Chromium Code Reviews| Index: src/core/SkScan_Hairline.cpp |
| diff --git a/src/core/SkScan_Hairline.cpp b/src/core/SkScan_Hairline.cpp |
| index 02099250fa89ef5969e2d9f38d2bba61e41290e7..c59521abc7b3413fb072acbd7fd648e1e276b514 100644 |
| --- a/src/core/SkScan_Hairline.cpp |
| +++ b/src/core/SkScan_Hairline.cpp |
| @@ -318,8 +318,69 @@ static void hair_cubic(const SkPoint pts[4], const SkRegion* clip, SkBlitter* bl |
| lineproc(tmp, lines + 1, clip, blitter); |
| } |
| -static inline void haircubic(const SkPoint pts[4], const SkRegion* clip, |
| +static SkRect compute_nocheck_cubic_bounds(const SkPoint pts[4]) { |
| + SkASSERT(SkScalarsAreFinite(&pts[0].fX, 8)); |
| + |
| + Sk2s min = Sk2s::Load(&pts[0].fX); |
|
mtklein
2015/12/17 14:58:15
This might be slightly faster to do as a tree of m
|
| + Sk2s max = min; |
| + for (int i = 1; i < 4; ++i) { |
| + Sk2s pair = Sk2s::Load(&pts[i].fX); |
| + min = Sk2s::Min(min, pair); |
| + max = Sk2s::Max(max, pair); |
| + } |
| + return { min.kth<0>(), min.kth<1>(), max.kth<0>(), max.kth<1>() }; |
|
mtklein
2015/12/17 14:58:15
We might want to double check this is the same as
|
| +} |
| + |
| +static bool is_inverted(const SkRect& r) { |
| + return r.fLeft > r.fRight || r.fTop > r.fBottom; |
| +} |
| + |
| +// Can't call SkRect::intersects, since it cares about empty, and we don't (since we tracking |
| +// something to be stroked, so empty can still draw something (e.g. horizontal line) |
| +static bool geometric_overlap(const SkRect& a, const SkRect& b) { |
| + SkASSERT(!is_inverted(a) && !is_inverted(b)); |
| + return a.fLeft < b.fRight && b.fLeft < a.fRight && |
| + a.fTop < b.fBottom && b.fTop < a.fBottom; |
| +} |
| + |
| +// Can't call SkRect::contains, since it cares about empty, and we don't (since we tracking |
| +// something to be stroked, so empty can still draw something (e.g. horizontal line) |
| +static bool geometric_contains(const SkRect& outer, const SkRect& inner) { |
| + SkASSERT(!is_inverted(outer) && !is_inverted(inner)); |
| + return inner.fRight <= outer.fRight && inner.fLeft >= outer.fLeft && |
| + inner.fBottom <= outer.fBottom && inner.fTop >= outer.fTop; |
| +} |
| + |
| +//#define SK_SHOW_HAIRCLIP_STATS |
| +#ifdef SK_SHOW_HAIRCLIP_STATS |
| +static int gKillClip, gRejectClip, gClipCount; |
| +#endif |
| + |
| +static inline void haircubic(const SkPoint pts[4], const SkRegion* clip, const SkRect* insetClip, const SkRect* outsetClip, |
| SkBlitter* blitter, int level, SkScan::HairRgnProc lineproc) { |
| + if (insetClip) { |
| + SkASSERT(outsetClip); |
| +#ifdef SK_SHOW_HAIRCLIP_STATS |
| + gClipCount += 1; |
| +#endif |
| + SkRect bounds = compute_nocheck_cubic_bounds(pts); |
| + if (!geometric_overlap(*outsetClip, bounds)) { |
| +#ifdef SK_SHOW_HAIRCLIP_STATS |
| + gRejectClip += 1; |
| +#endif |
| + return; |
| + } else if (geometric_contains(*insetClip, bounds)) { |
| + clip = nullptr; |
| +#ifdef SK_SHOW_HAIRCLIP_STATS |
| + gKillClip += 1; |
| +#endif |
| + } |
| +#ifdef SK_SHOW_HAIRCLIP_STATS |
| + if (0 == gClipCount % 256) |
| + SkDebugf("kill %g reject %g total %d\n", 1.0*gKillClip / gClipCount, 1.0*gRejectClip/gClipCount, gClipCount); |
| +#endif |
| + } |
| + |
| if (quick_cubic_niceness_check(pts)) { |
| hair_cubic(pts, clip, blitter, lineproc); |
| } else { |
| @@ -400,6 +461,9 @@ void hair_path(const SkPath& path, const SkRasterClip& rclip, SkBlitter* blitter |
| SkAAClipBlitterWrapper wrap; |
| const SkRegion* clip = nullptr; |
| + SkRect insetStorage, outsetStorage; |
| + const SkRect* insetClip = nullptr; |
| + const SkRect* outsetClip = nullptr; |
| { |
| const SkIRect ibounds = path.getBounds().roundOut().makeOutset(1, 1); |
| @@ -415,6 +479,35 @@ void hair_path(const SkPath& path, const SkRasterClip& rclip, SkBlitter* blitter |
| blitter = wrap.getBlitter(); |
| clip = &wrap.getRgn(); |
| } |
| + |
| + /* |
| + * We now cache two scalar rects, to use for culling per-segment (e.g. cubic). |
| + * Since we're hairlining, the "bounds" of the control points isn't necessairly the |
| + * limit of where a segment can draw (it might draw up to 1 pixel beyond in aa-hairs). |
| + * |
| + * Compute the pt-bounds per segment is easy, so we do that, and then inversely adjust |
| + * the culling bounds so we can just do a straight compare per segment. |
| + * |
| + * insetClip is use for quick-accept (i.e. the segment is not clipped), so we inset |
| + * it from the clip-bounds (since segment bounds can be off by 1). |
| + * |
| + * outsetClip is used for quick-reject (i.e. the segment is entirely outside), so we |
| + * outset it from the clip-bounds. |
| + */ |
| + insetStorage.set(clip->getBounds()); |
| + outsetStorage = insetStorage.makeOutset(1, 1); |
| + insetStorage.inset(1, 1); |
| + if (is_inverted(insetStorage)) { |
| + /* |
| + * our bounds checks assume the rects are never inverted. If insetting has |
| + * created that, we assume that the area is too small to safely perform a |
| + * quick-accept, so we just mark the rect as empty (so the quick-accept check |
| + * will always fail. |
| + */ |
| + insetStorage.setEmpty(); // just so we don't pass an inverted rect |
| + } |
| + insetClip = &insetStorage; |
| + outsetClip = &outsetStorage; |
| } |
| } |
| @@ -465,7 +558,7 @@ void hair_path(const SkPath& path, const SkRasterClip& rclip, SkBlitter* blitter |
| if (SkPaint::kButt_Cap != capStyle) { |
| extend_pts<capStyle>(prevVerb, iter.peek(), pts, 4); |
| } |
| - haircubic(pts, clip, blitter, kMaxCubicSubdivideLevel, lineproc); |
| + haircubic(pts, clip, insetClip, outsetClip, blitter, kMaxCubicSubdivideLevel, lineproc); |
| lastPt = pts[3]; |
| } break; |
| case SkPath::kClose_Verb: |