| OLD | NEW |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 | 5 |
| 6 // Windows Timer Primer | 6 // Windows Timer Primer |
| 7 // | 7 // |
| 8 // A good article: http://www.ddj.com/windows/184416651 | 8 // A good article: http://www.ddj.com/windows/184416651 |
| 9 // A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258 | 9 // A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258 |
| 10 // | 10 // |
| (...skipping 20 matching lines...) Expand all Loading... |
| 31 // will only increase the system-wide timer if we're not running on battery | 31 // will only increase the system-wide timer if we're not running on battery |
| 32 // power. | 32 // power. |
| 33 | 33 |
| 34 #include "base/time/time.h" | 34 #include "base/time/time.h" |
| 35 | 35 |
| 36 #pragma comment(lib, "winmm.lib") | 36 #pragma comment(lib, "winmm.lib") |
| 37 #include <windows.h> | 37 #include <windows.h> |
| 38 #include <mmsystem.h> | 38 #include <mmsystem.h> |
| 39 #include <stdint.h> | 39 #include <stdint.h> |
| 40 | 40 |
| 41 #include "base/basictypes.h" | |
| 42 #include "base/cpu.h" | 41 #include "base/cpu.h" |
| 43 #include "base/lazy_instance.h" | 42 #include "base/lazy_instance.h" |
| 44 #include "base/logging.h" | 43 #include "base/logging.h" |
| 45 #include "base/synchronization/lock.h" | 44 #include "base/synchronization/lock.h" |
| 46 | 45 |
| 47 using base::ThreadTicks; | 46 using base::ThreadTicks; |
| 48 using base::Time; | 47 using base::Time; |
| 49 using base::TimeDelta; | 48 using base::TimeDelta; |
| 50 using base::TimeTicks; | 49 using base::TimeTicks; |
| 51 | 50 |
| 52 namespace { | 51 namespace { |
| 53 | 52 |
| 54 // From MSDN, FILETIME "Contains a 64-bit value representing the number of | 53 // From MSDN, FILETIME "Contains a 64-bit value representing the number of |
| 55 // 100-nanosecond intervals since January 1, 1601 (UTC)." | 54 // 100-nanosecond intervals since January 1, 1601 (UTC)." |
| 56 int64 FileTimeToMicroseconds(const FILETIME& ft) { | 55 int64_t FileTimeToMicroseconds(const FILETIME& ft) { |
| 57 // Need to bit_cast to fix alignment, then divide by 10 to convert | 56 // Need to bit_cast to fix alignment, then divide by 10 to convert |
| 58 // 100-nanoseconds to microseconds. This only works on little-endian | 57 // 100-nanoseconds to microseconds. This only works on little-endian |
| 59 // machines. | 58 // machines. |
| 60 return bit_cast<int64, FILETIME>(ft) / 10; | 59 return bit_cast<int64_t, FILETIME>(ft) / 10; |
| 61 } | 60 } |
| 62 | 61 |
| 63 void MicrosecondsToFileTime(int64 us, FILETIME* ft) { | 62 void MicrosecondsToFileTime(int64_t us, FILETIME* ft) { |
| 64 DCHECK_GE(us, 0LL) << "Time is less than 0, negative values are not " | 63 DCHECK_GE(us, 0LL) << "Time is less than 0, negative values are not " |
| 65 "representable in FILETIME"; | 64 "representable in FILETIME"; |
| 66 | 65 |
| 67 // Multiply by 10 to convert microseconds to 100-nanoseconds. Bit_cast will | 66 // Multiply by 10 to convert microseconds to 100-nanoseconds. Bit_cast will |
| 68 // handle alignment problems. This only works on little-endian machines. | 67 // handle alignment problems. This only works on little-endian machines. |
| 69 *ft = bit_cast<FILETIME, int64>(us * 10); | 68 *ft = bit_cast<FILETIME, int64_t>(us * 10); |
| 70 } | 69 } |
| 71 | 70 |
| 72 int64 CurrentWallclockMicroseconds() { | 71 int64_t CurrentWallclockMicroseconds() { |
