Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(154)

Side by Side Diff: net/quic/crypto/strike_register.cc

Issue 1535363003: Switch to standard integer types in net/. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: stddef Created 5 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « net/quic/crypto/strike_register.h ('k') | net/quic/crypto/strike_register_client.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include "net/quic/crypto/strike_register.h" 5 #include "net/quic/crypto/strike_register.h"
6 6
7 #include <algorithm> 7 #include <algorithm>
8 #include <limits> 8 #include <limits>
9 9
10 #include "base/logging.h" 10 #include "base/logging.h"
11 11
12 using std::pair; 12 using std::pair;
13 using std::set; 13 using std::set;
14 using std::vector; 14 using std::vector;
15 15
16 namespace net { 16 namespace net {
17 17
18 namespace { 18 namespace {
19 19
20 uint32 GetInitialHorizon(uint32 current_time_internal, 20 uint32_t GetInitialHorizon(uint32_t current_time_internal,
21 uint32 window_secs, 21 uint32_t window_secs,
22 StrikeRegister::StartupType startup) { 22 StrikeRegister::StartupType startup) {
23 if (startup == StrikeRegister::DENY_REQUESTS_AT_STARTUP) { 23 if (startup == StrikeRegister::DENY_REQUESTS_AT_STARTUP) {
24 // The horizon is initially set |window_secs| into the future because, if 24 // The horizon is initially set |window_secs| into the future because, if
25 // we just crashed, then we may have accepted nonces in the span 25 // we just crashed, then we may have accepted nonces in the span
26 // [current_time...current_time+window_secs] and so we conservatively 26 // [current_time...current_time+window_secs] and so we conservatively
27 // reject the whole timespan unless |startup| tells us otherwise. 27 // reject the whole timespan unless |startup| tells us otherwise.
28 return current_time_internal + window_secs + 1; 28 return current_time_internal + window_secs + 1;
29 } else { // startup == StrikeRegister::NO_STARTUP_PERIOD_NEEDED 29 } else { // startup == StrikeRegister::NO_STARTUP_PERIOD_NEEDED
30 // The orbit can be assumed to be globally unique. Use a horizon 30 // The orbit can be assumed to be globally unique. Use a horizon
31 // in the past. 31 // in the past.
32 return 0; 32 return 0;
33 } 33 }
34 } 34 }
35 35
36 } // namespace 36 } // namespace
37 37
38 // static 38 // static
39 const uint32 StrikeRegister::kExternalNodeSize = 24; 39 const uint32_t StrikeRegister::kExternalNodeSize = 24;
40 // static 40 // static
41 const uint32 StrikeRegister::kNil = (1u << 31) | 1; 41 const uint32_t StrikeRegister::kNil = (1u << 31) | 1;
42 // static 42 // static
43 const uint32 StrikeRegister::kExternalFlag = 1 << 23; 43 const uint32_t StrikeRegister::kExternalFlag = 1 << 23;
44 44
45 // InternalNode represents a non-leaf node in the critbit tree. See the comment 45 // InternalNode represents a non-leaf node in the critbit tree. See the comment
46 // in the .h file for details. 46 // in the .h file for details.
47 class StrikeRegister::InternalNode { 47 class StrikeRegister::InternalNode {
48 public: 48 public:
49 void SetChild(unsigned direction, uint32 child) { 49 void SetChild(unsigned direction, uint32_t child) {
50 data_[direction] = (data_[direction] & 0xff) | (child << 8); 50 data_[direction] = (data_[direction] & 0xff) | (child << 8);
51 } 51 }
52 52
53 void SetCritByte(uint8 critbyte) { 53 void SetCritByte(uint8_t critbyte) {
54 data_[0] = (data_[0] & 0xffffff00) | critbyte; 54 data_[0] = (data_[0] & 0xffffff00) | critbyte;
55 } 55 }
56 56
57 void SetOtherBits(uint8 otherbits) { 57 void SetOtherBits(uint8_t otherbits) {
58 data_[1] = (data_[1] & 0xffffff00) | otherbits; 58 data_[1] = (data_[1] & 0xffffff00) | otherbits;
59 } 59 }
60 60
61 void SetNextPtr(uint32 next) { data_[0] = next; } 61 void SetNextPtr(uint32_t next) { data_[0] = next; }
62 62
63 uint32 next() const { return data_[0]; } 63 uint32_t next() const { return data_[0]; }
64 64
65 uint32 child(unsigned n) const { return data_[n] >> 8; } 65 uint32_t child(unsigned n) const { return data_[n] >> 8; }
66 66
67 uint8 critbyte() const { return static_cast<uint8>(data_[0]); } 67 uint8_t critbyte() const { return static_cast<uint8_t>(data_[0]); }
68 68
69 uint8 otherbits() const { return static_cast<uint8>(data_[1]); } 69 uint8_t otherbits() const { return static_cast<uint8_t>(data_[1]); }
70 70
71 // These bytes are organised thus: 71 // These bytes are organised thus:
72 // <24 bits> left child 72 // <24 bits> left child
73 // <8 bits> crit-byte 73 // <8 bits> crit-byte
74 // <24 bits> right child 74 // <24 bits> right child
75 // <8 bits> other-bits 75 // <8 bits> other-bits
76 uint32 data_[2]; 76 uint32_t data_[2];
77 }; 77 };
78 78
79 // kCreationTimeFromInternalEpoch contains the number of seconds between the 79 // kCreationTimeFromInternalEpoch contains the number of seconds between the
80 // start of the internal epoch and the creation time. This allows us 80 // start of the internal epoch and the creation time. This allows us
81 // to consider times that are before the creation time. 81 // to consider times that are before the creation time.
