| OLD | NEW |
| 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include "crypto/rsa_private_key.h" | 5 #include "crypto/rsa_private_key.h" |
| 6 | 6 |
| 7 #include <stddef.h> |
| 8 #include <stdint.h> |
| 9 |
| 7 #include <algorithm> | 10 #include <algorithm> |
| 8 | 11 |
| 9 #include "base/logging.h" | 12 #include "base/logging.h" |
| 10 #include "base/memory/scoped_ptr.h" | 13 #include "base/memory/scoped_ptr.h" |
| 11 #include "base/strings/string_util.h" | 14 #include "base/strings/string_util.h" |
| 12 | 15 |
| 13 // This file manually encodes and decodes RSA private keys using PrivateKeyInfo | 16 // This file manually encodes and decodes RSA private keys using PrivateKeyInfo |
| 14 // from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are: | 17 // from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are: |
| 15 // | 18 // |
| 16 // PrivateKeyInfo ::= SEQUENCE { | 19 // PrivateKeyInfo ::= SEQUENCE { |
| (...skipping 19 matching lines...) Expand all Loading... |
| 36 // Helper for error handling during key import. | 39 // Helper for error handling during key import. |
| 37 #define READ_ASSERT(truth) \ | 40 #define READ_ASSERT(truth) \ |
| 38 if (!(truth)) { \ | 41 if (!(truth)) { \ |
| 39 NOTREACHED(); \ | 42 NOTREACHED(); \ |
| 40 return false; \ | 43 return false; \ |
| 41 } | 44 } |
| 42 } // namespace | 45 } // namespace |
| 43 | 46 |
| 44 namespace crypto { | 47 namespace crypto { |
| 45 | 48 |
| 46 const uint8 PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = { | 49 const uint8_t PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = { |
| 47 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, | 50 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, |
| 48 0x05, 0x00 | 51 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00}; |
| 49 }; | |
| 50 | 52 |
| 51 PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian) | 53 PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian) |
| 52 : big_endian_(big_endian) {} | 54 : big_endian_(big_endian) {} |
| 53 | 55 |
| 54 PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {} | 56 PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {} |
| 55 | 57 |
| 56 bool PrivateKeyInfoCodec::Export(std::vector<uint8>* output) { | 58 bool PrivateKeyInfoCodec::Export(std::vector<uint8_t>* output) { |
| 57 std::list<uint8> content; | 59 std::list<uint8_t> content; |
| 58 | 60 |
| 59 // Version (always zero) | 61 // Version (always zero) |
| 60 uint8 version = 0; | 62 uint8_t version = 0; |
| 61 | 63 |
| 62 PrependInteger(coefficient_, &content); | 64 PrependInteger(coefficient_, &content); |
| 63 PrependInteger(exponent2_, &content); | 65 PrependInteger(exponent2_, &content); |
| 64 PrependInteger(exponent1_, &content); | 66 PrependInteger(exponent1_, &content); |
| 65 PrependInteger(prime2_, &content); | 67 PrependInteger(prime2_, &content); |
| 66 PrependInteger(prime1_, &content); | 68 PrependInteger(prime1_, &content); |
| 67 PrependInteger(private_exponent_, &content); | 69 PrependInteger(private_exponent_, &content); |
| 68 PrependInteger(public_exponent_, &content); | 70 PrependInteger(public_exponent_, &content); |
| 69 PrependInteger(modulus_, &content); | 71 PrependInteger(modulus_, &content); |
| 70 PrependInteger(&version, 1, &content); | 72 PrependInteger(&version, 1, &content); |
| 71 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); | 73 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| 72 PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content); | 74 PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content); |
| 73 | 75 |
| 74 // RSA algorithm OID | 76 // RSA algorithm OID |
| 75 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) | 77 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) |
| 76 content.push_front(kRsaAlgorithmIdentifier[i - 1]); | 78 content.push_front(kRsaAlgorithmIdentifier[i - 1]); |
| 77 | 79 |
| 78 PrependInteger(&version, 1, &content); | 80 PrependInteger(&version, 1, &content); |