| 73 FILETIME ft; | 72 FILETIME ft; |
| 74 ::GetSystemTimeAsFileTime(&ft); | 73 ::GetSystemTimeAsFileTime(&ft); |
| 75 return FileTimeToMicroseconds(ft); | 74 return FileTimeToMicroseconds(ft); |
| 76 } | 75 } |
| 77 | 76 |
| 78 // Time between resampling the un-granular clock for this API. 60 seconds. | 77 // Time between resampling the un-granular clock for this API. 60 seconds. |
| 79 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond; | 78 const int kMaxMillisecondsToAvoidDrift = 60 * Time::kMillisecondsPerSecond; |
| 80 | 79 |
| 81 int64 initial_time = 0; | 80 int64_t initial_time = 0; |
| 82 TimeTicks initial_ticks; | 81 TimeTicks initial_ticks; |
| 83 | 82 |
| 84 void InitializeClock() { | 83 void InitializeClock() { |
| 85 initial_ticks = TimeTicks::Now(); | 84 initial_ticks = TimeTicks::Now(); |
| 86 initial_time = CurrentWallclockMicroseconds(); | 85 initial_time = CurrentWallclockMicroseconds(); |
| 87 } | 86 } |
| 88 | 87 |
| 89 // The two values that ActivateHighResolutionTimer uses to set the systemwide | 88 // The two values that ActivateHighResolutionTimer uses to set the systemwide |
| 90 // timer interrupt frequency on Windows. It controls how precise timers are | 89 // timer interrupt frequency on Windows. It controls how precise timers are |
| 91 // but also has a big impact on battery life. | 90 // but also has a big impact on battery life. |
| (...skipping 11 matching lines...) Expand all Loading... |
| 103 // Can't statically link to it because it is not available on XP. | 102 // Can't statically link to it because it is not available on XP. |
| 104 using QueryThreadCycleTimePtr = decltype(::QueryThreadCycleTime)*; | 103 using QueryThreadCycleTimePtr = decltype(::QueryThreadCycleTime)*; |
| 105 QueryThreadCycleTimePtr GetQueryThreadCycleTimeFunction() { | 104 QueryThreadCycleTimePtr GetQueryThreadCycleTimeFunction() { |
| 106 static const QueryThreadCycleTimePtr query_thread_cycle_time_fn = | 105 static const QueryThreadCycleTimePtr query_thread_cycle_time_fn = |
| 107 reinterpret_cast<QueryThreadCycleTimePtr>(::GetProcAddress( | 106 reinterpret_cast<QueryThreadCycleTimePtr>(::GetProcAddress( |
| 108 ::GetModuleHandle(L"kernel32.dll"), "QueryThreadCycleTime")); | 107 ::GetModuleHandle(L"kernel32.dll"), "QueryThreadCycleTime")); |
| 109 return query_thread_cycle_time_fn; | 108 return query_thread_cycle_time_fn; |
| 110 } | 109 } |
| 111 | 110 |
| 112 // Returns the current value of the performance counter. | 111 // Returns the current value of the performance counter. |
| 113 uint64 QPCNowRaw() { | 112 uint64_t QPCNowRaw() { |
| 114 LARGE_INTEGER perf_counter_now = {}; | 113 LARGE_INTEGER perf_counter_now = {}; |
| 115 // According to the MSDN documentation for QueryPerformanceCounter(), this | 114 // According to the MSDN documentation for QueryPerformanceCounter(), this |
| 116 // will never fail on systems that run XP or later. | 115 // will never fail on systems that run XP or later. |
| 117 // https://msdn.microsoft.com/library/windows/desktop/ms644904.aspx | 116 // https://msdn.microsoft.com/library/windows/desktop/ms644904.aspx |
| 118 ::QueryPerformanceCounter(&perf_counter_now); | 117 ::QueryPerformanceCounter(&perf_counter_now); |
| 119 return perf_counter_now.QuadPart; | 118 return perf_counter_now.QuadPart; |
| 120 } | 119 } |
| 121 | 120 |
| 122 } // namespace | 121 } // namespace |
| 123 | 122 |