82 static const uint32 kCreationTimeFromInternalEpoch = 63115200; // 2 years. 82 static const uint32_t kCreationTimeFromInternalEpoch = 63115200; // 2 years.
83 83
84 void StrikeRegister::ValidateStrikeRegisterConfig(unsigned max_entries) { 84 void StrikeRegister::ValidateStrikeRegisterConfig(unsigned max_entries) {
85 // We only have 23 bits of index available. 85 // We only have 23 bits of index available.
86 CHECK_LT(max_entries, 1u << 23); 86 CHECK_LT(max_entries, 1u << 23);
87 CHECK_GT(max_entries, 1u); // There must be at least two entries. 87 CHECK_GT(max_entries, 1u); // There must be at least two entries.
88 CHECK_EQ(sizeof(InternalNode), 8u); // in case of compiler changes. 88 CHECK_EQ(sizeof(InternalNode), 8u); // in case of compiler changes.
89 } 89 }
90 90
91 StrikeRegister::StrikeRegister(unsigned max_entries, 91 StrikeRegister::StrikeRegister(unsigned max_entries,
92 uint32 current_time, 92 uint32_t current_time,
93 uint32 window_secs, 93 uint32_t window_secs,
94 const uint8 orbit[8], 94 const uint8_t orbit[8],
95 StartupType startup) 95 StartupType startup)
96 : max_entries_(max_entries), 96 : max_entries_(max_entries),
97 window_secs_(window_secs), 97 window_secs_(window_secs),
98 internal_epoch_(current_time > kCreationTimeFromInternalEpoch 98 internal_epoch_(current_time > kCreationTimeFromInternalEpoch
99 ? current_time - kCreationTimeFromInternalEpoch 99 ? current_time - kCreationTimeFromInternalEpoch
100 : 0), 100 : 0),
101 horizon_(GetInitialHorizon(ExternalTimeToInternal(current_time), 101 horizon_(GetInitialHorizon(ExternalTimeToInternal(current_time),
102 window_secs, 102 window_secs,
103 startup)) { 103 startup)) {
104 memcpy(orbit_, orbit, sizeof(orbit_)); 104 memcpy(orbit_, orbit, sizeof(orbit_));
105 105
106 ValidateStrikeRegisterConfig(max_entries); 106 ValidateStrikeRegisterConfig(max_entries);
107 internal_nodes_ = new InternalNode[max_entries]; 107 internal_nodes_ = new InternalNode[max_entries];
108 external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]); 108 external_nodes_.reset(new uint8_t[kExternalNodeSize * max_entries]);
109 109
110 Reset(); 110 Reset();
111 } 111 }
112 112
113 StrikeRegister::~StrikeRegister() { 113 StrikeRegister::~StrikeRegister() {
114 delete[] internal_nodes_; 114 delete[] internal_nodes_;
115 } 115 }
116 116
117 void StrikeRegister::Reset() { 117 void StrikeRegister::Reset() {
118 // Thread a free list through all of the internal nodes. 118 // Thread a free list through all of the internal nodes.
119 internal_node_free_head_ = 0; 119 internal_node_free_head_ = 0;
120 for (unsigned i = 0; i < max_entries_ - 1; i++) { 120 for (unsigned i = 0; i < max_entries_ - 1; i++) {
121 internal_nodes_[i].SetNextPtr(i + 1); 121 internal_nodes_[i].SetNextPtr(i + 1);
122 } 122 }
123 internal_nodes_[max_entries_ - 1].SetNextPtr(kNil); 123 internal_nodes_[max_entries_ - 1].SetNextPtr(kNil);
124 124
125 // Also thread a free list through the external nodes. 125 // Also thread a free list through the external nodes.