| 79 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); | 81 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| 80 | 82 |
| 81 // Copy everying into the output. | 83 // Copy everying into the output. |
| 82 output->reserve(content.size()); | 84 output->reserve(content.size()); |
| 83 output->assign(content.begin(), content.end()); | 85 output->assign(content.begin(), content.end()); |
| 84 | 86 |
| 85 return true; | 87 return true; |
| 86 } | 88 } |
| 87 | 89 |
| 88 bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8>* output) { | 90 bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8_t>* output) { |
| 89 // Create a sequence with the modulus (n) and public exponent (e). | 91 // Create a sequence with the modulus (n) and public exponent (e). |
| 90 std::vector<uint8> bit_string; | 92 std::vector<uint8_t> bit_string; |
| 91 if (!ExportPublicKey(&bit_string)) | 93 if (!ExportPublicKey(&bit_string)) |
| 92 return false; | 94 return false; |
| 93 | 95 |
| 94 // Add the sequence as the contents of a bit string. | 96 // Add the sequence as the contents of a bit string. |
| 95 std::list<uint8> content; | 97 std::list<uint8_t> content; |
| 96 PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()), | 98 PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()), |
| 97 &content); | 99 &content); |
| 98 | 100 |
| 99 // Add the RSA algorithm OID. | 101 // Add the RSA algorithm OID. |
| 100 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) | 102 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) |
| 101 content.push_front(kRsaAlgorithmIdentifier[i - 1]); | 103 content.push_front(kRsaAlgorithmIdentifier[i - 1]); |
| 102 | 104 |
| 103 // Finally, wrap everything in a sequence. | 105 // Finally, wrap everything in a sequence. |
| 104 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); | 106 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| 105 | 107 |
| 106 // Copy everything into the output. | 108 // Copy everything into the output. |
| 107 output->reserve(content.size()); | 109 output->reserve(content.size()); |
| 108 output->assign(content.begin(), content.end()); | 110 output->assign(content.begin(), content.end()); |
| 109 | 111 |
| 110 return true; | 112 return true; |
| 111 } | 113 } |
| 112 | 114 |
| 113 bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8>* output) { | 115 bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8_t>* output) { |
| 114 // Create a sequence with the modulus (n) and public exponent (e). | 116 // Create a sequence with the modulus (n) and public exponent (e). |
| 115 std::list<uint8> content; | 117 std::list<uint8_t> content; |
| 116 PrependInteger(&public_exponent_[0], | 118 PrependInteger(&public_exponent_[0], |
| 117 static_cast<int>(public_exponent_.size()), | 119 static_cast<int>(public_exponent_.size()), |
| 118 &content); | 120 &content); |
| 119 PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content); | 121 PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content); |
| 120 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); | 122 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); |
| 121 | 123 |
| 122 // Copy everything into the output. | 124 // Copy everything into the output. |
| 123 output->reserve(content.size()); | 125 output->reserve(content.size()); |
| 124 output->assign(content.begin(), content.end()); | 126 output->assign(content.begin(), content.end()); |
| 125 | 127 |
| 126 return true; | 128 return true; |
| 127 } | 129 } |
| 128 | 130 |
| 129 bool PrivateKeyInfoCodec::Import(const std::vector<uint8>& input) { | 131 bool PrivateKeyInfoCodec::Import(const std::vector<uint8_t>& input) { |
| 130 if (input.empty()) { | 132 if (input.empty()) { |
| 131 return false; | 133 return false; |
| 132 } | 134 } |
| 133 | 135 |
| 134 // Parse the private key info up to the public key values, ignoring | 136 // Parse the private key info up to the public key values, ignoring |
| 135 // the subsequent private key values. | 137 // the subsequent private key values. |