| 124 // Time ----------------------------------------------------------------------- | 123 // Time ----------------------------------------------------------------------- |
| 125 | 124 |
| 126 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01 | 125 // The internal representation of Time uses FILETIME, whose epoch is 1601-01-01 |
| 127 // 00:00:00 UTC. ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the | 126 // 00:00:00 UTC. ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the |
| 128 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding | 127 // number of leap year days between 1601 and 1970: (1970-1601)/4 excluding |
| 129 // 1700, 1800, and 1900. | 128 // 1700, 1800, and 1900. |
| 130 // static | 129 // static |
| 131 const int64 Time::kTimeTToMicrosecondsOffset = INT64_C(11644473600000000); | 130 const int64_t Time::kTimeTToMicrosecondsOffset = INT64_C(11644473600000000); |
| 132 | 131 |
| 133 // static | 132 // static |
| 134 Time Time::Now() { | 133 Time Time::Now() { |
| 135 if (initial_time == 0) | 134 if (initial_time == 0) |
| 136 InitializeClock(); | 135 InitializeClock(); |
| 137 | 136 |
| 138 // We implement time using the high-resolution timers so that we can get | 137 // We implement time using the high-resolution timers so that we can get |
| 139 // timeouts which are smaller than 10-15ms. If we just used | 138 // timeouts which are smaller than 10-15ms. If we just used |
| 140 // CurrentWallclockMicroseconds(), we'd have the less-granular timer. | 139 // CurrentWallclockMicroseconds(), we'd have the less-granular timer. |
| 141 // | 140 // |
| (...skipping 21 matching lines...) Expand all Loading... |
| 163 | 162 |
| 164 // static | 163 // static |
| 165 Time Time::NowFromSystemTime() { | 164 Time Time::NowFromSystemTime() { |
| 166 // Force resync. | 165 // Force resync. |
| 167 InitializeClock(); | 166 InitializeClock(); |
| 168 return Time(initial_time); | 167 return Time(initial_time); |
| 169 } | 168 } |
| 170 | 169 |
| 171 // static | 170 // static |
| 172 Time Time::FromFileTime(FILETIME ft) { | 171 Time Time::FromFileTime(FILETIME ft) { |
| 173 if (bit_cast<int64, FILETIME>(ft) == 0) | 172 if (bit_cast<int64_t, FILETIME>(ft) == 0) |
| 174 return Time(); | 173 return Time(); |
| 175 if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() && | 174 if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() && |
| 176 ft.dwLowDateTime == std::numeric_limits<DWORD>::max()) | 175 ft.dwLowDateTime == std::numeric_limits<DWORD>::max()) |
| 177 return Max(); | 176 return Max(); |
| 178 return Time(FileTimeToMicroseconds(ft)); | 177 return Time(FileTimeToMicroseconds(ft)); |
| 179 } | 178 } |
| 180 | 179 |
| 181 FILETIME Time::ToFileTime() const { | 180 FILETIME Time::ToFileTime() const { |
| 182 if (is_null()) | 181 if (is_null()) |
| 183 return bit_cast<FILETIME, int64>(0); | 182 return bit_cast<FILETIME, int64_t>(0); |
| 184 if (is_max()) { | 183 if (is_max()) { |
| 185 FILETIME result; | 184 FILETIME result; |
| 186 result.dwHighDateTime = std::numeric_limits<DWORD>::max(); | 185 result.dwHighDateTime = std::numeric_limits<DWORD>::max(); |
| 187 result.dwLowDateTime = std::numeric_limits<DWORD>::max(); | 186 result.dwLowDateTime = std::numeric_limits<DWORD>::max(); |
| 188 return result; | 187 return result; |
| 189 } | 188 } |
| 190 FILETIME utc_ft; | 189 FILETIME utc_ft; |
| 191 MicrosecondsToFileTime(us_, &utc_ft); | 190 MicrosecondsToFileTime(us_, &utc_ft); |