126 external_node_free_head_ = 0; 126 external_node_free_head_ = 0;
127 for (unsigned i = 0; i < max_entries_ - 1; i++) { 127 for (unsigned i = 0; i < max_entries_ - 1; i++) {
128 external_node_next_ptr(i) = i + 1; 128 external_node_next_ptr(i) = i + 1;
129 } 129 }
130 external_node_next_ptr(max_entries_ - 1) = kNil; 130 external_node_next_ptr(max_entries_ - 1) = kNil;
131 131
132 // This is the root of the tree. 132 // This is the root of the tree.
133 internal_node_head_ = kNil; 133 internal_node_head_ = kNil;
134 } 134 }
135 135
136 InsertStatus StrikeRegister::Insert(const uint8 nonce[32], 136 InsertStatus StrikeRegister::Insert(const uint8_t nonce[32],
137 uint32 current_time_external) { 137 uint32_t current_time_external) {
138 // Make space for the insertion if the strike register is full. 138 // Make space for the insertion if the strike register is full.
139 while (external_node_free_head_ == kNil || internal_node_free_head_ == kNil) { 139 while (external_node_free_head_ == kNil || internal_node_free_head_ == kNil) {
140 DropOldestNode(); 140 DropOldestNode();
141 } 141 }
142 142
143 const uint32 current_time = ExternalTimeToInternal(current_time_external); 143 const uint32_t current_time = ExternalTimeToInternal(current_time_external);
144 144
145 // Check to see if the orbit is correct. 145 // Check to see if the orbit is correct.
146 if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) { 146 if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) {
147 return NONCE_INVALID_ORBIT_FAILURE; 147 return NONCE_INVALID_ORBIT_FAILURE;
148 } 148 }
149 149
150 const uint32 nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce)); 150 const uint32_t nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce));
151 151
152 // Check that the timestamp is in the valid range. 152 // Check that the timestamp is in the valid range.
153 pair<uint32, uint32> valid_range = 153 pair<uint32_t, uint32_t> valid_range =
154 StrikeRegister::GetValidRange(current_time); 154 StrikeRegister::GetValidRange(current_time);
155 if (nonce_time < valid_range.first || nonce_time > valid_range.second) { 155 if (nonce_time < valid_range.first || nonce_time > valid_range.second) {
156 return NONCE_INVALID_TIME_FAILURE; 156 return NONCE_INVALID_TIME_FAILURE;
157 } 157 }
158 158
159 // We strip the orbit out of the nonce. 159 // We strip the orbit out of the nonce.
160 uint8 value[24]; 160 uint8_t value[24];
161 memcpy(value, nonce, sizeof(nonce_time)); 161 memcpy(value, nonce, sizeof(nonce_time));
162 memcpy(value + sizeof(nonce_time), 162 memcpy(value + sizeof(nonce_time),
163 nonce + sizeof(nonce_time) + sizeof(orbit_), 163 nonce + sizeof(nonce_time) + sizeof(orbit_),
164 sizeof(value) - sizeof(nonce_time)); 164 sizeof(value) - sizeof(nonce_time));
165 165
166 // Find the best match to |value| in the crit-bit tree. The best match is 166 // Find the best match to |value| in the crit-bit tree. The best match is
167 // simply the value which /could/ match |value|, if any does, so we still 167 // simply the value which /could/ match |value|, if any does, so we still
168 // need a memcmp to check. 168 // need a memcmp to check.
169 uint32 best_match_index = BestMatch(value); 169 uint32_t best_match_index = BestMatch(value);
170 if (best_match_index == kNil) { 170 if (best_match_index == kNil) {
171 // Empty tree. Just insert the new value at the root. 171 // Empty tree. Just insert the new value at the root.
172 uint32 index = GetFreeExternalNode(); 172 uint32_t index = GetFreeExternalNode();
173 memcpy(external_node(index), value, sizeof(value)); 173 memcpy(external_node(index), value, sizeof(value));
174 internal_node_head_ = (index | kExternalFlag) << 8; 174 internal_node_head_ = (index | kExternalFlag) << 8;
175 DCHECK_LE(horizon_, nonce_time); 175 DCHECK_LE(horizon_, nonce_time);
176 return NONCE_OK; 176 return NONCE_OK;
177 } 177 }
178 178
179 const uint8* best_match = external_node(best_match_index); 179 const uint8_t* best_match = external_node(best_match_index);
180 if (memcmp(best_match, value, sizeof(value)) == 0) { 180 if (memcmp(best_match, value, sizeof(value)) == 0) {
181 // We found the value in the tree. 181 // We found the value in the tree.
182 return NONCE_NOT_UNIQUE_FAILURE; 182 return NONCE_NOT_UNIQUE_FAILURE;
183 } 183 }
184 184
185 // We are going to insert a new entry into the tree, so get the nodes now. 185 // We are going to insert a new entry into the tree, so get the nodes now.