| 136 uint8* src = const_cast<uint8*>(&input.front()); | 138 uint8_t* src = const_cast<uint8_t*>(&input.front()); |
| 137 uint8* end = src + input.size(); | 139 uint8_t* end = src + input.size(); |
| 138 if (!ReadSequence(&src, end) || | 140 if (!ReadSequence(&src, end) || |
| 139 !ReadVersion(&src, end) || | 141 !ReadVersion(&src, end) || |
| 140 !ReadAlgorithmIdentifier(&src, end) || | 142 !ReadAlgorithmIdentifier(&src, end) || |
| 141 !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) || | 143 !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) || |
| 142 !ReadSequence(&src, end) || | 144 !ReadSequence(&src, end) || |
| 143 !ReadVersion(&src, end) || | 145 !ReadVersion(&src, end) || |
| 144 !ReadInteger(&src, end, &modulus_)) | 146 !ReadInteger(&src, end, &modulus_)) |
| 145 return false; | 147 return false; |
| 146 | 148 |
| 147 int mod_size = modulus_.size(); | 149 int mod_size = modulus_.size(); |
| 148 READ_ASSERT(mod_size % 2 == 0); | 150 READ_ASSERT(mod_size % 2 == 0); |
| 149 int primes_size = mod_size / 2; | 151 int primes_size = mod_size / 2; |
| 150 | 152 |
| 151 if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) || | 153 if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) || |
| 152 !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) || | 154 !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) || |
| 153 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) || | 155 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) || |
| 154 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) || | 156 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) || |
| 155 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) || | 157 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) || |
| 156 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) || | 158 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) || |
| 157 !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_)) | 159 !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_)) |
| 158 return false; | 160 return false; |
| 159 | 161 |
| 160 READ_ASSERT(src == end); | 162 READ_ASSERT(src == end); |
| 161 | 163 |
| 162 | 164 |
| 163 return true; | 165 return true; |
| 164 } | 166 } |
| 165 | 167 |
| 166 void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8>& in, | 168 void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8_t>& in, |
| 167 std::list<uint8>* out) { | 169 std::list<uint8_t>* out) { |
| 168 uint8* ptr = const_cast<uint8*>(&in.front()); | 170 uint8_t* ptr = const_cast<uint8_t*>(&in.front()); |
| 169 PrependIntegerImpl(ptr, in.size(), out, big_endian_); | 171 PrependIntegerImpl(ptr, in.size(), out, big_endian_); |
| 170 } | 172 } |
| 171 | 173 |
| 172 // Helper to prepend an ASN.1 integer. | 174 // Helper to prepend an ASN.1 integer. |
| 173 void PrivateKeyInfoCodec::PrependInteger(uint8* val, | 175 void PrivateKeyInfoCodec::PrependInteger(uint8_t* val, |
| 174 int num_bytes, | 176 int num_bytes, |
| 175 std::list<uint8>* data) { | 177 std::list<uint8_t>* data) { |
| 176 PrependIntegerImpl(val, num_bytes, data, big_endian_); | 178 PrependIntegerImpl(val, num_bytes, data, big_endian_); |
| 177 } | 179 } |
| 178 | 180 |
| 179 void PrivateKeyInfoCodec::PrependIntegerImpl(uint8* val, | 181 void PrivateKeyInfoCodec::PrependIntegerImpl(uint8_t* val, |
| 180 int num_bytes, | 182 int num_bytes, |
| 181 std::list<uint8>* data, | 183 std::list<uint8_t>* data, |
| 182 bool big_endian) { | 184 bool big_endian) { |
| 183 // Reverse input if little-endian. | 185 // Reverse input if little-endian. |
| 184 std::vector<uint8> tmp; | 186 std::vector<uint8_t> tmp; |
| 185 if (!big_endian) { | 187 if (!big_endian) { |
| 186 tmp.assign(val, val + num_bytes); | 188 tmp.assign(val, val + num_bytes); |
| 187 std::reverse(tmp.begin(), tmp.end()); | 189 std::reverse(tmp.begin(), tmp.end()); |
| 188 val = &tmp.front(); | 190 val = &tmp.front(); |
| 189 } | 191 } |
| 190 | 192 |