| 192 return utc_ft; | 191 return utc_ft; |
| 193 } | 192 } |
| (...skipping 131 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 325 // We define a wrapper to adapt between the __stdcall and __cdecl call of the | 324 // We define a wrapper to adapt between the __stdcall and __cdecl call of the |
| 326 // mock function, and to avoid a static constructor. Assigning an import to a | 325 // mock function, and to avoid a static constructor. Assigning an import to a |
| 327 // function pointer directly would require setup code to fetch from the IAT. | 326 // function pointer directly would require setup code to fetch from the IAT. |
| 328 DWORD timeGetTimeWrapper() { | 327 DWORD timeGetTimeWrapper() { |
| 329 return timeGetTime(); | 328 return timeGetTime(); |
| 330 } | 329 } |
| 331 | 330 |
| 332 DWORD (*g_tick_function)(void) = &timeGetTimeWrapper; | 331 DWORD (*g_tick_function)(void) = &timeGetTimeWrapper; |
| 333 | 332 |
| 334 // Accumulation of time lost due to rollover (in milliseconds). | 333 // Accumulation of time lost due to rollover (in milliseconds). |
| 335 int64 g_rollover_ms = 0; | 334 int64_t g_rollover_ms = 0; |
| 336 | 335 |
| 337 // The last timeGetTime value we saw, to detect rollover. | 336 // The last timeGetTime value we saw, to detect rollover. |
| 338 DWORD g_last_seen_now = 0; | 337 DWORD g_last_seen_now = 0; |
| 339 | 338 |
| 340 // Lock protecting rollover_ms and last_seen_now. | 339 // Lock protecting rollover_ms and last_seen_now. |
| 341 // Note: this is a global object, and we usually avoid these. However, the time | 340 // Note: this is a global object, and we usually avoid these. However, the time |
| 342 // code is low-level, and we don't want to use Singletons here (it would be too | 341 // code is low-level, and we don't want to use Singletons here (it would be too |
| 343 // easy to use a Singleton without even knowing it, and that may lead to many | 342 // easy to use a Singleton without even knowing it, and that may lead to many |
| 344 // gotchas). Its impact on startup time should be negligible due to low-level | 343 // gotchas). Its impact on startup time should be negligible due to low-level |
| 345 // nature of time code. | 344 // nature of time code. |
| (...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 396 // this timer; and also other Windows applications can alter it, affecting this | 395 // this timer; and also other Windows applications can alter it, affecting this |
| 397 // one. | 396 // one. |
| 398 | 397 |
| 399 using NowFunction = TimeDelta (*)(void); | 398 using NowFunction = TimeDelta (*)(void); |
| 400 | 399 |
| 401 TimeDelta InitialNowFunction(); | 400 TimeDelta InitialNowFunction(); |
| 402 | 401 |
| 403 // See "threading notes" in InitializeNowFunctionPointer() for details on how | 402 // See "threading notes" in InitializeNowFunctionPointer() for details on how |
| 404 // concurrent reads/writes to these globals has been made safe. | 403 // concurrent reads/writes to these globals has been made safe. |
| 405 NowFunction g_now_function = &InitialNowFunction; | 404 NowFunction g_now_function = &InitialNowFunction; |
| 406 int64 g_qpc_ticks_per_second = 0; | 405 int64_t g_qpc_ticks_per_second = 0; |
| 407 | 406 |
| 408 // As of January 2015, use of <atomic> is forbidden in Chromium code. This is | 407 // As of January 2015, use of <atomic> is forbidden in Chromium code. This is |