186 uint32 internal_node_index = GetFreeInternalNode(); 186 uint32_t internal_node_index = GetFreeInternalNode();
187 uint32 external_node_index = GetFreeExternalNode(); 187 uint32_t external_node_index = GetFreeExternalNode();
188 188
189 // If we just evicted the best match, then we have to try and match again. 189 // If we just evicted the best match, then we have to try and match again.
190 // We know that we didn't just empty the tree because we require that 190 // We know that we didn't just empty the tree because we require that
191 // max_entries_ >= 2. Also, we know that it doesn't match because, if it 191 // max_entries_ >= 2. Also, we know that it doesn't match because, if it
192 // did, it would have been returned previously. 192 // did, it would have been returned previously.
193 if (external_node_index == best_match_index) { 193 if (external_node_index == best_match_index) {
194 best_match_index = BestMatch(value); 194 best_match_index = BestMatch(value);
195 best_match = external_node(best_match_index); 195 best_match = external_node(best_match_index);
196 } 196 }
197 197
198 // Now we need to find the first bit where we differ from |best_match|. 198 // Now we need to find the first bit where we differ from |best_match|.
199 uint8 differing_byte; 199 uint8_t differing_byte;
200 uint8 new_other_bits; 200 uint8_t new_other_bits;
201 for (differing_byte = 0; differing_byte < arraysize(value); 201 for (differing_byte = 0; differing_byte < arraysize(value);
202 differing_byte++) { 202 differing_byte++) {
203 new_other_bits = value[differing_byte] ^ best_match[differing_byte]; 203 new_other_bits = value[differing_byte] ^ best_match[differing_byte];
204 if (new_other_bits) { 204 if (new_other_bits) {
205 break; 205 break;
206 } 206 }
207 } 207 }
208 208
209 // Once we have the XOR the of first differing byte in new_other_bits we need 209 // Once we have the XOR the of first differing byte in new_other_bits we need
210 // to find the most significant differing bit. We could do this with a simple 210 // to find the most significant differing bit. We could do this with a simple
(...skipping 17 matching lines...) Expand all
228 newdirection = 0; 228 newdirection = 0;
229 } 229 }
230 230
231 memcpy(external_node(external_node_index), value, sizeof(value)); 231 memcpy(external_node(external_node_index), value, sizeof(value));
232 InternalNode* inode = &internal_nodes_[internal_node_index]; 232 InternalNode* inode = &internal_nodes_[internal_node_index];
233 233
234 inode->SetChild(newdirection, external_node_index | kExternalFlag); 234 inode->SetChild(newdirection, external_node_index | kExternalFlag);
235 inode->SetCritByte(differing_byte); 235 inode->SetCritByte(differing_byte);
236 inode->SetOtherBits(new_other_bits); 236 inode->SetOtherBits(new_other_bits);
237 237
238 // |where_index| is a pointer to the uint32 which needs to be updated in 238 // |where_index| is a pointer to the uint32_t which needs to be updated in
239 // order to insert the new internal node into the tree. The internal nodes 239 // order to insert the new internal node into the tree. The internal nodes
240 // store the child indexes in the top 24-bits of a 32-bit word and, to keep 240 // store the child indexes in the top 24-bits of a 32-bit word and, to keep
241 // the code simple, we define that |internal_node_head_| is organised the 241 // the code simple, we define that |internal_node_head_| is organised the
242 // same way. 242 // same way.
