Index: src/core/SkScan_Hairline.cpp |
diff --git a/src/core/SkScan_Hairline.cpp b/src/core/SkScan_Hairline.cpp |
index 02099250fa89ef5969e2d9f38d2bba61e41290e7..c59521abc7b3413fb072acbd7fd648e1e276b514 100644 |
--- a/src/core/SkScan_Hairline.cpp |
+++ b/src/core/SkScan_Hairline.cpp |
@@ -318,8 +318,69 @@ static void hair_cubic(const SkPoint pts[4], const SkRegion* clip, SkBlitter* bl |
lineproc(tmp, lines + 1, clip, blitter); |
} |
-static inline void haircubic(const SkPoint pts[4], const SkRegion* clip, |
+static SkRect compute_nocheck_cubic_bounds(const SkPoint pts[4]) { |
+ SkASSERT(SkScalarsAreFinite(&pts[0].fX, 8)); |
+ |
+ Sk2s min = Sk2s::Load(&pts[0].fX); |
mtklein
2015/12/17 14:58:15
This might be slightly faster to do as a tree of m
|
+ Sk2s max = min; |
+ for (int i = 1; i < 4; ++i) { |
+ Sk2s pair = Sk2s::Load(&pts[i].fX); |
+ min = Sk2s::Min(min, pair); |
+ max = Sk2s::Max(max, pair); |
+ } |
+ return { min.kth<0>(), min.kth<1>(), max.kth<0>(), max.kth<1>() }; |
mtklein
2015/12/17 14:58:15
We might want to double check this is the same as
|
+} |
+ |
+static bool is_inverted(const SkRect& r) { |
+ return r.fLeft > r.fRight || r.fTop > r.fBottom; |
+} |
+ |
+// Can't call SkRect::intersects, since it cares about empty, and we don't (since we tracking |
+// something to be stroked, so empty can still draw something (e.g. horizontal line) |
+static bool geometric_overlap(const SkRect& a, const SkRect& b) { |
+ SkASSERT(!is_inverted(a) && !is_inverted(b)); |
+ return a.fLeft < b.fRight && b.fLeft < a.fRight && |
+ a.fTop < b.fBottom && b.fTop < a.fBottom; |
+} |
+ |
+// Can't call SkRect::contains, since it cares about empty, and we don't (since we tracking |
+// something to be stroked, so empty can still draw something (e.g. horizontal line) |
+static bool geometric_contains(const SkRect& outer, const SkRect& inner) { |
+ SkASSERT(!is_inverted(outer) && !is_inverted(inner)); |
+ return inner.fRight <= outer.fRight && inner.fLeft >= outer.fLeft && |
+ inner.fBottom <= outer.fBottom && inner.fTop >= outer.fTop; |
+} |
+ |
+//#define SK_SHOW_HAIRCLIP_STATS |
+#ifdef SK_SHOW_HAIRCLIP_STATS |
+static int gKillClip, gRejectClip, gClipCount; |
+#endif |
+ |
+static inline void haircubic(const SkPoint pts[4], const SkRegion* clip, const SkRect* insetClip, const SkRect* outsetClip, |
SkBlitter* blitter, int level, SkScan::HairRgnProc lineproc) { |
+ if (insetClip) { |
+ SkASSERT(outsetClip); |
+#ifdef SK_SHOW_HAIRCLIP_STATS |
+ gClipCount += 1; |
+#endif |
+ SkRect bounds = compute_nocheck_cubic_bounds(pts); |
+ if (!geometric_overlap(*outsetClip, bounds)) { |
+#ifdef SK_SHOW_HAIRCLIP_STATS |
+ gRejectClip += 1; |
+#endif |
+ return; |
+ } else if (geometric_contains(*insetClip, bounds)) { |
+ clip = nullptr; |
+#ifdef SK_SHOW_HAIRCLIP_STATS |
+ gKillClip += 1; |
+#endif |
+ } |
+#ifdef SK_SHOW_HAIRCLIP_STATS |
+ if (0 == gClipCount % 256) |
+ SkDebugf("kill %g reject %g total %d\n", 1.0*gKillClip / gClipCount, 1.0*gRejectClip/gClipCount, gClipCount); |
+#endif |
+ } |
+ |
if (quick_cubic_niceness_check(pts)) { |
hair_cubic(pts, clip, blitter, lineproc); |
} else { |
@@ -400,6 +461,9 @@ void hair_path(const SkPath& path, const SkRasterClip& rclip, SkBlitter* blitter |
SkAAClipBlitterWrapper wrap; |
const SkRegion* clip = nullptr; |
+ SkRect insetStorage, outsetStorage; |
+ const SkRect* insetClip = nullptr; |
+ const SkRect* outsetClip = nullptr; |
{ |
const SkIRect ibounds = path.getBounds().roundOut().makeOutset(1, 1); |
@@ -415,6 +479,35 @@ void hair_path(const SkPath& path, const SkRasterClip& rclip, SkBlitter* blitter |
blitter = wrap.getBlitter(); |
clip = &wrap.getRgn(); |
} |
+ |
+ /* |
+ * We now cache two scalar rects, to use for culling per-segment (e.g. cubic). |
+ * Since we're hairlining, the "bounds" of the control points isn't necessairly the |
+ * limit of where a segment can draw (it might draw up to 1 pixel beyond in aa-hairs). |
+ * |
+ * Compute the pt-bounds per segment is easy, so we do that, and then inversely adjust |
+ * the culling bounds so we can just do a straight compare per segment. |
+ * |
+ * insetClip is use for quick-accept (i.e. the segment is not clipped), so we inset |
+ * it from the clip-bounds (since segment bounds can be off by 1). |
+ * |
+ * outsetClip is used for quick-reject (i.e. the segment is entirely outside), so we |
+ * outset it from the clip-bounds. |
+ */ |
+ insetStorage.set(clip->getBounds()); |
+ outsetStorage = insetStorage.makeOutset(1, 1); |
+ insetStorage.inset(1, 1); |
+ if (is_inverted(insetStorage)) { |
+ /* |
+ * our bounds checks assume the rects are never inverted. If insetting has |
+ * created that, we assume that the area is too small to safely perform a |
+ * quick-accept, so we just mark the rect as empty (so the quick-accept check |
+ * will always fail. |
+ */ |
+ insetStorage.setEmpty(); // just so we don't pass an inverted rect |
+ } |
+ insetClip = &insetStorage; |
+ outsetClip = &outsetStorage; |
} |
} |
@@ -465,7 +558,7 @@ void hair_path(const SkPath& path, const SkRasterClip& rclip, SkBlitter* blitter |
if (SkPaint::kButt_Cap != capStyle) { |
extend_pts<capStyle>(prevVerb, iter.peek(), pts, 4); |
} |
- haircubic(pts, clip, blitter, kMaxCubicSubdivideLevel, lineproc); |
+ haircubic(pts, clip, insetClip, outsetClip, blitter, kMaxCubicSubdivideLevel, lineproc); |
lastPt = pts[3]; |
} break; |
case SkPath::kClose_Verb: |