| 191 // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes | 193 // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes |
| 192 // from the most-significant end of the integer. | 194 // from the most-significant end of the integer. |
| 193 int start = 0; | 195 int start = 0; |
| 194 while (start < (num_bytes - 1) && val[start] == 0x00) { | 196 while (start < (num_bytes - 1) && val[start] == 0x00) { |
| 195 start++; | 197 start++; |
| 196 num_bytes--; | 198 num_bytes--; |
| 197 } | 199 } |
| 198 PrependBytes(val, start, num_bytes, data); | 200 PrependBytes(val, start, num_bytes, data); |
| 199 | 201 |
| 200 // ASN.1 integers are signed. To encode a positive integer whose sign bit | 202 // ASN.1 integers are signed. To encode a positive integer whose sign bit |
| 201 // (the most significant bit) would otherwise be set and make the number | 203 // (the most significant bit) would otherwise be set and make the number |
| 202 // negative, ASN.1 requires a leading null byte to force the integer to be | 204 // negative, ASN.1 requires a leading null byte to force the integer to be |
| 203 // positive. | 205 // positive. |
| 204 uint8 front = data->front(); | 206 uint8_t front = data->front(); |
| 205 if ((front & 0x80) != 0) { | 207 if ((front & 0x80) != 0) { |
| 206 data->push_front(0x00); | 208 data->push_front(0x00); |
| 207 num_bytes++; | 209 num_bytes++; |
| 208 } | 210 } |
| 209 | 211 |
| 210 PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data); | 212 PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data); |
| 211 } | 213 } |
| 212 | 214 |
| 213 bool PrivateKeyInfoCodec::ReadInteger(uint8** pos, | 215 bool PrivateKeyInfoCodec::ReadInteger(uint8_t** pos, |
| 214 uint8* end, | 216 uint8_t* end, |
| 215 std::vector<uint8>* out) { | 217 std::vector<uint8_t>* out) { |
| 216 return ReadIntegerImpl(pos, end, out, big_endian_); | 218 return ReadIntegerImpl(pos, end, out, big_endian_); |
| 217 } | 219 } |
| 218 | 220 |
| 219 bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(uint8** pos, | 221 bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize( |
| 220 uint8* end, | 222 uint8_t** pos, |
| 221 size_t expected_size, | 223 uint8_t* end, |
| 222 std::vector<uint8>* out) { | 224 size_t expected_size, |
| 223 std::vector<uint8> temp; | 225 std::vector<uint8_t>* out) { |
| 226 std::vector<uint8_t> temp; |
| 224 if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian | 227 if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian |
| 225 return false; | 228 return false; |
| 226 | 229 |
| 227 int pad = expected_size - temp.size(); | 230 int pad = expected_size - temp.size(); |
| 228 int index = 0; | 231 int index = 0; |
| 229 if (out->size() == expected_size + 1) { | 232 if (out->size() == expected_size + 1) { |
| 230 READ_ASSERT(out->front() == 0x00); | 233 READ_ASSERT(out->front() == 0x00); |
| 231 pad++; | 234 pad++; |
| 232 index++; | 235 index++; |
| 233 } else { | 236 } else { |
| 234 READ_ASSERT(out->size() <= expected_size); | 237 READ_ASSERT(out->size() <= expected_size); |
| 235 } | 238 } |
| 236 | 239 |
| 237 out->insert(out->end(), pad, 0x00); | 240 out->insert(out->end(), pad, 0x00); |
| 238 out->insert(out->end(), temp.begin(), temp.end()); | 241 out->insert(out->end(), temp.begin(), temp.end()); |
| 239 | 242 |
| 240 // Reverse output if little-endian. | 243 // Reverse output if little-endian. |
| 241 if (!big_endian_) | 244 if (!big_endian_) |
| 242 std::reverse(out->begin(), out->end()); | 245 std::reverse(out->begin(), out->end()); |
| 243 return true; | 246 return true; |
| 244 } | 247 } |
| 245 | 248 |
| 246 bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8** pos, | 249 bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8_t** pos, |
| 247 uint8* end, | 250 uint8_t* end, |
| 248 std::vector<uint8>* out, | 251 std::vector<uint8_t>* out, |
| 249 bool big_endian) { | 252 bool big_endian) { |
| 250 uint32 length = 0; | 253 uint32_t length = 0; |
| 251 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length) | 254 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length) |
