OLD | NEW |
| (Empty) |
1 // Copyright 2014 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "cc/quads/draw_polygon.h" | |
6 | |
7 #include <vector> | |
8 | |
9 #include "cc/output/bsp_compare_result.h" | |
10 #include "cc/quads/draw_quad.h" | |
11 | |
12 namespace { | |
13 // This allows for some imperfection in the normal comparison when checking if | |
14 // two pieces of geometry are coplanar. | |
15 static const float coplanar_dot_epsilon = 0.001f; | |
16 // This threshold controls how "thick" a plane is. If a point's distance is | |
17 // <= |compare_threshold|, then it is considered on the plane. Only when this | |
18 // boundary is crossed do we consider doing splitting. | |
19 static const float compare_threshold = 1.0f; | |
20 // |split_threshold| is lower in this case because we want the points created | |
21 // during splitting to be well within the range of |compare_threshold| for | |
22 // comparison purposes. The splitting operation will produce intersection points | |
23 // that fit within a tighter distance to the splitting plane as a result of this | |
24 // value. By using a value >= |compare_threshold| we run the risk of creating | |
25 // points that SHOULD be intersecting the "thick plane", but actually fail to | |
26 // test positively for it because |split_threshold| allowed them to be outside | |
27 // this range. | |
28 // This is really supposd to be compare_threshold / 2.0f, but that would | |
29 // create another static initializer. | |
30 static const float split_threshold = 0.5f; | |
31 | |
32 static const float normalized_threshold = 0.001f; | |
33 } // namespace | |
34 | |
35 namespace cc { | |
36 | |
37 DrawPolygon::DrawPolygon() { | |
38 } | |
39 | |
40 DrawPolygon::DrawPolygon(const DrawQuad* original, | |
41 const std::vector<gfx::Point3F>& in_points, | |
42 const gfx::Vector3dF& normal, | |
43 int draw_order_index) | |
44 : order_index_(draw_order_index), original_ref_(original), is_split_(true) { | |
45 for (size_t i = 0; i < in_points.size(); i++) { | |
46 points_.push_back(in_points[i]); | |
47 } | |
48 normal_ = normal; | |
49 } | |
50 | |
51 // This takes the original DrawQuad that this polygon should be based on, | |
52 // a visible content rect to make the 4 corner points from, and a transformation | |
53 // to move it and its normal into screen space. | |
54 DrawPolygon::DrawPolygon(const DrawQuad* original_ref, | |
55 const gfx::RectF& visible_content_rect, | |
56 const gfx::Transform& transform, | |
57 int draw_order_index) | |
58 : normal_(0.0f, 0.0f, 1.0f), | |
59 order_index_(draw_order_index), | |
60 original_ref_(original_ref), | |
61 is_split_(false) { | |
62 gfx::Point3F points[8]; | |
63 int num_vertices_in_clipped_quad; | |
64 gfx::QuadF send_quad(visible_content_rect); | |
65 | |
66 // Doing this mapping here is very important, since we can't just transform | |
67 // the points without clipping and not run into strange geometry issues when | |
68 // crossing w = 0. At this point, in the constructor, we know that we're | |
69 // working with a quad, so we can reuse the MathUtil::MapClippedQuad3d | |
70 // function instead of writing a generic polygon version of it. | |
71 MathUtil::MapClippedQuad3d( | |
72 transform, send_quad, points, &num_vertices_in_clipped_quad); | |
73 for (int i = 0; i < num_vertices_in_clipped_quad; i++) { | |
74 points_.push_back(points[i]); | |
75 } | |
76 ApplyTransformToNormal(transform); | |
77 } | |
78 | |
79 DrawPolygon::~DrawPolygon() { | |
80 } | |
81 | |
82 scoped_ptr<DrawPolygon> DrawPolygon::CreateCopy() { | |
83 scoped_ptr<DrawPolygon> new_polygon(new DrawPolygon()); | |
84 new_polygon->order_index_ = order_index_; | |
85 new_polygon->original_ref_ = original_ref_; | |
86 new_polygon->points_.reserve(points_.size()); | |
87 new_polygon->points_ = points_; | |