243 DCHECK_EQ(internal_node_head_ & 0xff, 0u); 243 DCHECK_EQ(internal_node_head_ & 0xff, 0u);
244 uint32* where_index = &internal_node_head_; 244 uint32_t* where_index = &internal_node_head_;
245 while (((*where_index >> 8) & kExternalFlag) == 0) { 245 while (((*where_index >> 8) & kExternalFlag) == 0) {
246 InternalNode* node = &internal_nodes_[*where_index >> 8]; 246 InternalNode* node = &internal_nodes_[*where_index >> 8];
247 if (node->critbyte() > differing_byte) { 247 if (node->critbyte() > differing_byte) {
248 break; 248 break;
249 } 249 }
250 if (node->critbyte() == differing_byte && 250 if (node->critbyte() == differing_byte &&
251 node->otherbits() > new_other_bits) { 251 node->otherbits() > new_other_bits) {
252 break; 252 break;
253 } 253 }
254 if (node->critbyte() == differing_byte && 254 if (node->critbyte() == differing_byte &&
255 node->otherbits() == new_other_bits) { 255 node->otherbits() == new_other_bits) {
256 CHECK(false); 256 CHECK(false);
257 } 257 }
258 258
259 uint8 c = value[node->critbyte()]; 259 uint8_t c = value[node->critbyte()];
260 const int direction = 260 const int direction =
261 (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8; 261 (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8;
262 where_index = &node->data_[direction]; 262 where_index = &node->data_[direction];
263 } 263 }
264 264
265 inode->SetChild(newdirection ^ 1, *where_index >> 8); 265 inode->SetChild(newdirection ^ 1, *where_index >> 8);
266 *where_index = (*where_index & 0xff) | (internal_node_index << 8); 266 *where_index = (*where_index & 0xff) | (internal_node_index << 8);
267 267
268 DCHECK_LE(horizon_, nonce_time); 268 DCHECK_LE(horizon_, nonce_time);
269 return NONCE_OK; 269 return NONCE_OK;
270 } 270 }
271 271
272 const uint8* StrikeRegister::orbit() const { 272 const uint8_t* StrikeRegister::orbit() const {
273 return orbit_; 273 return orbit_;
274 } 274 }
275 275
276 uint32 StrikeRegister::GetCurrentValidWindowSecs( 276 uint32_t StrikeRegister::GetCurrentValidWindowSecs(
277 uint32 current_time_external) const { 277 uint32_t current_time_external) const {
278 uint32 current_time = ExternalTimeToInternal(current_time_external); 278 uint32_t current_time = ExternalTimeToInternal(current_time_external);
279 pair<uint32, uint32> valid_range = 279 pair<uint32_t, uint32_t> valid_range =
280 StrikeRegister::GetValidRange(current_time); 280 StrikeRegister::GetValidRange(current_time);
281 if (valid_range.second >= valid_range.first) { 281 if (valid_range.second >= valid_range.first) {
282 return valid_range.second - current_time + 1; 282 return valid_range.second - current_time + 1;
283 } else { 283 } else {
284 return 0; 284 return 0;
285 } 285 }
286 } 286 }
287 287
288 void StrikeRegister::Validate() { 288 void StrikeRegister::Validate() {
289 set<uint32> free_internal_nodes; 289 set<uint32_t> free_internal_nodes;
290 for (uint32 i = internal_node_free_head_; i != kNil; 290 for (uint32_t i = internal_node_free_head_; i != kNil;
291 i = internal_nodes_[i].next()) { 291 i = internal_nodes_[i].next()) {
292 CHECK_LT(i, max_entries_); 292 CHECK_LT(i, max_entries_);
293 CHECK_EQ(free_internal_nodes.count(i), 0u); 293 CHECK_EQ(free_internal_nodes.count(i), 0u);
294 free_internal_nodes.insert(i); 294 free_internal_nodes.insert(i);
295 } 295 }
296 296
297 set<uint32> free_external_nodes; 297 set<uint32_t> free_external_nodes;
298 for (uint32 i = external_node_free_head_; i != kNil; 298 for (uint32_t i = external_node_free_head_; i != kNil;
299 i = external_node_next_ptr(i)) { 299 i = external_node_next_ptr(i)) {
300 CHECK_LT(i, max_entries_); 300 CHECK_LT(i, max_entries_);
301 CHECK_EQ(free_external_nodes.count(i), 0u); 301 CHECK_EQ(free_external_nodes.count(i), 0u);
302 free_external_nodes.insert(i); 302 free_external_nodes.insert(i);
303 } 303 }
304 304
305 set<uint32> used_external_nodes; 305 set<uint32_t> used_external_nodes;
306 set<uint32> used_internal_nodes; 306 set<uint32_t> used_internal_nodes;
307 307
308 if (internal_node_head_ != kNil && 308 if (internal_node_head_ != kNil &&
309 ((internal_node_head_ >> 8) & kExternalFlag) == 0) { 309 ((internal_node_head_ >> 8) & kExternalFlag) == 0) {
310 vector<pair<unsigned, bool>> bits; 310 vector<pair<unsigned, bool>> bits;
311 ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes, 311 ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes,
312 free_external_nodes, &used_internal_nodes, 312 free_external_nodes, &used_internal_nodes,
313 &used_external_nodes); 313 &used_external_nodes);
314 } 314 }
315 } 315 }
316 316
317 // static 317 // static
318 uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) { 318 uint32_t StrikeRegister::TimeFromBytes(const uint8_t d[4]) {
319 return static_cast<uint32>(d[0]) << 24 | static_cast<uint32>(d[1]) << 16 | 319 return static_cast<uint32_t>(d[0]) << 24 | static_cast<uint32_t>(d[1]) << 16 |
320 static_cast<uint32>(d[2]) << 8 | static_cast<uint32>(d[3]); 320 static_cast<uint32_t>(d[2]) << 8 | static_cast<uint32_t>(d[3]);
321 } 321 }
322 322
323 pair<uint32, uint32> StrikeRegister::GetValidRange( 323 pair<uint32_t, uint32_t> StrikeRegister::GetValidRange(
324 uint32 current_time_internal) const { 324 uint32_t current_time_internal) const {
325 if (current_time_internal < horizon_) { 325 if (current_time_internal < horizon_) {
326 // Empty valid range. 326 // Empty valid range.
