| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2012 Google Inc. | 2 * Copyright 2012 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 #include "SkFloatBits.h" |
| 7 #include "SkPathOpsTypes.h" | 8 #include "SkPathOpsTypes.h" |
| 8 | 9 |
| 9 const int UlpsEpsilon = 16; | 10 const int UlpsEpsilon = 16; |
| 10 | 11 |
| 11 // from http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-num
bers-2012-edition/ | 12 // from http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-num
bers-2012-edition/ |
| 12 union SkPathOpsUlpsFloat { | 13 // FIXME: move to SkFloatBits.h |
| 13 int32_t fInt; | |
| 14 float fFloat; | |
| 15 | |
| 16 SkPathOpsUlpsFloat(float num = 0.0f) : fFloat(num) {} | |
| 17 bool negative() const { return fInt < 0; } | |
| 18 }; | |
| 19 | |
| 20 bool AlmostEqualUlps(float A, float B) { | 14 bool AlmostEqualUlps(float A, float B) { |
| 21 SkPathOpsUlpsFloat uA(A); | 15 SkFloatIntUnion floatIntA, floatIntB; |
| 22 SkPathOpsUlpsFloat uB(B); | 16 floatIntA.fFloat = A; |
| 17 floatIntB.fFloat = B; |
| 23 // Different signs means they do not match. | 18 // Different signs means they do not match. |
| 24 if (uA.negative() != uB.negative()) | 19 if ((floatIntA.fSignBitInt < 0) != (floatIntB.fSignBitInt < 0)) |
| 25 { | 20 { |
| 26 // Check for equality to make sure +0 == -0 | 21 // Check for equality to make sure +0 == -0 |
| 27 return A == B; | 22 return A == B; |
| 28 } | 23 } |
| 29 // Find the difference in ULPs. | 24 // Find the difference in ULPs. |
| 30 int ulpsDiff = abs(uA.fInt - uB.fInt); | 25 int ulpsDiff = abs(floatIntA.fSignBitInt - floatIntB.fSignBitInt); |
| 31 return ulpsDiff <= UlpsEpsilon; | 26 return ulpsDiff <= UlpsEpsilon; |
| 32 } | 27 } |
| 33 | 28 |
| 34 // cube root approximation using bit hack for 64-bit float | 29 // cube root approximation using bit hack for 64-bit float |
| 35 // adapted from Kahan's cbrt | 30 // adapted from Kahan's cbrt |
| 36 static double cbrt_5d(double d) { | 31 static double cbrt_5d(double d) { |
| 37 const unsigned int B1 = 715094163; | 32 const unsigned int B1 = 715094163; |
| 38 double t = 0.0; | 33 double t = 0.0; |
| 39 unsigned int* pt = (unsigned int*) &t; | 34 unsigned int* pt = (unsigned int*) &t; |
| 40 unsigned int* px = (unsigned int*) &d; | 35 unsigned int* px = (unsigned int*) &d; |
| 41 pt[1] = px[1] / 3 + B1; | 36 pt[1] = px[1] / 3 + B1; |
| 42 return t; | 37 return t; |
| 43 } | 38 } |
| 44 | 39 |
| 45 // iterative cube root approximation using Halley's method (double) | 40 // iterative cube root approximation using Halley's method (double) |
| 46 static double cbrta_halleyd(const double a, const double R) { | 41 static double cbrta_halleyd(const double a, const double R) { |
| 47 const double a3 = a * a * a; | 42 const double a3 = a * a * a; |
| 48 const double b = a * (a3 + R + R) / (a3 + a3 + R); | 43 const double b = a * (a3 + R + R) / (a3 + a3 + R); |
| 49 return b; | 44 return b; |
| 50 } | 45 } |
| 51 | 46 |
| 52 // cube root approximation using 3 iterations of Halley's method (double) | 47 // cube root approximation using 3 iterations of Halley's method (double) |
| 53 static double halley_cbrt3d(double d) { | 48 static double halley_cbrt3d(double d) { |
| 54 double a = cbrt_5d(d); | 49 double a = cbrt_5d(d); |
| 55 a = cbrta_halleyd(a, d); | 50 a = cbrta_halleyd(a, d); |
| 56 a = cbrta_halleyd(a, d); | 51 a = cbrta_halleyd(a, d); |
| 57 return cbrta_halleyd(a, d); | 52 return cbrta_halleyd(a, d); |
| 58 } | 53 } |
| 59 | 54 |
| 60 double SkDCubeRoot(double x) { | 55 double SkDCubeRoot(double x) { |
| 61 if (approximately_zero_cubed(x)) { | 56 if (approximately_zero_cubed(x)) { |
| 62 return 0; | 57 return 0; |
| 63 } | 58 } |
| 64 double result = halley_cbrt3d(fabs(x)); | 59 double result = halley_cbrt3d(fabs(x)); |
| 65 if (x < 0) { | 60 if (x < 0) { |
| 66 result = -result; | 61 result = -result; |
| 67 } | 62 } |
| 68 return result; | 63 return result; |
| 69 } | 64 } |
| OLD | NEW |