88 new_polygon->normal_.set_x(normal_.x()); | |
89 new_polygon->normal_.set_y(normal_.y()); | |
90 new_polygon->normal_.set_z(normal_.z()); | |
91 return new_polygon.Pass(); | |
92 } | |
93 | |
94 float DrawPolygon::SignedPointDistance(const gfx::Point3F& point) const { | |
95 return gfx::DotProduct(point - points_[0], normal_); | |
96 } | |
97 | |
98 // Checks whether or not shape a lies on the front or back side of b, or | |
99 // whether they should be considered coplanar. If on the back side, we | |
100 // say A_BEFORE_B because it should be drawn in that order. | |
101 // Assumes that layers are split and there are no intersecting planes. | |
102 BspCompareResult DrawPolygon::SideCompare(const DrawPolygon& a, | |
103 const DrawPolygon& b) { | |
104 // Let's make sure that both of these are normalized. | |
105 DCHECK_GE(normalized_threshold, std::abs(a.normal_.LengthSquared() - 1.0f)); | |
106 DCHECK_GE(normalized_threshold, std::abs(b.normal_.LengthSquared() - 1.0f)); | |
107 // Right away let's check if they're coplanar | |
108 double dot = gfx::DotProduct(a.normal_, b.normal_); | |
109 float sign = 0.0f; | |
110 bool normal_match = false; | |
111 // This check assumes that the normals are normalized. | |
112 if (std::abs(dot) >= 1.0f - coplanar_dot_epsilon) { | |
113 normal_match = true; | |
114 // The normals are matching enough that we only have to test one point. | |
115 sign = b.SignedPointDistance(a.points_[0]); | |
116 // Is it on either side of the splitter? | |
117 if (sign < -compare_threshold) { | |
118 return BSP_BACK; | |
119 } | |
120 | |
121 if (sign > compare_threshold) { | |
122 return BSP_FRONT; | |
123 } | |
124 | |
125 // No it wasn't, so the sign of the dot product of the normals | |
126 // along with document order determines which side it goes on. | |
127 if (dot >= 0.0f) { | |
128 if (a.order_index_ < b.order_index_) { | |
129 return BSP_COPLANAR_FRONT; | |
130 } | |
131 return BSP_COPLANAR_BACK; | |
132 } | |
133 | |
134 if (a.order_index_ < b.order_index_) { | |
135 return BSP_COPLANAR_BACK; | |
136 } | |
137 return BSP_COPLANAR_FRONT; | |
138 } | |
139 | |
140 int pos_count = 0; | |
141 int neg_count = 0; | |
142 for (size_t i = 0; i < a.points_.size(); i++) { | |
143 if (!normal_match || (normal_match && i > 0)) { | |
144 sign = gfx::DotProduct(a.points_[i] - b.points_[0], b.normal_); | |
145 } | |
146 | |
147 if (sign < -compare_threshold) { | |
148 ++neg_count; | |
149 } else if (sign > compare_threshold) { | |
150 ++pos_count; | |
151 } | |
152 | |
153 if (pos_count && neg_count) { | |
154 return BSP_SPLIT; | |
155 } | |
156 } | |
157 | |
158 if (pos_count) { | |
159 return BSP_FRONT; | |
160 } | |
161 return BSP_BACK; | |
162 } | |
163 | |
164 static bool LineIntersectPlane(const gfx::Point3F& line_start, | |
165 const gfx::Point3F& line_end, | |
166 const gfx::Point3F& plane_origin, | |
167 const gfx::Vector3dF& plane_normal, | |
168 gfx::Point3F* intersection, | |
169 float distance_threshold) { | |
170 gfx::Vector3dF start_to_origin_vector = plane_origin - line_start; | |
171 gfx::Vector3dF end_to_origin_vector = plane_origin - line_end; | |
172 | |
173 double start_distance = gfx::DotProduct(start_to_origin_vector, plane_normal); | |
174 double end_distance = gfx::DotProduct(end_to_origin_vector, plane_normal); | |
175 | |
176 // The case where one vertex lies on the thick-plane and the other | |
177 // is outside of it. | |
178 if (std::abs(start_distance) <= distance_threshold && | |
179 std::abs(end_distance) > distance_threshold) { | |
180 intersection->SetPoint(line_start.x(), line_start.y(), line_start.z()); | |
181 return true; | |
182 } | |
183 | |
184 // This is the case where we clearly cross the thick-plane. | |
185 if ((start_distance > distance_threshold && | |
186 end_distance < -distance_threshold) || | |