| 252 return false; | 255 return false; |
| 253 | 256 |
| 254 // The first byte can be zero to force positiveness. We can ignore this. | 257 // The first byte can be zero to force positiveness. We can ignore this. |
| 255 if (**pos == 0x00) { | 258 if (**pos == 0x00) { |
| 256 ++(*pos); | 259 ++(*pos); |
| 257 --length; | 260 --length; |
| 258 } | 261 } |
| 259 | 262 |
| 260 if (length) | 263 if (length) |
| 261 out->insert(out->end(), *pos, (*pos) + length); | 264 out->insert(out->end(), *pos, (*pos) + length); |
| 262 | 265 |
| 263 (*pos) += length; | 266 (*pos) += length; |
| 264 | 267 |
| 265 // Reverse output if little-endian. | 268 // Reverse output if little-endian. |
| 266 if (!big_endian) | 269 if (!big_endian) |
| 267 std::reverse(out->begin(), out->end()); | 270 std::reverse(out->begin(), out->end()); |
| 268 return true; | 271 return true; |
| 269 } | 272 } |
| 270 | 273 |
| 271 void PrivateKeyInfoCodec::PrependBytes(uint8* val, | 274 void PrivateKeyInfoCodec::PrependBytes(uint8_t* val, |
| 272 int start, | 275 int start, |
| 273 int num_bytes, | 276 int num_bytes, |
| 274 std::list<uint8>* data) { | 277 std::list<uint8_t>* data) { |
| 275 while (num_bytes > 0) { | 278 while (num_bytes > 0) { |
| 276 --num_bytes; | 279 --num_bytes; |
| 277 data->push_front(val[start + num_bytes]); | 280 data->push_front(val[start + num_bytes]); |
| 278 } | 281 } |
| 279 } | 282 } |
| 280 | 283 |
| 281 void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8>* data) { | 284 void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8_t>* data) { |
| 282 // The high bit is used to indicate whether additional octets are needed to | 285 // The high bit is used to indicate whether additional octets are needed to |
| 283 // represent the length. | 286 // represent the length. |
| 284 if (size < 0x80) { | 287 if (size < 0x80) { |
| 285 data->push_front(static_cast<uint8>(size)); | 288 data->push_front(static_cast<uint8_t>(size)); |
| 286 } else { | 289 } else { |
| 287 uint8 num_bytes = 0; | 290 uint8_t num_bytes = 0; |
| 288 while (size > 0) { | 291 while (size > 0) { |
| 289 data->push_front(static_cast<uint8>(size & 0xFF)); | 292 data->push_front(static_cast<uint8_t>(size & 0xFF)); |
| 290 size >>= 8; | 293 size >>= 8; |
| 291 num_bytes++; | 294 num_bytes++; |
| 292 } | 295 } |
| 293 CHECK_LE(num_bytes, 4); | 296 CHECK_LE(num_bytes, 4); |
| 294 data->push_front(0x80 | num_bytes); | 297 data->push_front(0x80 | num_bytes); |
| 295 } | 298 } |
| 296 } | 299 } |
| 297 | 300 |
| 298 void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(uint8 type, | 301 void PrivateKeyInfoCodec::PrependTypeHeaderAndLength( |
| 299 uint32 length, | 302 uint8_t type, |
| 300 std::list<uint8>* output) { | 303 uint32_t length, |
| 304 std::list<uint8_t>* output) { |
| 301 PrependLength(length, output); | 305 PrependLength(length, output); |
| 302 output->push_front(type); | 306 output->push_front(type); |
| 303 } | 307 } |
| 304 | 308 |
| 305 void PrivateKeyInfoCodec::PrependBitString(uint8* val, | 309 void PrivateKeyInfoCodec::PrependBitString(uint8_t* val, |
| 306 int num_bytes, | 310 int num_bytes, |
| 307 std::list<uint8>* output) { | 311 std::list<uint8_t>* output) { |
| 308 // Start with the data. | 312 // Start with the data. |
| 309 PrependBytes(val, 0, num_bytes, output); | 313 PrependBytes(val, 0, num_bytes, output); |
| 310 // Zero unused bits. | 314 // Zero unused bits. |
| 311 output->push_front(0); | 315 output->push_front(0); |
| 312 // Add the length. | 316 // Add the length. |
| 313 PrependLength(num_bytes + 1, output); | 317 PrependLength(num_bytes + 1, output); |
| 314 // Finally, add the bit string tag. | 318 // Finally, add the bit string tag. |
| 315 output->push_front((uint8) kBitStringTag); | 319 output->push_front((uint8_t)kBitStringTag); |
| 316 } | 320 } |
| 317 | 321 |
| 318 bool PrivateKeyInfoCodec::ReadLength(uint8** pos, uint8* end, uint32* result) { | 322 bool PrivateKeyInfoCodec::ReadLength(uint8_t** pos, |
