-bit operations.
|
| for (int i = 1; i < 8; i++) {
|
| in[i+1] += in[i] >> 28;
|
| - (*out)[i] = static_cast<uint32>(in[i] & kBottom28Bits);
|
| + (*out)[i] = static_cast<uint32_t>(in[i] & kBottom28Bits);
|
| }
|
| // Eliminate the term at 2*224 that we introduced while keeping the same
|
| // value mod p.
|
| in[0] -= in[8]; // reflection off the "+1" term of p.
|
| - (*out)[3] += static_cast<uint32>(in[8] & 0xffff) << 12; // "-2**96" term
|
| - (*out)[4] += static_cast<uint32>(in[8] >> 16); // rest of "-2**96" term
|
| + (*out)[3] += static_cast<uint32_t>(in[8] & 0xffff) << 12; // "-2**96" term
|
| + (*out)[4] += static_cast<uint32_t>(in[8] >> 16); // rest of "-2**96" term
|
| // in[0] < 2**64
|
| // out[3] < 2**29
|
| // out[4] < 2**29
|
| // out[1,2,5..7] < 2**28
|
|
|
| - (*out)[0] = static_cast<uint32>(in[0] & kBottom28Bits);
|
| - (*out)[1] += static_cast<uint32>((in[0] >> 28) & kBottom28Bits);
|
| - (*out)[2] += static_cast<uint32>(in[0] >> 56);
|
| + (*out)[0] = static_cast<uint32_t>(in[0] & kBottom28Bits);
|
| + (*out)[1] += static_cast<uint32_t>((in[0] >> 28) & kBottom28Bits);
|
| + (*out)[2] += static_cast<uint32_t>(in[0] >> 56);
|
| // out[0] < 2**28
|
| // out[1..4] < 2**29
|
| // out[5..7] < 2**28
|
| @@ -174,7 +176,7 @@ void Mul(FieldElement* out, const FieldElement& a, const FieldElement& b) {
|
|
|
| for (int i = 0; i < 8; i++) {
|
| for (int j = 0; j < 8; j++) {
|
| - tmp[i+j] += static_cast<uint64>(a[i]) * static_cast<uint64>(b[j]);
|
| + tmp[i + j] += static_cast<uint64_t>(a[i]) * static_cast<uint64_t>(b[j]);
|
| }
|
| }
|
|
|
| @@ -191,7 +193,7 @@ void Square(FieldElement* out, const FieldElement& a) {
|
|
|
| for (int i = 0; i < 8; i++) {
|
| for (int j = 0; j <= i; j++) {
|
| - uint64 r = static_cast<uint64>(a[i]) * static_cast<uint64>(a[j]);
|
| + uint64_t r = static_cast<uint64_t>(a[i]) * static_cast<uint64_t>(a[j]);
|
| if (i == j) {
|
| tmp[i+j] += r;
|
| } else {
|
| @@ -214,16 +216,16 @@ void Reduce(FieldElement* in_out) {
|
| a[i+1] += a[i] >> 28;
|
| a[i] &= kBottom28Bits;
|
| }
|
| - uint32 top = a[7] >> 28;
|
| + uint32_t top = a[7] >> 28;
|
| a[7] &= kBottom28Bits;
|
|
|
| // top < 2**4
|
| // Constant-time: mask = (top != 0) ? 0xffffffff : 0
|
| - uint32 mask = top;
|
| + uint32_t mask = top;
|
| mask |= mask >> 2;
|
| mask |= mask >> 1;
|
| mask <<= 31;
|
| - mask = static_cast<uint32>(static_cast<int32>(mask) >> 31);
|
| + mask = static_cast<uint32_t>(static_cast<int32_t>(mask) >> 31);
|
|
|
| // Eliminate top while maintaining the same value mod p.
|
| a[0] -= top;
|
| @@ -300,7 +302,7 @@ void Contract(FieldElement* inout) {
|
| out[i+1] += out[i] >> 28;
|
| out[i] &= kBottom28Bits;
|
| }
|
| - uint32 top = out[7] >> 28;
|
| + uint32_t top = out[7] >> 28;
|
| out[7] &= kBottom28Bits;
|
|
|
| // Eliminate top while maintaining the same value mod p.
|
| @@ -311,7 +313,7 @@ void Contract(FieldElement* inout) {
|
| // out[0] negative then we know that out[3] is sufficiently positive
|
| // because we just added to it.
|
| for (int i = 0; i < 3; i++) {
|
| - uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31);
|
| + uint32_t mask = static_cast<uint32_t>(static_cast<int32_t>(out[i]) >> 31);
|
| out[i] += (1 << 28) & mask;
|
| out[i+1] -= 1 & mask;
|
| }
|
| @@ -344,7 +346,7 @@ void Contract(FieldElement* inout) {
|
| // As before, if we made out[0] negative then we know that out[3] is
|
| // sufficiently positive.