327 return std::make_pair(std::numeric_limits<uint32>::max(), 0); 327 return std::make_pair(std::numeric_limits<uint32_t>::max(), 0);
328 } 328 }
329 329
330 uint32 lower_bound; 330 uint32_t lower_bound;
331 if (current_time_internal >= window_secs_) { 331 if (current_time_internal >= window_secs_) {
332 lower_bound = std::max(horizon_, current_time_internal - window_secs_); 332 lower_bound = std::max(horizon_, current_time_internal - window_secs_);
333 } else { 333 } else {
334 lower_bound = horizon_; 334 lower_bound = horizon_;
335 } 335 }
336 336
337 // Also limit the upper range based on horizon_. This makes the 337 // Also limit the upper range based on horizon_. This makes the
338 // strike register reject inserts that are far in the future and 338 // strike register reject inserts that are far in the future and
339 // would consume strike register resources for a long time. This 339 // would consume strike register resources for a long time. This
340 // allows the strike server to degrade optimally in cases where the 340 // allows the strike server to degrade optimally in cases where the
341 // insert rate exceeds |max_entries_ / (2 * window_secs_)| entries 341 // insert rate exceeds |max_entries_ / (2 * window_secs_)| entries
342 // per second. 342 // per second.
343 uint32 upper_bound = current_time_internal + 343 uint32_t upper_bound =
344 std::min(current_time_internal - horizon_, window_secs_); 344 current_time_internal +
345 std::min(current_time_internal - horizon_, window_secs_);
345 346
346 return std::make_pair(lower_bound, upper_bound); 347 return std::make_pair(lower_bound, upper_bound);
347 } 348 }
348 349
349 uint32 StrikeRegister::ExternalTimeToInternal(uint32 external_time) const { 350 uint32_t StrikeRegister::ExternalTimeToInternal(uint32_t external_time) const {
350 return external_time - internal_epoch_; 351 return external_time - internal_epoch_;
351 } 352 }
352 353
353 uint32 StrikeRegister::BestMatch(const uint8 v[24]) const { 354 uint32_t StrikeRegister::BestMatch(const uint8_t v[24]) const {
354 if (internal_node_head_ == kNil) { 355 if (internal_node_head_ == kNil) {
355 return kNil; 356 return kNil;
356 } 357 }
357 358
358 uint32 next = internal_node_head_ >> 8; 359 uint32_t next = internal_node_head_ >> 8;
359 while ((next & kExternalFlag) == 0) { 360 while ((next & kExternalFlag) == 0) {
360 InternalNode* node = &internal_nodes_[next]; 361 InternalNode* node = &internal_nodes_[next];
361 uint8 b = v[node->critbyte()]; 362 uint8_t b = v[node->critbyte()];
362 unsigned direction = 363 unsigned direction =
363 (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8; 364 (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8;
364 next = node->child(direction); 365 next = node->child(direction);
365 } 366 }
366 367
367 return next & ~kExternalFlag; 368 return next & ~kExternalFlag;
368 } 369 }
369 370
370 uint32& StrikeRegister::external_node_next_ptr(unsigned i) { 371 uint32_t& StrikeRegister::external_node_next_ptr(unsigned i) {
371 return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]); 372 return *reinterpret_cast<uint32_t*>(&external_nodes_[i * kExternalNodeSize]);
372 } 373 }
373 374
374 uint8* StrikeRegister::external_node(unsigned i) { 375 uint8_t* StrikeRegister::external_node(unsigned i) {
375 return &external_nodes_[i * kExternalNodeSize]; 376 return &external_nodes_[i * kExternalNodeSize];
376 } 377 }
377 378
378 uint32 StrikeRegister::GetFreeExternalNode() { 379 uint32_t StrikeRegister::GetFreeExternalNode() {
379 uint32 index = external_node_free_head_; 380 uint32_t index = external_node_free_head_;
380 DCHECK(index != kNil); 381 DCHECK(index != kNil);
381 external_node_free_head_ = external_node_next_ptr(index); 382 external_node_free_head_ = external_node_next_ptr(index);
382 return index; 383 return index;
383 } 384 }
384 385
385 uint32 StrikeRegister::GetFreeInternalNode() { 386 uint32_t StrikeRegister::GetFreeInternalNode() {
386 uint32 index = internal_node_free_head_; 387 uint32_t index = internal_node_free_head_;
387 DCHECK(index != kNil); 388 DCHECK(index != kNil);
388 internal_node_free_head_ = internal_nodes_[index].next(); 389 internal_node_free_head_ = internal_nodes_[index].next();
389 return index; 390 return index;
390 } 391 }
391 392
392 void StrikeRegister::DropOldestNode() { 393 void StrikeRegister::DropOldestNode() {
393 // DropOldestNode should never be called on an empty tree. 394 // DropOldestNode should never be called on an empty tree.