| 323 uint8_t* end, |
| 324 uint32_t* result) { |
| 319 READ_ASSERT(*pos < end); | 325 READ_ASSERT(*pos < end); |
| 320 int length = 0; | 326 int length = 0; |
| 321 | 327 |
| 322 // If the MSB is not set, the length is just the byte itself. | 328 // If the MSB is not set, the length is just the byte itself. |
| 323 if (!(**pos & 0x80)) { | 329 if (!(**pos & 0x80)) { |
| 324 length = **pos; | 330 length = **pos; |
| 325 (*pos)++; | 331 (*pos)++; |
| 326 } else { | 332 } else { |
| 327 // Otherwise, the lower 7 indicate the length of the length. | 333 // Otherwise, the lower 7 indicate the length of the length. |
| 328 int length_of_length = **pos & 0x7F; | 334 int length_of_length = **pos & 0x7F; |
| 329 READ_ASSERT(length_of_length <= 4); | 335 READ_ASSERT(length_of_length <= 4); |
| 330 (*pos)++; | 336 (*pos)++; |
| 331 READ_ASSERT(*pos + length_of_length < end); | 337 READ_ASSERT(*pos + length_of_length < end); |
| 332 | 338 |
| 333 length = 0; | 339 length = 0; |
| 334 for (int i = 0; i < length_of_length; ++i) { | 340 for (int i = 0; i < length_of_length; ++i) { |
| 335 length <<= 8; | 341 length <<= 8; |
| 336 length |= **pos; | 342 length |= **pos; |
| 337 (*pos)++; | 343 (*pos)++; |
| 338 } | 344 } |
| 339 } | 345 } |
| 340 | 346 |
| 341 READ_ASSERT(*pos + length <= end); | 347 READ_ASSERT(*pos + length <= end); |
| 342 if (result) *result = length; | 348 if (result) *result = length; |
| 343 return true; | 349 return true; |
| 344 } | 350 } |
| 345 | 351 |
| 346 bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8** pos, | 352 bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8_t** pos, |
| 347 uint8* end, | 353 uint8_t* end, |
| 348 uint8 expected_tag, | 354 uint8_t expected_tag, |
| 349 uint32* length) { | 355 uint32_t* length) { |
| 350 READ_ASSERT(*pos < end); | 356 READ_ASSERT(*pos < end); |
| 351 READ_ASSERT(**pos == expected_tag); | 357 READ_ASSERT(**pos == expected_tag); |
| 352 (*pos)++; | 358 (*pos)++; |
| 353 | 359 |
| 354 return ReadLength(pos, end, length); | 360 return ReadLength(pos, end, length); |
| 355 } | 361 } |
| 356 | 362 |
| 357 bool PrivateKeyInfoCodec::ReadSequence(uint8** pos, uint8* end) { | 363 bool PrivateKeyInfoCodec::ReadSequence(uint8_t** pos, uint8_t* end) { |
| 358 return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL); | 364 return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL); |
| 359 } | 365 } |
| 360 | 366 |
| 361 bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8** pos, uint8* end) { | 367 bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8_t** pos, uint8_t* end) { |
| 362 READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end); | 368 READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end); |
| 363 READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier, | 369 READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier, |
| 364 sizeof(kRsaAlgorithmIdentifier)) == 0); | 370 sizeof(kRsaAlgorithmIdentifier)) == 0); |
| 365 (*pos) += sizeof(kRsaAlgorithmIdentifier); | 371 (*pos) += sizeof(kRsaAlgorithmIdentifier); |
| 366 return true; | 372 return true; |
| 367 } | 373 } |
| 368 | 374 |
| 369 bool PrivateKeyInfoCodec::ReadVersion(uint8** pos, uint8* end) { | 375 bool PrivateKeyInfoCodec::ReadVersion(uint8_t** pos, uint8_t* end) { |
| 370 uint32 length = 0; | 376 uint32_t length = 0; |
| 371 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length)) | 377 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length)) |
| 372 return false; | 378 return false; |
| 373 | 379 |
| 374 // The version should be zero. | 380 // The version should be zero. |
| 375 for (uint32 i = 0; i < length; ++i) { | 381 for (uint32_t i = 0; i < length; ++i) { |
| 376 READ_ASSERT(**pos == 0x00); | 382 READ_ASSERT(**pos == 0x00); |
| 377 (*pos)++; | 383 (*pos)++; |
| 378 } | 384 } |
| 379 | 385 |
| 380 return true; | 386 return true; |
| 381 } | 387 } |
| 382 | 388 |
| 383 } // namespace crypto | 389 } // namespace crypto |
| OLD | NEW |