187 (start_distance < -distance_threshold && | |
188 end_distance > distance_threshold)) { | |
189 gfx::Vector3dF v = line_end - line_start; | |
190 float total_distance = std::abs(start_distance) + std::abs(end_distance); | |
191 float lerp_factor = std::abs(start_distance) / total_distance; | |
192 | |
193 intersection->SetPoint(line_start.x() + (v.x() * lerp_factor), | |
194 line_start.y() + (v.y() * lerp_factor), | |
195 line_start.z() + (v.z() * lerp_factor)); | |
196 | |
197 return true; | |
198 } | |
199 return false; | |
200 } | |
201 | |
202 // This function is separate from ApplyTransform because it is often unnecessary | |
203 // to transform the normal with the rest of the polygon. | |
204 // When drawing these polygons, it is necessary to move them back into layer | |
205 // space before sending them to OpenGL, which requires using ApplyTransform, | |
206 // but normal information is no longer needed after sorting. | |
207 void DrawPolygon::ApplyTransformToNormal(const gfx::Transform& transform) { | |
208 // Now we use the inverse transpose of |transform| to transform the normal. | |
209 gfx::Transform inverse_transform; | |
210 bool inverted = transform.GetInverse(&inverse_transform); | |
211 DCHECK(inverted); | |
212 if (!inverted) | |
213 return; | |
214 inverse_transform.Transpose(); | |
215 | |
216 gfx::Point3F new_normal(normal_.x(), normal_.y(), normal_.z()); | |
217 inverse_transform.TransformPoint(&new_normal); | |
218 // Make sure our normal is still normalized. | |
219 normal_ = gfx::Vector3dF(new_normal.x(), new_normal.y(), new_normal.z()); | |
220 float normal_magnitude = normal_.Length(); | |
221 if (normal_magnitude != 0 && normal_magnitude != 1) { | |
222 normal_.Scale(1.0f / normal_magnitude); | |
223 } | |
224 } | |
225 | |
226 void DrawPolygon::ApplyTransform(const gfx::Transform& transform) { | |
227 for (size_t i = 0; i < points_.size(); i++) { | |
228 transform.TransformPoint(&points_[i]); | |
229 } | |
230 } | |
231 | |
232 // TransformToScreenSpace assumes we're moving a layer from its layer space | |
233 // into 3D screen space, which for sorting purposes requires the normal to | |
234 // be transformed along with the vertices. | |
235 void DrawPolygon::TransformToScreenSpace(const gfx::Transform& transform) { | |
236 ApplyTransform(transform); | |
237 ApplyTransformToNormal(transform); | |
238 } | |
239 | |
240 // In the case of TransformToLayerSpace, we assume that we are giving the | |
241 // inverse transformation back to the polygon to move it back into layer space | |
242 // but we can ignore the costly process of applying the inverse to the normal | |
243 // since we know the normal will just reset to its original state. | |
244 void DrawPolygon::TransformToLayerSpace( | |
245 const gfx::Transform& inverse_transform) { | |
246 ApplyTransform(inverse_transform); | |
247 normal_ = gfx::Vector3dF(0.0f, 0.0f, -1.0f); | |
248 } | |
249 | |
250 bool DrawPolygon::Split(const DrawPolygon& splitter, | |
251 scoped_ptr<DrawPolygon>* front, | |
252 scoped_ptr<DrawPolygon>* back) { | |
253 gfx::Point3F intersections[2]; | |
254 std::vector<gfx::Point3F> out_points[2]; | |
255 // vertex_before stores the index of the vertex before its matching | |
256 // intersection. | |
257 // i.e. vertex_before[0] stores the vertex we saw before we crossed the plane | |
258 // which resulted in the line/plane intersection giving us intersections[0]. | |
259 size_t vertex_before[2]; | |
260 size_t points_size = points_.size(); | |
261 size_t current_intersection = 0; | |
262 | |
263 size_t current_vertex = 0; | |
264 // We will only have two intersection points because we assume all polygons | |
265 // are convex. | |
266 while (current_intersection < 2) { | |
267 if (LineIntersectPlane(points_[(current_vertex % points_size)], | |