394 DCHECK(internal_node_head_ != kNil); 395 DCHECK(internal_node_head_ != kNil);
395 396
396 // An internal node in a crit-bit tree always has exactly two children. 397 // An internal node in a crit-bit tree always has exactly two children.
397 // This means that, if we are removing an external node (which is one of 398 // This means that, if we are removing an external node (which is one of
398 // those children), then we also need to remove an internal node. In order 399 // those children), then we also need to remove an internal node. In order
399 // to do that we keep pointers to the parent (wherep) and grandparent 400 // to do that we keep pointers to the parent (wherep) and grandparent
400 // (whereq) when walking down the tree. 401 // (whereq) when walking down the tree.
401 402
402 uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_, 403 uint32_t p = internal_node_head_ >> 8, *wherep = &internal_node_head_,
403 *whereq = nullptr; 404 *whereq = nullptr;
404 while ((p & kExternalFlag) == 0) { 405 while ((p & kExternalFlag) == 0) {
405 whereq = wherep; 406 whereq = wherep;
406 InternalNode* inode = &internal_nodes_[p]; 407 InternalNode* inode = &internal_nodes_[p];
407 // We always go left, towards the smallest element, exploiting the fact 408 // We always go left, towards the smallest element, exploiting the fact
408 // that the timestamp is big-endian and at the start of the value. 409 // that the timestamp is big-endian and at the start of the value.
409 wherep = &inode->data_[0]; 410 wherep = &inode->data_[0];
410 p = (*wherep) >> 8; 411 p = (*wherep) >> 8;
411 } 412 }
412 413
413 const uint32 ext_index = p & ~kExternalFlag; 414 const uint32_t ext_index = p & ~kExternalFlag;
414 const uint8* ext_node = external_node(ext_index); 415 const uint8_t* ext_node = external_node(ext_index);
415 uint32 new_horizon = ExternalTimeToInternal(TimeFromBytes(ext_node)) + 1; 416 uint32_t new_horizon = ExternalTimeToInternal(TimeFromBytes(ext_node)) + 1;
416 DCHECK_LE(horizon_, new_horizon); 417 DCHECK_LE(horizon_, new_horizon);
417 horizon_ = new_horizon; 418 horizon_ = new_horizon;
418 419
419 if (!whereq) { 420 if (!whereq) {
420 // We are removing the last element in a tree. 421 // We are removing the last element in a tree.
421 internal_node_head_ = kNil; 422 internal_node_head_ = kNil;
422 FreeExternalNode(ext_index); 423 FreeExternalNode(ext_index);
423 return; 424 return;
424 } 425 }
425 426
426 // |wherep| points to the left child pointer in the parent so we can add 427 // |wherep| points to the left child pointer in the parent so we can add
427 // one and dereference to get the right child. 428 // one and dereference to get the right child.
428 const uint32 other_child = wherep[1]; 429 const uint32_t other_child = wherep[1];
429 FreeInternalNode((*whereq) >> 8); 430 FreeInternalNode((*whereq) >> 8);
430 *whereq = (*whereq & 0xff) | (other_child & 0xffffff00); 431 *whereq = (*whereq & 0xff) | (other_child & 0xffffff00);
431 FreeExternalNode(ext_index); 432 FreeExternalNode(ext_index);
432 } 433 }
433 434
434 void StrikeRegister::FreeExternalNode(uint32 index) { 435 void StrikeRegister::FreeExternalNode(uint32_t index) {
435 external_node_next_ptr(index) = external_node_free_head_; 436 external_node_next_ptr(index) = external_node_free_head_;
436 external_node_free_head_ = index; 437 external_node_free_head_ = index;
437 } 438 }
438 439
439 void StrikeRegister::FreeInternalNode(uint32 index) { 440 void StrikeRegister::FreeInternalNode(uint32_t index) {
440 internal_nodes_[index].SetNextPtr(internal_node_free_head_); 441 internal_nodes_[index].SetNextPtr(internal_node_free_head_);
441 internal_node_free_head_ = index; 442 internal_node_free_head_ = index;
442 } 443 }
443 444
444 void StrikeRegister::ValidateTree(uint32 internal_node, 445 void StrikeRegister::ValidateTree(uint32_t internal_node,