| 409 // what std::atomic_thread_fence does on Windows on all Intel architectures when | 408 // what std::atomic_thread_fence does on Windows on all Intel architectures when |
| 410 // the memory_order argument is anything but std::memory_order_seq_cst: | 409 // the memory_order argument is anything but std::memory_order_seq_cst: |
| 411 #define ATOMIC_THREAD_FENCE(memory_order) _ReadWriteBarrier(); | 410 #define ATOMIC_THREAD_FENCE(memory_order) _ReadWriteBarrier(); |
| 412 | 411 |
| 413 TimeDelta QPCValueToTimeDelta(LONGLONG qpc_value) { | 412 TimeDelta QPCValueToTimeDelta(LONGLONG qpc_value) { |
| 414 // Ensure that the assignment to |g_qpc_ticks_per_second|, made in | 413 // Ensure that the assignment to |g_qpc_ticks_per_second|, made in |
| 415 // InitializeNowFunctionPointer(), has happened by this point. | 414 // InitializeNowFunctionPointer(), has happened by this point. |
| 416 ATOMIC_THREAD_FENCE(memory_order_acquire); | 415 ATOMIC_THREAD_FENCE(memory_order_acquire); |
| 417 | 416 |
| 418 DCHECK_GT(g_qpc_ticks_per_second, 0); | 417 DCHECK_GT(g_qpc_ticks_per_second, 0); |
| 419 | 418 |
| 420 // If the QPC Value is below the overflow threshold, we proceed with | 419 // If the QPC Value is below the overflow threshold, we proceed with |
| 421 // simple multiply and divide. | 420 // simple multiply and divide. |
| 422 if (qpc_value < Time::kQPCOverflowThreshold) { | 421 if (qpc_value < Time::kQPCOverflowThreshold) { |
| 423 return TimeDelta::FromMicroseconds( | 422 return TimeDelta::FromMicroseconds( |
| 424 qpc_value * Time::kMicrosecondsPerSecond / g_qpc_ticks_per_second); | 423 qpc_value * Time::kMicrosecondsPerSecond / g_qpc_ticks_per_second); |
| 425 } | 424 } |
| 426 // Otherwise, calculate microseconds in a round about manner to avoid | 425 // Otherwise, calculate microseconds in a round about manner to avoid |
| 427 // overflow and precision issues. | 426 // overflow and precision issues. |
| 428 int64 whole_seconds = qpc_value / g_qpc_ticks_per_second; | 427 int64_t whole_seconds = qpc_value / g_qpc_ticks_per_second; |
| 429 int64 leftover_ticks = qpc_value - (whole_seconds * g_qpc_ticks_per_second); | 428 int64_t leftover_ticks = qpc_value - (whole_seconds * g_qpc_ticks_per_second); |
| 430 return TimeDelta::FromMicroseconds( | 429 return TimeDelta::FromMicroseconds( |
| 431 (whole_seconds * Time::kMicrosecondsPerSecond) + | 430 (whole_seconds * Time::kMicrosecondsPerSecond) + |
| 432 ((leftover_ticks * Time::kMicrosecondsPerSecond) / | 431 ((leftover_ticks * Time::kMicrosecondsPerSecond) / |
| 433 g_qpc_ticks_per_second)); | 432 g_qpc_ticks_per_second)); |
| 434 } | 433 } |
| 435 | 434 |
| 436 TimeDelta QPCNow() { | 435 TimeDelta QPCNow() { |
| 437 return QPCValueToTimeDelta(QPCNowRaw()); | 436 return QPCValueToTimeDelta(QPCNowRaw()); |
| 438 } | 437 } |
| 439 | 438 |
| (...skipping 79 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 519 ULONG64 thread_cycle_time = 0; | 518 ULONG64 thread_cycle_time = 0; |
| 520 GetQueryThreadCycleTimeFunction()(::GetCurrentThread(), &thread_cycle_time); | 519 GetQueryThreadCycleTimeFunction()(::GetCurrentThread(), &thread_cycle_time); |
| 521 | 520 |
| 522 // Get the frequency of the TSC. | 521 // Get the frequency of the TSC. |
| 523 double tsc_ticks_per_second = TSCTicksPerSecond(); | 522 double tsc_ticks_per_second = TSCTicksPerSecond(); |
| 524 if (tsc_ticks_per_second == 0) | 523 if (tsc_ticks_per_second == 0) |