|
| for (int i = 0; i < 3; i++) {
|
| - uint32 mask = static_cast<uint32>(static_cast<int32>(out[i]) >> 31);
|
| + uint32_t mask = static_cast<uint32_t>(static_cast<int32_t>(out[i]) >> 31);
|
| out[i] += (1 << 28) & mask;
|
| out[i+1] -= 1 & mask;
|
| }
|
| @@ -356,7 +358,7 @@ void Contract(FieldElement* inout) {
|
| // equal to bottom28Bits if the whole value is >= p. If top_4_all_ones
|
| // ends up with any zero bits in the bottom 28 bits, then this wasn't
|
| // true.
|
| - uint32 top_4_all_ones = 0xffffffffu;
|
| + uint32_t top_4_all_ones = 0xffffffffu;
|
| for (int i = 4; i < 8; i++) {
|
| top_4_all_ones &= out[i];
|
| }
|
| @@ -368,37 +370,39 @@ void Contract(FieldElement* inout) {
|
| top_4_all_ones &= top_4_all_ones >> 2;
|
| top_4_all_ones &= top_4_all_ones >> 1;
|
| top_4_all_ones =
|
| - static_cast<uint32>(static_cast<int32>(top_4_all_ones << 31) >> 31);
|
| + static_cast<uint32_t>(static_cast<int32_t>(top_4_all_ones << 31) >> 31);
|
|
|
| // Now we test whether the bottom three limbs are non-zero.
|
| - uint32 bottom_3_non_zero = out[0] | out[1] | out[2];
|
| + uint32_t bottom_3_non_zero = out[0] | out[1] | out[2];
|
| bottom_3_non_zero |= bottom_3_non_zero >> 16;
|
| bottom_3_non_zero |= bottom_3_non_zero >> 8;
|
| bottom_3_non_zero |= bottom_3_non_zero >> 4;
|
| bottom_3_non_zero |= bottom_3_non_zero >> 2;
|
| bottom_3_non_zero |= bottom_3_non_zero >> 1;
|
| bottom_3_non_zero =
|
| - static_cast<uint32>(static_cast<int32>(bottom_3_non_zero) >> 31);
|
| + static_cast<uint32_t>(static_cast<int32_t>(bottom_3_non_zero) >> 31);
|
|
|
| // Everything depends on the value of out[3].
|
| // If it's > 0xffff000 and top_4_all_ones != 0 then the whole value is >= p
|
| // If it's = 0xffff000 and top_4_all_ones != 0 and bottom_3_non_zero != 0,
|
| // then the whole value is >= p
|
| // If it's < 0xffff000, then the whole value is < p
|
| - uint32 n = out[3] - 0xffff000;
|
| - uint32 out_3_equal = n;
|
| + uint32_t n = out[3] - 0xffff000;
|
| + uint32_t out_3_equal = n;
|
| out_3_equal |= out_3_equal >> 16;
|
| out_3_equal |= out_3_equal >> 8;
|
| out_3_equal |= out_3_equal >> 4;
|
| out_3_equal |= out_3_equal >> 2;
|
| out_3_equal |= out_3_equal >> 1;
|
| out_3_equal =
|
| - ~static_cast<uint32>(static_cast<int32>(out_3_equal << 31) >> 31);
|
| + ~static_cast<uint32_t>(static_cast<int32_t>(out_3_equal << 31) >> 31);
|
|
|
| // If out[3] > 0xffff000 then n's MSB will be zero.
|
| - uint32 out_3_gt = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31);
|
| + uint32_t out_3_gt =
|
| + ~static_cast<uint32_t>(static_cast<int32_t>(n << 31) >> 31);
|
|
|
| - uint32 mask = top_4_all_ones & ((out_3_equal & bottom_3_non_zero) | out_3_gt);
|
| + uint32_t mask =
|
| + top_4_all_ones & ((out_3_equal & bottom_3_non_zero) | out_3_gt);
|
| out[0] -= 1 & mask;
|
| out[3] -= 0xffff000 & mask;
|
| out[4] -= 0xfffffff & mask;
|
| @@ -421,7 +425,7 @@ const FieldElement kB = {
|
| 39211076, 180311059, 84673715, 188764328,
|
| };
|
|
|
| -void CopyConditional(Point* out, const Point& a, uint32 mask);
|
| +void CopyConditional(Point* out, const Point& a, uint32_t mask);
|
| void DoubleJacobian(Point* out, const Point& a);
|
|
|
| // AddJacobian computes *out = a+b where a != b.
|
| @@ -431,8 +435,8 @@ void AddJacobian(Point *out,
|
| // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
|
| FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v;
|
|
|
| - uint32 z1_is_zero = IsZero(a.z);
|
| - uint32 z2_is_zero = IsZero(b.z);
|
| + uint32_t z1_is_zero = IsZero(a.z);
|
| + uint32_t z2_is_zero = IsZero(b.z);
|
|
|
| // Z1Z1 = Z1²
|
| Square(&z1z1, a.z);
|
| @@ -457,7 +461,7 @@ void AddJacobian(Point *out,
|
| // H = U2-U1
|
| Subtract(&h, u2, u1);
|
| Reduce(&h);
|
| - uint32 x_equal = IsZero(h);
|
| + uint32_t x_equal = IsZero(h);
|
|
|
| // I = (2*H)²
|
| for (int k = 0; k < 8; k++) {
|
| @@ -471,7 +475,7 @@ void AddJacobian(Point *out,
|
| // r = 2*(S2-S1)
|
| Subtract(&r, s2, s1);
|
| Reduce(&r);
|
| - uint32 y_equal = IsZero(r);
|
| + uint32_t y_equal = IsZero(r);
|
|
|
| if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
|
| // The two input points are the same therefore we must use the dedicated
|
| @@ -578,9 +582,7 @@ void DoubleJacobian(Point* out, const Point& a) {
|
|
|
| // CopyConditional sets *out=a if mask is 0xffffffff. mask must be either 0 of
|
| // 0xffffffff.