268 points_[(current_vertex + 1) % points_size], | |
269 splitter.points_[0], | |
270 splitter.normal_, | |
271 &intersections[current_intersection], | |
272 split_threshold)) { | |
273 vertex_before[current_intersection] = current_vertex % points_size; | |
274 current_intersection++; | |
275 // We found both intersection points so we're done already. | |
276 if (current_intersection == 2) { | |
277 break; | |
278 } | |
279 } | |
280 if (current_vertex++ > (points_size)) { | |
281 break; | |
282 } | |
283 } | |
284 DCHECK_EQ(current_intersection, static_cast<size_t>(2)); | |
285 | |
286 // Since we found both the intersection points, we can begin building the | |
287 // vertex set for both our new polygons. | |
288 size_t start1 = (vertex_before[0] + 1) % points_size; | |
289 size_t start2 = (vertex_before[1] + 1) % points_size; | |
290 size_t points_remaining = points_size; | |
291 | |
292 // First polygon. | |
293 out_points[0].push_back(intersections[0]); | |
294 DCHECK_GE(vertex_before[1], start1); | |
295 for (size_t i = start1; i <= vertex_before[1]; i++) { | |
296 out_points[0].push_back(points_[i]); | |
297 --points_remaining; | |
298 } | |
299 out_points[0].push_back(intersections[1]); | |
300 | |
301 // Second polygon. | |
302 out_points[1].push_back(intersections[1]); | |
303 size_t index = start2; | |
304 for (size_t i = 0; i < points_remaining; i++) { | |
305 out_points[1].push_back(points_[index % points_size]); | |
306 ++index; | |
307 } | |
308 out_points[1].push_back(intersections[0]); | |
309 | |
310 // Give both polygons the original splitting polygon's ID, so that they'll | |
311 // still be sorted properly in co-planar instances. | |
312 scoped_ptr<DrawPolygon> poly1( | |
313 new DrawPolygon(original_ref_, out_points[0], normal_, order_index_)); | |
314 scoped_ptr<DrawPolygon> poly2( | |
315 new DrawPolygon(original_ref_, out_points[1], normal_, order_index_)); | |
316 | |
317 DCHECK_GE(poly1->points().size(), 3u); | |
318 DCHECK_GE(poly2->points().size(), 3u); | |
319 | |
320 if (SideCompare(*poly1, splitter) == BSP_FRONT) { | |
321 *front = poly1.Pass(); | |
322 *back = poly2.Pass(); | |
323 } else { | |
324 *front = poly2.Pass(); | |
325 *back = poly1.Pass(); | |
326 } | |
327 return true; | |
328 } | |
329 | |
330 // This algorithm takes the first vertex in the polygon and uses that as a | |
331 // pivot point to fan out and create quads from the rest of the vertices. | |
332 // |offset| starts off as the second vertex, and then |op1| and |op2| indicate | |
333 // offset+1 and offset+2 respectively. | |
334 // After the first quad is created, the first vertex in the next quad is the | |
335 // same as all the rest, the pivot point. The second vertex in the next quad is | |
336 // the old |op2|, the last vertex added to the previous quad. This continues | |
337 // until all points are exhausted. | |
338 // The special case here is where there are only 3 points remaining, in which | |
339 // case we use the same values for vertex 3 and 4 to make a degenerate quad | |
340 // that represents a triangle. | |
341 void DrawPolygon::ToQuads2D(std::vector<gfx::QuadF>* quads) const { | |
342 if (points_.size() <= 2) | |
343 return; | |
344 | |
345 gfx::PointF first(points_[0].x(), points_[0].y()); | |
346 size_t offset = 1; | |
347 while (offset < points_.size() - 1) { | |
348 size_t op1 = offset + 1; | |
349 size_t op2 = offset + 2; | |
350 if (op2 >= points_.size()) { | |
351 // It's going to be a degenerate triangle. | |
352 op2 = op1; | |
353 } | |
354 quads->push_back( | |
355 gfx::QuadF(first, | |
356 gfx::PointF(points_[offset].x(), points_[offset].y()), | |
357 gfx::PointF(points_[op1].x(), points_[op1].y()), | |
358 gfx::PointF(points_[op2].x(), points_[op2].y()))); | |
359 offset = op2; | |
360 } | |
361 } | |
362 | |
363 } // namespace cc | |
OLD | NEW |