| 525 return ThreadTicks(); | 524 return ThreadTicks(); |
| 526 | 525 |
| 527 // Return the CPU time of the current thread. | 526 // Return the CPU time of the current thread. |
| 528 double thread_time_seconds = thread_cycle_time / tsc_ticks_per_second; | 527 double thread_time_seconds = thread_cycle_time / tsc_ticks_per_second; |
| 529 return ThreadTicks(static_cast<int64>( | 528 return ThreadTicks( |
| 530 thread_time_seconds * Time::kMicrosecondsPerSecond)); | 529 static_cast<int64_t>(thread_time_seconds * Time::kMicrosecondsPerSecond)); |
| 531 } | 530 } |
| 532 | 531 |
| 533 // static | 532 // static |
| 534 bool ThreadTicks::IsSupportedWin() { | 533 bool ThreadTicks::IsSupportedWin() { |
| 535 static bool is_supported = GetQueryThreadCycleTimeFunction() && | 534 static bool is_supported = GetQueryThreadCycleTimeFunction() && |
| 536 base::CPU().has_non_stop_time_stamp_counter() && | 535 base::CPU().has_non_stop_time_stamp_counter() && |
| 537 !IsBuggyAthlon(base::CPU()); | 536 !IsBuggyAthlon(base::CPU()); |
| 538 return is_supported; | 537 return is_supported; |
| 539 } | 538 } |
| 540 | 539 |
| (...skipping 16 matching lines...) Expand all Loading... |
| 557 if (tsc_ticks_per_second != 0) | 556 if (tsc_ticks_per_second != 0) |
| 558 return tsc_ticks_per_second; | 557 return tsc_ticks_per_second; |
| 559 | 558 |
| 560 // Increase the thread priority to reduces the chances of having a context | 559 // Increase the thread priority to reduces the chances of having a context |
| 561 // switch during a reading of the TSC and the performance counter. | 560 // switch during a reading of the TSC and the performance counter. |
| 562 int previous_priority = ::GetThreadPriority(::GetCurrentThread()); | 561 int previous_priority = ::GetThreadPriority(::GetCurrentThread()); |
| 563 ::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST); | 562 ::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST); |
| 564 | 563 |
| 565 // The first time that this function is called, make an initial reading of the | 564 // The first time that this function is called, make an initial reading of the |
| 566 // TSC and the performance counter. | 565 // TSC and the performance counter. |
| 567 static const uint64 tsc_initial = __rdtsc(); | 566 static const uint64_t tsc_initial = __rdtsc(); |
| 568 static const uint64 perf_counter_initial = QPCNowRaw(); | 567 static const uint64_t perf_counter_initial = QPCNowRaw(); |
| 569 | 568 |
| 570 // Make a another reading of the TSC and the performance counter every time | 569 // Make a another reading of the TSC and the performance counter every time |
| 571 // that this function is called. | 570 // that this function is called. |
| 572 uint64 tsc_now = __rdtsc(); | 571 uint64_t tsc_now = __rdtsc(); |
| 573 uint64 perf_counter_now = QPCNowRaw(); | 572 uint64_t perf_counter_now = QPCNowRaw(); |
| 574 | 573 |
| 575 // Reset the thread priority. | 574 // Reset the thread priority. |
| 576 ::SetThreadPriority(::GetCurrentThread(), previous_priority); | 575 ::SetThreadPriority(::GetCurrentThread(), previous_priority); |
| 577 | 576 |
| 578 // Make sure that at least 50 ms elapsed between the 2 readings. The first | 577 // Make sure that at least 50 ms elapsed between the 2 readings. The first |
| 579 // time that this function is called, we don't expect this to be the case. | 578 // time that this function is called, we don't expect this to be the case. |