445 int last_bit, 446 int last_bit,
446 const vector<pair<unsigned, bool>>& bits, 447 const vector<pair<unsigned, bool>>& bits,
447 const set<uint32>& free_internal_nodes, 448 const set<uint32_t>& free_internal_nodes,
448 const set<uint32>& free_external_nodes, 449 const set<uint32_t>& free_external_nodes,
449 set<uint32>* used_internal_nodes, 450 set<uint32_t>* used_internal_nodes,
450 set<uint32>* used_external_nodes) { 451 set<uint32_t>* used_external_nodes) {
451 CHECK_LT(internal_node, max_entries_); 452 CHECK_LT(internal_node, max_entries_);
452 const InternalNode* i = &internal_nodes_[internal_node]; 453 const InternalNode* i = &internal_nodes_[internal_node];
453 unsigned bit = 0; 454 unsigned bit = 0;
454 switch (i->otherbits()) { 455 switch (i->otherbits()) {
455 case 0xff & ~(1 << 7): 456 case 0xff & ~(1 << 7):
456 bit = 0; 457 bit = 0;
457 break; 458 break;
458 case 0xff & ~(1 << 6): 459 case 0xff & ~(1 << 6):
459 bit = 1; 460 bit = 1;
460 break; 461 break;
(...skipping 21 matching lines...) Expand all
482 483
483 bit += 8 * i->critbyte(); 484 bit += 8 * i->critbyte();
484 if (last_bit > -1) { 485 if (last_bit > -1) {
485 CHECK_GT(bit, static_cast<unsigned>(last_bit)); 486 CHECK_GT(bit, static_cast<unsigned>(last_bit));
486 } 487 }
487 488
488 CHECK_EQ(free_internal_nodes.count(internal_node), 0u); 489 CHECK_EQ(free_internal_nodes.count(internal_node), 0u);
489 490
490 for (unsigned child = 0; child < 2; child++) { 491 for (unsigned child = 0; child < 2; child++) {
491 if (i->child(child) & kExternalFlag) { 492 if (i->child(child) & kExternalFlag) {
492 uint32 ext = i->child(child) & ~kExternalFlag; 493 uint32_t ext = i->child(child) & ~kExternalFlag;
493 CHECK_EQ(free_external_nodes.count(ext), 0u); 494 CHECK_EQ(free_external_nodes.count(ext), 0u);
494 CHECK_EQ(used_external_nodes->count(ext), 0u); 495 CHECK_EQ(used_external_nodes->count(ext), 0u);
495 used_external_nodes->insert(ext); 496 used_external_nodes->insert(ext);
496 const uint8* bytes = external_node(ext); 497 const uint8_t* bytes = external_node(ext);
497 for (const pair<unsigned, bool>& pair : bits) { 498 for (const pair<unsigned, bool>& pair : bits) {
498 unsigned byte = pair.first / 8; 499 unsigned byte = pair.first / 8;
499 DCHECK_LE(byte, 0xffu); 500 DCHECK_LE(byte, 0xffu);
500 unsigned bit_new = pair.first % 8; 501 unsigned bit_new = pair.first % 8;
501 static const uint8 kMasks[8] = {0x80, 0x40, 0x20, 0x10, 502 static const uint8_t kMasks[8] = {0x80, 0x40, 0x20, 0x10,
502 0x08, 0x04, 0x02, 0x01}; 503 0x08, 0x04, 0x02, 0x01};
503 CHECK_EQ((bytes[byte] & kMasks[bit_new]) != 0, pair.second); 504 CHECK_EQ((bytes[byte] & kMasks[bit_new]) != 0, pair.second);
504 } 505 }
505 } else { 506 } else {
506 uint32 inter = i->child(child); 507 uint32_t inter = i->child(child);
507 vector<pair<unsigned, bool>> new_bits(bits); 508 vector<pair<unsigned, bool>> new_bits(bits);
508 new_bits.push_back(pair<unsigned, bool>(bit, child != 0)); 509 new_bits.push_back(pair<unsigned, bool>(bit, child != 0));
509 CHECK_EQ(free_internal_nodes.count(inter), 0u); 510 CHECK_EQ(free_internal_nodes.count(inter), 0u);
510 CHECK_EQ(used_internal_nodes->count(inter), 0u); 511 CHECK_EQ(used_internal_nodes->count(inter), 0u);
511 used_internal_nodes->insert(inter); 512 used_internal_nodes->insert(inter);
512 ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes, 513 ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes,
513 used_internal_nodes, used_external_nodes); 514 used_internal_nodes, used_external_nodes);
514 } 515 }
515 } 516 }
516 } 517 }
517 518
518 } // namespace net 519 } // namespace net
OLDNEW
« no previous file with comments | « net/quic/crypto/strike_register.h ('k') | net/quic/crypto/strike_register_client.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698