|
| -void CopyConditional(Point* out,
|
| - const Point& a,
|
| - uint32 mask) {
|
| +void CopyConditional(Point* out, const Point& a, uint32_t mask) {
|
| for (int i = 0; i < 8; i++) {
|
| out->x[i] ^= mask & (a.x[i] ^ out->x[i]);
|
| out->y[i] ^= mask & (a.y[i] ^ out->y[i]);
|
| @@ -590,15 +592,17 @@ void CopyConditional(Point* out,
|
|
|
| // ScalarMult calculates *out = a*scalar where scalar is a big-endian number of
|
| // length scalar_len and != 0.
|
| -void ScalarMult(Point* out, const Point& a,
|
| - const uint8* scalar, size_t scalar_len) {
|
| +void ScalarMult(Point* out,
|
| + const Point& a,
|
| + const uint8_t* scalar,
|
| + size_t scalar_len) {
|
| memset(out, 0, sizeof(*out));
|
| Point tmp;
|
|
|
| for (size_t i = 0; i < scalar_len; i++) {
|
| for (unsigned int bit_num = 0; bit_num < 8; bit_num++) {
|
| DoubleJacobian(out, *out);
|
| - uint32 bit = static_cast<uint32>(static_cast<int32>(
|
| + uint32_t bit = static_cast<uint32_t>(static_cast<int32_t>(
|
| (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31));
|
| AddJacobian(&tmp, a, *out);
|
| CopyConditional(out, tmp, bit);
|
| @@ -608,7 +612,7 @@ void ScalarMult(Point* out, const Point& a,
|
|
|
| // Get224Bits reads 7 words from in and scatters their contents in
|
| // little-endian form into 8 words at out, 28 bits per output word.
|
| -void Get224Bits(uint32* out, const uint32* in) {
|
| +void Get224Bits(uint32_t* out, const uint32_t* in) {
|
| out[0] = NetToHost32(in[6]) & kBottom28Bits;
|
| out[1] = ((NetToHost32(in[5]) << 4) |
|
| (NetToHost32(in[6]) >> 28)) & kBottom28Bits;
|
| @@ -628,7 +632,7 @@ void Get224Bits(uint32* out, const uint32* in) {
|
| // Put224Bits performs the inverse operation to Get224Bits: taking 28 bits from
|
| // each of 8 input words and writing them in big-endian order to 7 words at
|
| // out.
|
| -void Put224Bits(uint32* out, const uint32* in) {
|
| +void Put224Bits(uint32_t* out, const uint32_t* in) {
|
| out[6] = HostToNet32((in[0] >> 0) | (in[1] << 28));
|
| out[5] = HostToNet32((in[1] >> 4) | (in[2] << 24));
|
| out[4] = HostToNet32((in[2] >> 8) | (in[3] << 20));
|
| @@ -647,7 +651,7 @@ namespace p224 {
|
| bool Point::SetFromString(const base::StringPiece& in) {
|
| if (in.size() != 2*28)
|
| return false;
|
| - const uint32* inwords = reinterpret_cast<const uint32*>(in.data());
|
| + const uint32_t* inwords = reinterpret_cast<const uint32_t*>(in.data());
|
| Get224Bits(x, inwords);
|
| Get224Bits(y, inwords + 7);
|
| memset(&z, 0, sizeof(z));
|
| @@ -693,13 +697,13 @@ std::string Point::ToString() const {
|
| Contract(&xx);
|
| Contract(&yy);
|
|
|
| - uint32 outwords[14];
|
| + uint32_t outwords[14];
|
| Put224Bits(outwords, xx);
|
| Put224Bits(outwords + 7, yy);
|
| return std::string(reinterpret_cast<const char*>(outwords), sizeof(outwords));
|
| }
|
|
|
| -void ScalarMult(const Point& in, const uint8* scalar, Point* out) {
|
| +void ScalarMult(const Point& in, const uint8_t* scalar, Point* out) {
|
| ::ScalarMult(out, in, scalar, 28);
|
| }
|
|
|
| @@ -712,7 +716,7 @@ static const Point kBasePoint = {
|
| {1, 0, 0, 0, 0, 0, 0, 0},
|
| };
|
|
|
| -void ScalarBaseMult(const uint8* scalar, Point* out) {
|
| +void ScalarBaseMult(const uint8_t* scalar, Point* out) {
|
| ::ScalarMult(out, kBasePoint, scalar, 28);
|
| }
|
|
|
|
|