| 580 // Note: The longer the elapsed time between the 2 readings is, the more | 579 // Note: The longer the elapsed time between the 2 readings is, the more |
| 581 // accurate the computed TSC frequency will be. The 50 ms value was | 580 // accurate the computed TSC frequency will be. The 50 ms value was |
| 582 // chosen because local benchmarks show that it allows us to get a | 581 // chosen because local benchmarks show that it allows us to get a |
| 583 // stddev of less than 1 tick/us between multiple runs. | 582 // stddev of less than 1 tick/us between multiple runs. |
| 584 // Note: According to the MSDN documentation for QueryPerformanceFrequency(), | 583 // Note: According to the MSDN documentation for QueryPerformanceFrequency(), |
| 585 // this will never fail on systems that run XP or later. | 584 // this will never fail on systems that run XP or later. |
| 586 // https://msdn.microsoft.com/library/windows/desktop/ms644905.aspx | 585 // https://msdn.microsoft.com/library/windows/desktop/ms644905.aspx |
| 587 LARGE_INTEGER perf_counter_frequency = {}; | 586 LARGE_INTEGER perf_counter_frequency = {}; |
| 588 ::QueryPerformanceFrequency(&perf_counter_frequency); | 587 ::QueryPerformanceFrequency(&perf_counter_frequency); |
| 589 DCHECK_GE(perf_counter_now, perf_counter_initial); | 588 DCHECK_GE(perf_counter_now, perf_counter_initial); |
| 590 uint64 perf_counter_ticks = perf_counter_now - perf_counter_initial; | 589 uint64_t perf_counter_ticks = perf_counter_now - perf_counter_initial; |
| 591 double elapsed_time_seconds = | 590 double elapsed_time_seconds = |
| 592 perf_counter_ticks / static_cast<double>(perf_counter_frequency.QuadPart); | 591 perf_counter_ticks / static_cast<double>(perf_counter_frequency.QuadPart); |
| 593 | 592 |
| 594 const double kMinimumEvaluationPeriodSeconds = 0.05; | 593 const double kMinimumEvaluationPeriodSeconds = 0.05; |
| 595 if (elapsed_time_seconds < kMinimumEvaluationPeriodSeconds) | 594 if (elapsed_time_seconds < kMinimumEvaluationPeriodSeconds) |
| 596 return 0; | 595 return 0; |
| 597 | 596 |
| 598 // Compute the frequency of the TSC. | 597 // Compute the frequency of the TSC. |
| 599 DCHECK_GE(tsc_now, tsc_initial); | 598 DCHECK_GE(tsc_now, tsc_initial); |
| 600 uint64 tsc_ticks = tsc_now - tsc_initial; | 599 uint64_t tsc_ticks = tsc_now - tsc_initial; |
| 601 tsc_ticks_per_second = tsc_ticks / elapsed_time_seconds; | 600 tsc_ticks_per_second = tsc_ticks / elapsed_time_seconds; |
| 602 | 601 |
| 603 return tsc_ticks_per_second; | 602 return tsc_ticks_per_second; |
| 604 } | 603 } |
| 605 | 604 |
| 606 // static | 605 // static |
| 607 TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) { | 606 TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) { |
| 608 return TimeTicks() + QPCValueToTimeDelta(qpc_value); | 607 return TimeTicks() + QPCValueToTimeDelta(qpc_value); |
| 609 } | 608 } |
| 610 | 609 |
| 611 // TimeDelta ------------------------------------------------------------------ | 610 // TimeDelta ------------------------------------------------------------------ |
| 612 | 611 |
| 613 // static | 612 // static |
| 614 TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) { | 613 TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) { |
| 615 return QPCValueToTimeDelta(qpc_value); | 614 return QPCValueToTimeDelta(qpc_value); |
| 616 } | 615 } |
| OLD | NEW |